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Introduction

In many text books about Riemann surfaces, the theorem of Riemann–Roch
for divisors or line bundles has been treated. But usually they do not contain
the theorem for vector bundles. Here the reader usually is referred to the
Hirzebruch–Riemann–Roch theorem. The Riemann–Roch theorem for vector
bundles has very elementary applications. For example, one can use it to
compute dimensions of vector spaces of vector valued elliptic modular forms as
they are used for example in the theory of Borcherds products.

One purpose of this book is to give a quick proof of the Riemann–Roch the-
orem for vector bundles on a compact Riemann surface, and, as an application,
we will deduce these dimension formulae in a rather general context.

The approach to Riemann surfaces is sheaf theoretic, quite different than in
our textbook [Fr1]. There are similarities with the important book of Forster
[Fo]. Forster also uses the sheaf theoretic approach. To keep this as elementary
as possible, he restricts to introduce the first Čech cohomology group of a sheaf.
Instead of this we introduce a full cohomology theory of sheaves in a form which
allows to use this approach also in other mathematical topics as for example in
algebraic geometry. Actually, we use Godement’s canonical flabby resolution
to introduce the cohomology groups of a sheaf.

In the one variable case, the Riemann–Roch theorem is just a consequence
of the finiteness theorem which states that the cohomology groups Hi(X,M)
of a vector bundle M on a compact Riemann surface are finite dimensional and
vanish for i > 1.

The reduction of the Riemann–Roch theorem to the finiteness theorem gets
particularly transparent if one formulates and proves it not only for vector
bundles but for coherent sheaves. It is not necessary to introduce here the
general machinery of coherent sheaves. Coherent sheaves can be introduced as
extensions of vector bundles by skyscraper sheaves.

This version of the Riemann–Roch theorem does not contain the duality
theorem. As usual in the modern approaches, its proof is separated from the
proof of the Riemann–Roch theorem and needs some extra effort as a cohomo-
logical version of the residue.

After the proof of the Riemann–Roch theorem we treat the Jacobi inver-
sion problem in an extra Chapter VII. We start this chapter with the Hodge
theory of Riemann surfaces which shows that the first cohomology group with
coefficients in C can be described by means of harmonic differentials. Readers
who are mainly interested in the mentioned dimension formulae can skip this
chapter and switch to the last chapter where these formulae are derived.

In the last Chapt. VIII we derive the mentioned dimension formulae. First
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we give a very short introduction to discrete subgroups of SL(2,R) and the
associated Riemann surfaces an their extension by cusps. We are interested
in the case where this surfaces are compact. Then we introduce vector valued
automorphic forms which belong to real weight and matrix valued multiplier
systems. We use the Riemann-Roch theorem to derive basic dimension formulae
for spaces of automorphic forms. We describe two different methods for the
computation of the degree of the occurring vector bundles. The first one works
for rational weight and multiplier systems which get trivial on a subgroup of
finite index. This method is very simple and needs no further ingredients. For
practical purposes, this special case is sufficient. But we don’t want to forget
about the general case completely and prove the dimension formulae also in
the general case in a compendious appendix. Here we have to introduce the
notion of the Chern form of a line bundle and the formula of Gauss-Bonnet
comes into the game.



Chapter I. Topological spaces

1. The notion of a topological space

A topology T on a set X is a system of subsets – called open subsets – with
the following properties:

1) ∅ , X are open.
2) The intersection of finitely many open subsets is open.
3) The union of arbitrarily many open sets is open.

A topological space is a pair (X, T ), consisting of a set X and a topology T on
X. Usually we will write X instead of (X, T ) when it is clear which topology
is considered. We give some constructions for topological spaces:

Metric spaces

Let (X, d) be a metric space. We denote by Ur(a) the ball around a of radius r.
A subset U of X is called open if for every a ∈ X there exists ε > 0 with the
property Uε(a) ⊂ U .

The induced topology

Let Y be a subset of a topological space X = (X, T ). Then Y can be equipped
with the induced topology T |Y .

A subset V ⊂ Y belongs to T |Y if and only if there exists a subset U ⊂ X , U ∈
T , such that

V = U ∩ Y.
(When Y is an open subset of X then this means V ∈ T .) Since a subset
V ⊂ Y is also a subset of X, one has to make clear whether “open” means to
by in T or in T |Y . If we say “open in X” we mean that V is contained in T .
Similarly “open in Y ” means that it is contained in T |Y .

The quotient topology

Let X be a topological space and f : X → Y a surjective map onto a set Y .
Then Y can be equipped with the quotient topology. A subset V ⊂ Y is called
open if and only if the inverse image U := f−1(V ) is open in X. There is
an important special case: Let

”
∼“ be an equivalence relation on X and let

be Y = X/ ∼ the set of equivalence classes and f : X → Y the canonical
projection. Then Y is called the quotient space of X. Examples are a torus
X = C/L for a lattice L or the modular space H/SL(2, Z).
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The product topology

Let X1, . . . , Xn be a finite system of topological spaces. Then a natural topo-
logy on the cartesian product

X = X1 × · · · ×Xn

can be defined.

A subset U ⊂ X is called open if and only if for every point a ∈ U there
exist open subsets U1 ⊂ X1, . . . , Un ⊂ Xn, such that

a ∈ U1 × · · · × Un.

2. Continuous maps

A subset of a topological space A ⊂ X is called closed if the complement X−A
is open.

A subset M ⊂ X is called a neighborhood of a point a ∈ X if there exists
an open subset U ⊂ X with a ∈ U ⊂M .

A point a ∈ X is called a boundary point of a subset M ⊂ X if every
neighborhood of a contains points of M and of its complement X −M .

Notation.
∂M := set of boundary points,

M̄ :=M ∪ ∂M.

One shows easily that M̄ is the smallest closed subset of X which contains M .
In particular,

M closed ⇐⇒M = M̄ .

We call M̄ the closure of M . Similarly there exists a biggest open subset M◦

of a set M . We call it the interior of M .

A map f : X → Y between topological spaces is called continuous at a
point a ∈ X if the inverse image f−1(V (b)) of an arbitrary neighborhood of
b := f(a) is a neighborhood of a.

The following conditions are equivalent.

1) The map f is continuous (i.e. continuous at every point).
2) The inverse image of an arbitrary open subset of Y is open in X.
3) The inverse image of an arbitrary closed subset of Y is closed in X.

The composition of two continuous maps is continuous. (This is true already
in the pointwise sense.)



§2. Continuous maps 5

Some universal properties

Let Y be a subset of a topological space equipped with the induced topology.
A map f : Z → Y of a third topological space into Y is continuous if and
only if the composition with the natural inclusion Y →֒ X is a continuous map
Z → X.

Let f : X → Y be a surjective map of topological spaces, where Y carries
the quotient topology. A map Y → Z into a third topological space Z is
continuous if and only if the composition with f is a continuous map X → Z.

Let X1, . . . , Xn be topological spaces and

f : Y −→ X1 × · · · ×Xn

a map of another topological space Y into the cartesian product (equipped with
the product topology). The map f is continuous if and only if each component

fj : Y −→ Xj (f = (f1, . . . , fn))

is continuous.

Topological maps

A map f : X → Y between topological spaces is called topological if it is
bijective and if f and f−1 both are continuous. Two topological spaces X,Y
are called topologically equivalent or homeomorphic if there exists a topological
map between them.

For example the 2-sphere

S2 =
{
x ∈ R3; ξ21 + ξ22 + ξ23 = 1

}

and the Riemann sphere are homeomorphic. Here the Riemann sphere C̄ =
C ∪ {∞} is equipped with the following topology. A subset U ⊂ C̄ is open if
the following two conditions are satisfied:

a) U ∩ C is open.
b) If ∞ ∈ U then there exists C > 0 such that {z ∈ C; |z| > C} ⊂ U .

The topological map S2 → C̄ is constructed by means of the stereographic
projection.

If L ⊂ C is a lattice, then C/L is homeomorphic to the cartesian product
of two circles:

C/L = Torus ≃ S1 × S1.
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3. Special classes of topological spaces

A topological space X is called Hausdorff if for two different points a, b ∈ X
there exist disjoint neighborhoods U(a) and U(b).

A topological space X ic called compact if it is Hausdorff and if every open
covering admits a finite sub-covering. A subset Y of a topological space X
is called compact if it is – equipped with the induced topology – a compact
topological space.

Properties of compact subsets

a) Compact subsets are closed.

b) A closed subset of a compact space is compact.

c) Let f : X → Y be a continuous map of Hausdorff spaces, then the image of
a compact subset is compact.

d) Let X be a compact and Y a Hausdorff space and f : X → Y bijective and
continuous. Then f is topological.

e) The product X1 × · · · ×Xn of compact spaces is compact.

A topological space is called locally compact if it is Hausdorff and if every
point admits a compact neighborhood. The product X1 × · · · ×Xn of locally
compact spaces is locally compact.

Proper maps

A continuous map f : X −→ Y of Hausdorff spaces is called proper if the
inverse image of an arbitrary compact subset is compact. If Y consists only of
one point then this means that X is a compact space. Hence “proper” should
be considered as a relative version of compact. A simple example of a proper
map is

C −→ C, z 7−→ zn,

for natural numbers n.

3.1 Lemma. Let f : X → Y be a proper map. Let B ⊂ Y be a subset and
A = f−1(B) the full inverse image of f , Then the restriction A → B is also
proper.

Proof. Let K ⊂ B be compact. Then the inverse image of K considered in X
and in A is the same, since A is the full inverse image. ⊔⊓
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4. Sequences

A sequence (an) in a topological space X converges to a ∈ X if for every
neighborhood U(a) there exists N ∈ N with an ∈ U for n ≥ N . We simply
write an −→ a for this. If X is Hausdorff, the limit a is unique. If f : X → Y
is continuous in a then an → a implies f(an) → f(a).

It is easy to show that in a compact space every sequence admits a conver-
gent sub-sequence. The converse is only true under additional conditions.

One says that a topological space has a countable basis of the topology if
there exists a countable family (Ui) of open subsets such that every open subset
can be written as union of members of this system. If this is the case, also every
subset equipped with the induced topology has countable basis of the topology.
The space R

n with the usual topology has countable basis. One can take open
balls where the radius and the coordinates of the center are rational numbers.

4.1 Proposition. Assume that X is a Hausdorff space such that every
sequence admits a convergent sub-sequence. Then X is compact if one of the
following two conditions is satisfied.

a) The topology comes from a metric.
b) There exists a countable basis of the topology.

Let X be a locally compact space with countable basis (Ui)i∈I of the topology.
If we take the sub-system (Ui)i∈J , J ⊂ I of all Ui with compact closure, then
this is still a basis of the topology in the sense that every open subset is a union
of members of this system. Indeed, the open subsets U with compact closures
can be covered by members of the restricted system and, since X is locally
compact, every open subset can be covered by open subsets with compact
closure. Hence we can write X = U1 ∪ U2 ∪ . . . as union of a sequence of open
subsets with compact closure. Replacing inductively Un by the union of the Ui
with i < n, we can get U1 ⊂ U2 ⊂ . . .. For given n, the closure of Un can be
covered by finitely many of the Ui. Hence, taking a suitable sub-sequence we
can obtain that the closure of Un is contained in Un+1. Hence we have obtained
the following result.

4.2 Lemma. Let X be a locally compact space with countable basis of the
topology. Then X can be written as union of countable many compact subsets,

X = K1 ∪K2 ∪ . . . .

We can assume that Kn is contained in the interior of Kn+1.
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5. Connectedness

A topological space is called arcwise connected if every two points are contained
in (the image of) an arc. An arc is a continuous map of a real interval into X.

A topological space is called connected if one of the following two equivalent
conditions is satisfied.

1) Every locally constant map f : X →M into an arbitrary setM is constant.
It is sufficient to verify this for one set M which contains at least two
elements.

2) If X = U ∪ V is written as union of two disjoint open subsets U, V , then
one them is empty.

The mean value theorem of calculus shows that every real interval is connected.
As a consequence, every arcwise connected space is connected. The converse is
only true under additional assumptions (s. below).

Arc components

Two points of a topological space are called equivalent if there exists an arc
which contains both. The equivalence classes of this equivalence relation are
called arc components.

A topological manifold is a Hausdorff space such that every point admits an
open neighborhood which is homeomorphic to some open subset of Rn. If n
can be taken to be two, then X is called a (topological) surface.

5.1 Remark. Let X be a topological manifold. Then the arc components are
open. The manifold is connected if and only if it is arcwise connected.

Since an open subset of a manifold is a manifold, the arc components of a
manifold are also manifolds. Of course they are connected. We call the arc
components of a manifold also the connected components.

6. Paracompactness

We recall the definition and basic properties of paracompact spaces. The proofs
can be found in standard text books of topology, as for example [Qu].

A covering U = (Ui)i∈I of a topological space is called locally finite, if for
every point a ∈ X there exists a neighborhood W , such that the set of indices
i ∈ I with Ui ∩W 6= ∅ is finite.

A covering V = (Vj)j∈J is called a refinement of the covering U if for every
index j ∈ J there exists an index i ∈ I with Vj ⊂ Ui. If one chooses for each
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j such an i one obtains a so-called refinement map J → I, which needs not to
be unique.

6.1 Definition. A Hausdorff space is called paracompact if every open
covering admits a locally finite open refinement.

Every compact space is paracompact. We need the following result.

6.2 Lemma. Every locally compact space with countable basis of the topology
is paracompact.

We sketch the simple proof. We use Lemma 4.2 and write X = K1∪K2∪ . . . as
union of a sequence of compact sets such that Kn is contained in the interior
K◦
n+1 of Kn+1. We set K0 = ∅. Now we consider an open covering (Ui)

of X. For each natural number n we cover Kn − K◦
n−1 by the open sets

Ui ∩ (K◦
n+1 −Kn−1). There exists a finite subsystem which covers Kn. If we

collect these sets for all n we get a refinement of (Ui) which is locally finite.
⊔⊓

Just for sake of completeness we mention that each metric space is paracom-
pact and that every locally compact space with countable basis of the topology
can be metricised.

Next we formulate the basic result about paracompactness. Let U = (Ui) be
a locally finite open covering. A partition of unity with respect to U is family
ϕi of continuous real valued functions on X with the following property.

a) The support of ϕi is contained in Ui.
b) 0 ≤ ϕi ≤ 1.
c)
∑
i∈I ϕi(x) = 1 for all x ∈ X.

(This sum is finite for each x. Recall that the support is the closure of the set
of all points where the function is different form zero.)

6.3 Proposition. Let X be a paracompact space. For every locally finite
open covering there exists a partition of unity.

A proof can be found in many textbooks of topology, for example in [Qu]. We
mention that the proof gets very simple if X is a Hausdorff topological manifold
with a countable basis of topology. This is enough for our purposes.

We mention two related results.

6.4 Proposition. Let X be a paracompact space and U = (Ui) a locally finite
open covering. There exist open subsets Vi ⊂ Ui whose closure V̄i (taken in X)
is contained in Ui and such that V = (Vi) is still a covering.

Let V ⊂ U are two open subsets of a paracompact space such the closure V̄
of V (taken in X) is contained U . Then we can consider the open covering
X = U ∪ (X − V̄ ). By means of a partition of unity with respect to this
covering we obtain the following result.
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6.5 Proposition. Let X be a locally compact paracompact space, U an open
subset and V ⊂ U a whose closure (taken in X) is contained in U . Then there
exists a continuous function on X which is one on V and whose support is
contained in U .

7. Frèchet spaces

A topological vector space is a complex vector space V equipped with a topology
such that the maps

V × V −→ V, (a, b) 7−→ a+ b, C × V −→ X, (C, a) 7−→ Ca,

are continuous. Here V × V and C × V carry of course the product topology.
For example Cn equipped with the usual topology is a topological vector space.
More generally, every finite dimensional vector space V can be equipped in a
unique way with a structure as topological space such that each isomorphism
V → C

n is a topological map.

In a topological vector space one can talk about Cauchy sequences. A
sequence (an) is called a Cauchy sequence if for every neighbourhood U of 0
there exists N such that am − an ∈ U for all m,n ≥ N . Every convergent
sequence is a Cauchy sequence. A topological vector space is called complete
if every Cauchy sequence converges.

A semi-norm p on a complex vector space V is a map p : V → R with the
properties

a) p(a) ≥ 0 for all a ∈ V ,
b) p(ta) = |t|p(a) for all t ∈ C, a ∈ V ,
c) p(a+ b) ≤ p(a) + p(b).

The ball of radius r > 0 is defined as

Ur(a, p) :=
{
x ∈ V ; p(a− x) < r

}
.

Let M be a set of semi-norms. A subset B ⊂ V is called a semi-ball around
a with respect to M if there exists a finite subset N ⊂ M such that B is the
intersection of balls with respect to the elements of N

B =
⋂

p∈N

Ur(p)(a, p).

A subset U of V is called open (with respect to M) if for every a ∈ U there
exists a semi-ball B around a with B ⊂ U .
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It is clear that this defines a topology on V and that V gets a topological
vector space. All maps p : V → C are continuous and the topology is actually
the weakest topology with this property.

A sequence (an) in V converges to a ∈ V if and only if p(an − a) → 0 for
all p ∈ M.

A sequence (an) in V is a Cauchy sequence with respect to M if for every
ε > 0 and every p ∈ M there exists an N = N(p, ε) such that

p(an − am) < ε for n,m ≥ N.

The set M is called definit if

p(a) = 0 for all p ∈ M =⇒ a = 0.

It is easy to prove that V is a Hausdorff space if and only if M is definit.

7.1 Definition. A Frèchet space V is a Hausdorff topological vector space
with the following property. It is complete and the topology can be defined by
means of a a countable set of of semi-norms on V .

We formulate a simple remark.

7.2 Remark. A closed subspace of a Frèchet space is a Frèchet space. The
direct product of finitely many Frèchet spaces is a Frèchet space.

The proof is very easy. To construct the semi-norms for a product one uses the
construction max(p1(a1), . . . , pn(an)). The details can be left to the reader.

⊔⊓
We recall that a semi-norm p is called a norm if it is definit in the sense that

p(a) = 0 implies p = 0. A normed space is a vector space with a distinguished
norm. It is called a Banach space if it is complete with respect to this norm.
So Frèchet spaces can be considered as generalizations of Banach spaces.

7.3 Lemma. Frèchet spaces are metrizable.

Proof. We choose a countable set of defining semi-norms M = {p1, p2, . . .}.
Then one defines

d(a, b) =
∞∑

n=1

2−n
pn(a− b)

1 + p(an) + p(bn)
.

It is easy to show that this is a metric which defines the original topology.
⊔⊓

As a consequence, a subset M of a Frèchet space is compact if and only if
each sequence has a convergent sub-sequence with limit in M .
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Basic examples of Frèchet spaces

Let U ⊂ C be an open subset and O(U) the set of all analytic functions on U .
This is a complex vector space. For an arbitrary compact subset K ⊂ U we
define

p(f) = pK(f) := max
z∈K

|f(z)|.

This is s semi norm. (Actually it is norm if U is connected and if K contains
a non-empty open subset of U .) A sequence (fn) converges with respect to pK
if and only if fn converges uniformly on K.

7.4 Remark. Let U ⊂ C be an open subset. The vector space O(U) equipped
with the set of all norms of the form pK , K ⊂ U compact, is a Frèchet space.

Proof. Recall that U can be exhausted by a sequence of compact subsets Kn

such that Kn is contained in the interior of Kn+1 It is enough to take for K
the members of this sequence. Hence the topology can be defined by means of
a countable set of semi-norms. The convergence of Cauchy sequences follows
from the theorem of Weierstrass, which states that analyticity is stable under
uniform convergence on compact subsets. ⊔⊓

The same argument shows that the space of continuous functions C(U) gets
a Frèchet space. The basic result about the Frèchet space O(U) is the following.

7.5 Theorem of Montel. Let U be an open subset of C and C > 0 a
positive constant. The set

O(U,C) :=
{
f ∈ O(U); |f(z)| ≤ C for z ∈ U

}

is compact in O(U).

For the proof one has to use the fact that a metric space is compact if every se-
quence admits a convergent subsequence. Hence the statement follows from the
usual theorem of Montel which states that every sequence in O(U,C) admits a
locally convergent sub-sequence. A proof can be found in [FB], Kap. IV, The-
orem 4.9. We notice that the analogue for differentiable continuous functions
is false. The proof uses heavily the Cauchy integral.

Compact operators

A well-known fact is that in a Banach space of infinite dimension the closed
ball ||a|| ≤ 1 is not compact. This result is also true for Frèchet spaces in the
following form:

Assume that the Frèchet space admits a non-empty open subset with compact
closure. Then it is of finite dimension.

We need a generalization of this result. A continuous linear map f : E → F
between Frèchet spaces is called a compact operator if there exists a non-empty
open subset of E such that the closure of its image is compact.

A linear map f : V → W is called nearly surjective if W/f(V ) has finite
dimension. This is automatically the case when W is finite dimensional.
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7.6 Theorem of Schwartz. Let f : E → F be a surjective continuous linear
map between Frèchet spaces and let g : E → F be a compact operator. Then
f + g is nearly surjective.

A short proof can be found in [GR], Appendix B, Theorem 12.

If one applies Schwartz’s theorem in the case E = F , f = − id and g = id,
one obtains:

7.7 Corollary. When the identity operator id : E → E of a Frèchet space is
compact, then E is finite dimensional.

From Montel’s theorem we obtain the following important example of a com-
pact operator.

7.8 Proposition. Let U ⊂ C be an open subset and V ⊂ U an open
subset whose closure (taken in C) is compact and contained in U . The natural
restriction map O(U) → O(V ) is compact.

Proof. Consider K = V̄ and the semi-norm pK on O(U). The set of all
functions f ∈ O(U) with pK(f) < 1 is open. Its image in O(V ) is contained in
a compact set be Montel’s theorem.



Chapter II. Some algebra

1. Abelian groups

We assume that the reader is familiar with the notion of an abelian group and
homomorphism between abelian groups. If A is a subgroup of an abelian group
B, then the factor group B/A is well defined. All what one needs usually is
that there is a natural surjective homomorphism f : B → B/A with kernel A.
Let f : B → X be a homomorphism into some abelian group. Then f factors
through a homomorphism B/A→ X if and only if the kernel of f contains A.
That f factors means that there is a commutative diagram

B //

��

X

B/A

==④④④④④④④④

Let f : A → B be a homomorphism of abelian groups. Then the image f(A)
is a subgroup of B. If there is no doubt which homomorphism f is considered,
we allow the notation

B/A := B/f(A).

1.1 Lemma. A commutative diagram

A //

��

B

��
C // D

induces homomorphisms

B/A −→ D/C, C/A −→ D/B.

A (finite or infinite) sequence of homomorphisms of abelian groups

· · · −→ A −→ B −→ C −→ · · ·
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is called exact at B if

Kernel(B −→ C) = Image(A −→ B).

It is called exact if it is exact at every place. An exact sequence A → B → C
induces an injective homomorphism

B/A �

� // C .

The sequence 0 → A → B is exact if and only if A → B is injective. The
sequence A→ B → 0 is exact if and only of A→ B is surjective. The sequence

0 −→ A −→ B −→ C −→ 0

is exact if and only if A → B is injective and if the induced homomorphism
B/A → C is an isomorphism. A sequence of this form is called a short exact
sequence. Hence the typical short exact sequence is

0 −→ A −→ B −→ B/A −→ 0 (A ⊂ B).

1.2 The five term lemma. Let

A1
//

f1

��

A2
//

f2

��

A3
//

f3

��

A4
//

f4

��

A5

f5

��
B1

// B2
// B3

// B4
// B5

be a commutative diagram with exact lines and such that f1, f2 and f4, f5 are
isomorphisms. Then f3 is an isomorphism too.

The proof is easy and left to the reader. ⊔⊓

2. Some homological algebra

A complex A
.
is a sequence of homomorphisms of abelian groups

· · · // An−1

dn−1 // An
dn // An+1

// · · ·

such that the composition of two consecutive is zero, dn ◦ dn−1 = 0. Usually
one omits indices at the d-s and writes simply d = dn and hence d◦d = 0, which
sometimes is written as d2 = 0. The cohomology groups of A

.
are defined as

Hn(A
.
) :=

Kernel(An → An+1)

Image(An−1 → An)
(n ∈ Z).
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They vanish if and only if the complex is exact. Hence the cohomology groups
measure the absence of exactness of a complex.

A homomorphism f
.
: A
. → B

.
of complexes is a commutative diagram

· · · // An−1 //

fn−1

��

An //

fn

��

An+1 //

fn+1

��

· · ·

· · · // Bn−1 // Bn // Bn+1 // · · ·

It is clear how to compose two complex homomorphisms f
.
;A
. → B

.
, g
.
;B
. →

C
.
to a complex homomorphism g

. ◦ f. : A
. → C

.
. A sequence of complex

homomorphisms

· · · −→ A
. −→ B

. −→ C
. −→ · · ·

is called exact if all the induced sequences

· · · −→ An −→ Bn −→ Cn −→ · · ·

are exact. There is also the notion of a short exact sequence of complexes

0 −→ A
. −→ B

. −→ C
. −→ 0.

Here 0 stands for the zero complex (0n = 0, dn = 0 for all n).

A homomorphism of complexes A
. → B

.
induces natural homomorphisms

Hn(A
.
) −→ Hn(B

.
)

of the cohomology groups (use Lemma 1.1). These homomorphisms are com-
patible with the composition of complex-homomorphisms. A less obvious con-
struction is as follows: Let

0 −→ A
. −→ B

. −→ C
. −→ 0

be a short exact sequence of complexes. We construct a homomorphism

δ : Hn(C
.
) −→ Hn+1(A

.
).

Let [c] ∈ Hn(C
.
) be represented by an element c ∈ Cn. Take a pre-image

b ∈ Bn and consider β = db ∈ Bn+1. Since β goes to d(c) = 0 in Cn+1 there
exists a pre-image a ∈ An+1. This goes to 0 in An+2 (because An+2 is imbedded
in Bn+2 and b goes to d2(b) = 0 there). Hence a defines a cohomology class
[a] ∈ Hn+1(A

.
). It is easy to check that this class doesn’t depend on the above

choices.
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2.1 Fundamental lemma of homological algebra. Let

0 −→ A
. −→ B

. −→ C
. −→ 0

be a short exact sequence of complexes. Then the long sequence

· · · → Hn−1(C
.
)
δ→ Hn(A

.
) → Hn(B

.
) → Hn(C

.
)
δ→ Hn+1(C

.
) → · · ·

is exact.

We leave the details to the reader. ⊔⊓
There is a second lemma of homological algebra which we will need.

2.2 Lemma. Let

0

��

0

��

0

��

0

��
0 // A00 //

��

A01 //

��

A02 //

��

A03 //

��

· · ·

0 // A10 //

��

A11 //

��

A12 //

��

A13 //

��

· · ·

0 // A20 //

��

A21 //

��

A22 //

��

A23 //

��

· · ·

0 // A30 //

��

A31 //

��

A32 //

��

A33 //

��

· · ·

...
...

...
...

be a commutative diagram where all lines and columns are exact besides the
first column and the first row (those containing A00). Then there is a natu-
ral isomorphism between the cohomology groups of the first row and the first
column,

Hn(A
., 0) ∼= Hn(A0, .)

For n = 0 this is understood as

Kernel(A00 −→ A01) = Kernel(A00 −→ A10).

The proof is given by “diagram chasing”. We only give a hint how it works.
Assume n = 1. Let [a] ∈ H1(A0,.) be a cohomology class represented by an
element a ∈ A0,1. This element goes to 0 in A0,2. As a consequence the image
of a in A1,1 goes to 0 in A1,2. Hence this image comes from an element α ∈ A1,0.
Clearly this element goes to zero in A2,0 (since it goes to 0 in A2,1.) Now α
defines a cohomology class [α] ∈ H1(A

.,0). There is some extra work to show
that this map is well-defined. ⊔⊓
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3. The tensor product

All rings which we consider are assumed to be commutative and with unit
element. Ring homomorphisms are assumed to map the unit element into the
unit element. A module M over a ring A is an abelian group together with a
map A×M →M , (a,m) 7−→ am, such that the usual axioms of a vector space
are satisfied including 1Am = m for all m ∈ M . The notion of linear maps,
kernel, image of a linear map are as in the case of vector spaces. But in contrast
to the case of vector spaces, a module has usually no basis. A module which
admits a basis is called free. A finitely generated free module is isomorphic to
Rn.

If M ⊂ N is a submodule, then the factor group N/M carries a structure of
an A-module. All what we have said about exact sequences of abelian groups
is literarily true for A-modules.

Tensor product

Recall that for two modulesM,N over a ring R, there exists a moduleM⊗RN
together with an R-bilinear map

M ×N −→M ⊗R N, (a, b) 7−→ a⊗ b,

such that for each bilinear map M ×N → P into an arbitrary third module P
there exists a unique commutative diagram

M ×N //

##●
●●

●●
●●

●●
M ⊗R N

zz✈✈
✈✈
✈✈
✈✈
✈

P

with an R-linear mapM ⊗RN → P . The tensor product M ⊗RN is generated
by the special elements m⊗ n.

If f :M →M ′ and g : N → N ′ are R-linear maps, then one gets a natural
R-linear map

f ⊗ g :M ⊗R N −→M ′ ⊗R N ′, (a, b) 7−→ f(a)⊗ g(a).

It is clear that this map is uniquely determined by this formula. The existence
follows from the universal property applied to the map (a, b) 7→ f(a)⊗ f(b).
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Basic properties of the tensor product

There is a natural isomorphism

R⊗RM ∼−→ M, (r ⊗m) 7−→ rm,

and more generally
Rn ⊗M

∼−→ Mn.

As a special case we get
Rn ⊗R Rm ∼= Rn×m.

This is related also to the formula

(M ×N)⊗R P ∼= (M ⊗R P )× (N ⊗R P ) (canonically).

The tensor product is associative: for usual R-modules M,N,P on has an
isomorphism

(M ⊗R N)⊗R P ∼−→ M ⊗R (N ⊗R P ), (m⊗ n)⊗ p 7−→ m⊗ (n⊗ p).

The existence of this map follows from the universal property of the tensor
product.

The tensor product is also commutative in the following sense:

M ⊗R N ∼−→ N ⊗RM, m⊗ n 7−→ n⊗m.

Ring extension

Let A → B be a ring homomorphism and M an A-module. Then M ⊗A B
carries a natural structure as B-module. It is given by b(m ⊗ b′) = m ⊗ (bb′).
The existence follows from the universal property of the tensor product. A
special case is

An ⊗A B = Bn.

Existence of the tensor product

For an arbitrary set I we define RI to be the set of all maps I → R, i 7→ ri
such that ri is 0 for almost all i. So RI = Rn for I = {1, . . . , n}. By definition
a module is free if and only if it is isomorphic to an RI for suitable I. An
arbitrary R-module M can be represented by an exact sequence

RJ −→ RI −→M −→ 0.

For another N module we define now the tensor product by the exact sequence

NJ −→ N I −→M ⊗R N −→ 0.

The bilinear map M ×N →M ⊗R N and the universal property are obvious.
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Exactness properties

Let M → N be an injective homomorphism of R-modules. For an R-module P
the induced homomorphism M ⊗R P → N ⊗R P needs not to be injective. But
when P ∼= Rn is free, injectivity is preserved. A slight and trivial extension of
this observation is:

3.1 Remark. Let M1 →M2 →M3 be an exact exact sequence of R-modules.
Then for every free module P the sequence M1 ⊗R P →M2 ⊗R P →M3 ⊗R P
remains exact.

In this context we mention some other exactness properties. For two R-modules
M,N we denote by HomR(M,M) the set of all R-linear maps M → N . This
is an R-module. Let M → N be an R-linear map. Then for an arbitrary
R-module P one has obvious R-linear maps

HomR(P,M) −→ HomR(P,N), HomR(N,P ) −→ HomR(M,P ).

Since Hom(Rn,M) ∼=Mn, one has:

3.2 Remark. Let 0 −→ M1 → M2 → M3 → 0 be an exact sequence of
R-modules and P also an R-module, then:

a) If P is free then

0 −→ HomR(P,M1) −→ HomR(P,M2) −→ HomR(P,M3) −→ 0

remains exact.

b) If M3 is free than

0 −→ HomR(M3, P ) −→ HomR(M2, P ) −→ HomR(M1, P ) −→ 0

remains exact.

We comment shortly b). When M3 is free one can chose a system of elements
in M2 whose images in M3 define a basis. This system generates a submodule
M ′

3 ⊂ M2 which maps isomorphically to M3. Now it is easy to see that M2 is
isomorphic to M1 ×M3 and the map M1 → M2 corresponds to m 7→ (m, 0)
and the map M2 → M3 corresponds to (m1,m3) 7−→ m3. Now the exactness
should be clear.
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1. Presheaves

We introduce the language presheaves of abelian groups. This consists mainly
of definitions and simple remarks whose proofs are very simple. In most cases
they can be elft to the reader.

1.1 Definition. A presheaf F (of abelian groups) on a topological space X is
a map which assigns to every open subset U ⊂ X an abelian group F (U) and
to every pair U, V of open subsets with the property V ⊂ U a homomorphism

rUV : F (U) −→ F (V )

such that rUU = id and that for three open subsets U, V,W with the property
W ⊂ V ⊂ U

rUW = rVW ◦ rUV
holds:

Example: F (U) is the set of all continuous functions f : U → C and rUV (f) :=
f |V (restriction).

Many presheaves generalize this example. Hence the maps rUV are called
“restrictions” in general and one uses the notation

s|V := rUV (s) for s ∈ F (U).

The elements of F (U) sometimes are called “sections” of F over U . In the
special case U = X they are called “global” sections.

1.2 Definition. Let X be a topological space. A homomorphism of presheaves

f : F −→ G

is a family of group homomorphisms

fU : F (U) −→ G(U),

such that the diagram
F (U) −→ G(U)
↓ ↓

F (V ) −→ G(V )

commutes for every pair V ⊂ U of open subsets, i.e. fU (s)|GV = fV (s|FV ).
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It is clear how to define the identity map idF : F → F of a presheaf and the
composition g ◦ f of two homomorphisms f : F → G, g : G→ H of presheaves.

There is also a natural notion of a sub-presheaf F ⊂ G. Besides F (U) ⊂
G(U) for all U one has to demand, that the restrictions are compatible. This
means:

The canonical inclusions iU : F (U) → G(U) define a homomorphism i : F → G
of presheaves.

When f : F → G is a homomorphism of presheaves, the images fU (F (U))
define a sub-presheaf of G. We call it the presheaf-image and denote it by

fpre(F ).

It is also clear that the kernels of the maps fU define a sub-presheaf of F . We
denote it by Kernel(f : F → G). When F is a sub-presheaf of G then one
can can consider the factor groups G(U)/H(U). Using II.1.1 it is clear how
to define restriction maps to get a presheaf G/preF . We call this presheaf the
factor presheaf.

Since we have defined Kernel and Image we can also introduce the notion of a
presheaf-exact sequence. A sequence F → G→ H is presheaf-exact if and only
if F (U) → G(U) → H(U) is exact for all U . What we have said about exact
sequences of abelian groups carries literarily over to presheaf-exact sequences
of presheaves of abelian groups.

2. Germs and Stalks

let F be a presheaf on a topological space X und let a ∈ X be a point. We
consider pairs (U, s), where U is an open neighbourhood of a and s ∈ F (U)
a section over U . Two pairs (U, s), (V, t) are called equivalent if there exists
an open neighborhood a ∈ W ⊂ U ∩ V , such that s|W = t|W . This is an
equivalence relation. The equivalence classes

[U, s]a :=
{
(V, t); (V, t) ∼ (U, s)

}

are called germs of F at the point a. The set of all germs

Fa :=
{
[U, s]a, a ⊂ U ⊂ X, s ∈ F (U)

}

is the so-called stalk of F at a. The stalk carries a natural structure as abelian
group. One defines

[U, s]a + [V, t]a := [U ∩ V, s|U ∩ V + t|U ∩ V ]a.
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We use frequently the simplified notation

sa = [U, s]a.

For every open neighborhood a ∈ U ⊂ X there is an obvious homomorphism

F (U) −→ Fa, s 7−→ sa.

A homomorphism of presheaves f : F → G induces natural mappings

fa : Fa −→ Ga (a ∈ X).

The image of a germ [U, s]a is simply [U, fU (s)]a. It is easy to see that this is
well-defined.

2.1 Remark. Let F → G and G→ H be homomorphism of presheaves and let
a ∈ X be a point. Assume that every point a contains a small open neighborhood
U such that F (U) → G(U) → H(U) is exact. Then Fa → Ga → Ha is exact.

Corollary. if F → G → H is presheaf-exact then fa → Ga → Ha is exact for
all a.

The proof is easy and can be omitted. ⊔⊓
If F is a presheaf on X, one can consider for each open subset U ⊂ X

F (0)(U) :=
∏

a∈U

Fa.

The elements are families (sa)a∈U with sa ∈ Fa. There is now coupling between
the different sa. Hence F

(0)(U) usually is very monstrous.

For open sets V ⊂ U , one has an obvious homomorphism F (0)(U) →
F (0)(V ). Hence we obtain a presheaf F (0) together with a natural homo-
morphism F −→ F (0). Each homomorphism F → G of presheaves induces
a homomorphism F (0) → G(0) such that the diagram

F −→ G
↓ ↓

F (0) −→ G(0)

commutes.
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3. Sheaves

3.1 Definition. A presheaf F is called a sheaf if the following conditions
are satisfied:

(G1) When U =
⋃
Ui is an open covering of an open subset U ⊂ X and if

s, t ∈ F (U) are sections with the property s|Ui = t|Ui for all i, then s = t.

(G2) When U =
⋃
Ui is an open covering of an open subset U ⊂ X und if

si ∈ F (Ui) is a family of sections with the property

si|Ui ∩ Uj = sj |Ui ∩ Uj for all i, j,

then there exists a section s ∈ F (U) with the property s|Ui = si for all i.

(G3) F (∅) is the zero group.

Clearly the presheaf of continuous functions is a sheaf, since continuity is a
local property. An example of a presheaf F , which usually is not a sheaf is
the presheaf of constant functions with values in Z (F (U) = {f : U → Z, f
constant}). But the set of locally constant functions with values in Z is a sheaf.

By a subsheaf of a sheaf F we understand a sub-presheaf G ⊂ F which
is already a sheaf. If F,G are sheaves, then a homomorphism f : F → G of
presheaves is called also a homomorphism of sheaves.

3.2 Remark. Let F ⊂ G be a sub-presheaf. We assume that G (but not
necessarily F ) is a sheaf. Then there is a smallest subsheaf F̃ ⊂ G which
contains F . For an arbitrary point a ∈ X the induced map fa : Fa → F̃a is an
isomorphism.

It is clear that F̃ (U) has to be defined as set of all s ∈ G(U), such that:

There exists an open covering U =
⋃
Ui, such that s|Ui is in F (Ui) for all i.

This is equivalent with: the germ sa is in the image of Fa → Ga for all a ∈ U .

3.3 Definition. Let F → G be a homomorphism of sheaves. The sheaf-
image fsheaf(F ) is the smallest subsheaf of G, which contains the presheaf-image
fpre(F ).

We have to differ between two natural notions of surjectivity.

3.4 Definition.

1) A homomorphism of presheaves f : F → G is called presheaf-surjective

if fpre(F ) = G.

2) A homomorphism of sheaves f : F → G is called sheaf-surjective if
fsheaf(F ) = G.
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When F and G both are sheaves then sheaf-surjectivity and presheaf-surjecti-
vity are different things. We give an example which will be basic:

Let O be the sheaf of holomorphic functions on C, hence O(U) is the set of all
holomorphic functions on an open subset U . This is a sheaf of abelian groups
(under addition). Similarly we consider the sheaf O∗ of holomorphic functions
without zeros. This is also a sheaf of abelian groups (under multiplication).
The map f → ef defines a sheaf homomorphism

exp : O −→ O∗.

The map O(U) → O∗(U) is not always surjective. For example for U = C
∗

the function 1/z is not in the image. Hence exp is not presheaf-surjective. But
it is know from complex calculus that exp : O(U) → O∗(U) is surjective if U
is simply connected, for example for a disk U . Since a point admits arbitrarily
small neighborhoods which are disks, it follows that exp is sheaf-surjective.

3.5 Remark. A homomorphism of sheaves f : F → G is sheaf-surjective if
and only if the maps fa : Fa → Ga are surjective for all a ∈ X.

We omit the simple proof. ⊔⊓
Fortunately the notion “injective” does not contain this difficulty. For trivial

reason the following remark is true.

3.6 Remark. Let f : F → G be a homomorphism of sheaves. The kernel in
the sense of presheaves is already a sheaf.

Hence we don’t have to distinguish between presheaf-injective and sheaf-
injective and also not between presheaf-kernel and sheaf-kernel.

3.7 Remark. A homomorphism of sheaves f : F → G is injective if and only
if the maps fa : Fa → Ga ar injective for all a ∈ X.

A homomorphism of presheaves f : F → G (sheaves) is called an isomorphism
if all F (U) → G(U) are isomorphisms. Their inverses then define a homomor-
phism f−1 : G→ F .

3.8 Remark. A homomorphism of sheafs F → G is an isomorphism if and
only if Fa → Ga is an isomorphism for all a.

For presheaves this is false. As counter example on can take for F the presheaf
of constant functions and for G the sheaf of locally constant functions.

It is natural to introduce the notion of sheaf-exactness as follows:

3.9 Definition. A sequence F → G→ H of sheaf homomorphisms is sheaf-
exact at G if the the kernel of G→ H and the sheaf-image of F → G agree.

Generalizing 3.5 and 3.7 one can easily show the following proposition.
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3.10 Proposition. A sequence F → G → H is exact if and only if Fa →
Ga → Ha is exact for all a.

Our discussion so far has obviously one gap: Let F ⊂ G be subsheaf of a sheaf
G. We would like to have an exact sequence

0 −→ F −→ G −→ H −→ 0.

The sheaf H should be the factor sheaf of G by F . But up to now we only
defined the factor presheaf G/preF which usually is no sheaf. In the next section
we will give the correct definition for a factor sheaf G/sheafF .

4. The generated sheaf

For a presheaf F we introduced the monstrous presheaf

F (0)(U) =
∏

a∈U

Fa.

Obviously F (0) is a sheaf. Sometimes its is called the “Godement sheaf” or the
“associated flabby sheaf”. There is a natural homomorphism

F → F (0).

We can consider its presheaf-image and then the smallest subsheaf which con-
tains it. We denote this sheaf by F̂ and call it the “generated sheaf” by F .
There is a natural homomorphism

F → F̂ .

From the construction follows immediately

4.1 Remark. Let F be a presheaf. The natural maps

Fa
∼−→ F̂a

are isomorphisms.

A homomorphism F → G of presheaves induces a homomorphism F (0) → G(0).
Clearly F̂ is mapped into Ĝ. This gives us the following result.

4.2 Remark. Let f : F → G be a homomorphism of presheaves. There is a
natural homomorphism F̂ → Ĝ, such that the diagram

F −→ G
↓ ↓
F̂ −→ Ĝ

commutes.

When F is already a sheaf then F → F (0) is injective. Then the map of F into
the presheaf image is an isomorphism. This implies that the presheaf image is
already a sheaf.
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4.3 Remark. Let F be a sheaf. Then F → F̂ is an isomorphism.

If F is a sub-presheaf of a sheaf G, then the induced map F̂ → Ĝ ∼= G is
an isomorphism F̂ → F̃ between F̂ and the smallest subsheaf F̃ of G, wich
contains F .

Hence we can identify F̃ and F̂ .

Factor sheaves and exact sequences of sheaves

Let F → G be a homomorphism of presheaves. We introduced already
the factor presheaf G/preF , which associates to an open U the factor group
G(U)/F (U). Even if both F and G are sheaves this will usually not a sheaf.
Hence we define the factor sheaf as the sheaf generated by the factor presheaf.

G/sheafF := Ĝ/preF.

Since we are interested mainly in sheaves, we will write usually for a homomor-
phism for sheaves f : F → G:

G/F := G/sheafF (factor sheaf)

f(F ) := fsheaf(F ) (sheaf image)

Notice that there is no need to differ between sheaf- and presheaf-kernel. When
we talk about an exact sequence of sheaves

F −→ G −→ H

we usually mean “sheaf exactness”. All what we have said about exactness
properties of sequences of abelian groups is literally true for sequences of
sheaves. For example: A sequence of sheaves 0 → F → G (0 denotes the
zero sheaf) is exact if and only of F → G is injective. A sequence of sheaves
F → G→ 0 is exact if and only if F → G is surjective (in the sense of sheaves
of course). A sequence of sheaves 0 → F → G→ H → 0 is exact if and only if
there is an ismomorphism H ∼= G/F which identifies this sequence with

0 −→ F −→ G −→ G/F −→ 0.

4.4 Remark. Let 0 → F → G → H → 0 be an exact sequence of sheaves.
Then for open U the sequence

0 → F (U) → G(U) → H(U)

is exact.

Corollary. The sequence

0 → F (X) → G(X) → H(X)

is exact.
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The simple proof can be left to the reader. ⊔⊓
Usually G(X) −→ H(X) is not surjective as the example

0 −→ ZX −→ O f 7→e2πif

−→ O∗ −→ 0

shows. Cohomology theory will measure the absence the right exactness. The
above sequence will be part of a long exact sequence

0 → F (X) → G(X) → H(X) −→ H1(X,F ) −→ · · ·
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1. The canonical flabby resolution

A sheaf F is called flabby if F (X) → F (U) is surjective of all U . Then F (U) →
F (V ) is surjective for all V ⊂ U . An example for a flabby sheaf is the Godement
sheaf F (0). Recall that we have the exact sequence

0 −→ F −→ F (0).

We want to extend this sequence. For this we consider the sheaf F (0)/F and
embed it into its Godement sheaf,

F (1) := (F (0)/F )
(0)
.

In this way we get a long exact sequence

0 −→ F −→ F (0) −→ F (1) −→ F (2) −→ · · ·

If F (n) has been already constructed, then we define

F (n+1) :=
(
F (n)/F (n−1)

)(0)
.

The sheaves F (n) are all flabby. We call this sequence the canonical flabby
resolution or the Godement resolution. Sometimes it is useful to write the
resolution in the form

· · · // 0 //

��

F //

��

0 //

��

0 //

��

0 //

��

· · ·

· · · // 0 // F (0) // F (1) // F (2) // F (3) // · · ·

Both lines are complexes. The vertical arrows can be considered as a complex
homomorphism. The induced homomorphism of the cohomology groups are
isomorphisms. Notice that only the 0-cohomology group of both complexes is
different from 0. This zero cohomology group is naturally isomorphic F .
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Now we apply the global section functor Γ to the resolution. This is

ΓF := F (X).

We obtain a long sequence

0 −→ ΓF −→ ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·

The essential point is that this sequence is no longer exact. We only can say
that it is a complex. We prefer to write it in the form

· · · // 0 //

��

ΓF //

��

0 //

��

0 //

��

0 //

��

· · ·

· · · // 0 // ΓF (0) // ΓF (1) // ΓF (2) // ΓF (3) // · · ·

The second line is

· · · −→ 0 −→ΓF (0) −→ ΓF (1) −→ ΓF (2) −→ · · ·
↑

zero position

Now we define the cohomology groups H
.
(X,F ) to be the cohomology groups

of this complex:

Hn(X,F ) :=
Kern(ΓF (n) −→ ΓF (n+1))

Kern(ΓF (n−1) −→ ΓF (n))
.

(We define ΓF (n) = 0 for n < 0.) Clearly

Hn(X,F ) = 0 for n < 0.

Next we treat the special case n = 0,

H0(X,F ) = Kernel(ΓF (0) −→ ΓF (1)).

Since the kernel can be taken in the presheaf sense, we can write

H0(X,F ) = ΓKernel(F (0) −→ F (1)).

Recall that F (1) is a sheaf, which contains F (0)/F as subsheaf. We obtain

H0(X,F ) = ΓKernel(F (0) −→ F (0)/F )

This is the image of F in F (0) an hence a sheaf which is canonically isomorphic
to F .
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1.1 Remark. There is a natural isomorphism

H0(X,F ) ∼= ΓF = F (X).

If F → G is a homomorphism of sheaves, then the homomorphism Fa → Ga
induces a homomorphism F (0) → G(0). If F → G → H is an exact sequence.
Then F (0) → G(0) → H(0) is also exact (already as sequence of presheaves).
More generally, the following lemma holds.

1.2 Lemma. Let F → G → H be an exact sequence of sheaves. Then the
induced sequence F (n) → G(n) → H(n) is exact for every n.

Proof. By a general principle it is sufficient to prove the F 7→ F (n) maps
short exact sequences 0 → F → G → H → 0 into short exact sequences
0 → F (n) → G(n) → H(n) → 0. The reason is that an arbitray exact sequence

F
f→ G

g→ H can be splitted into short exact sequences

0 −→ kernel(f) → F −→ f(F ) −→ 0,

0 −→ f(F ) −→ G −→ g(G) −→ 0,

0 −→ g(G) −→ H −→ H/g(G) −→ 0.

So we start with a short exact sequence 0 → F → G → H → 0. The proof
can now be given by induction. One needs the following lemma about abelian
groups:

Let
0

��

0

��

0

��
0 // A00 //

��

A01 //

��

A02 //

��

0

0 // A10 //

��

A11 //

��

A12 //

��

0

0 // A20 //

��

A21 //

��

A22 //

��

0

0 0 0

be a commutative diagram such that the three columns and the first to lines are
exact. Then the third line is also exact.

The proof is easy and can be omitted. ⊔⊓
Before we continue we need a basic lemma:
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1.3 Lemma. Let 0 → F → G→ H → 0 be a short exact sequence of sheaves.
Assume that F is flabby. Then

0 → ΓF → ΓG→ ΓH → 0

is exact.

Proof. Let h ∈ H(X). We have to show that h is the image of an g ∈ G(X).
For the proof one considers the set of all pairs (U, g), where U is an open subset
and g ∈ G(U) and such that g maps to h|U . This set is ordered by

(U, g) ≥ (U ′, g′) ⇐⇒ U ′ ⊂ U and g|U ′ = g′.

From the sheaf axioms follows that every inductive subset has an upper bound.
By Zorns’s lemma there exists a maximal (U, g). We have to show U = X. If
this is not the case, we can find a pair (U ′, g′) in the above set such that U ′ is
not contained in U . The difference g− g′ defines a section in F (U ∩U ′). Since
F is flabby, this extends to a global section. This allows us to modify g′ such
that it glues with g to a section on U ∪ U ′. ⊔⊓

An immediate corollary of Lemma 1.3 states:

1.4 Lemma. Let 0 → F → G → H → 0 an exact sequence of sheaves. If F
and G are flabby then H is flabby too.

Let 0 → F → G → H → 0 be an exact sequence of sheafs. We obtain a
commutative diagram

...
...

...
↓ ↓ ↓

0 −→ F (n−1) −→ G(n−1) −→ H(n−1) −→ 0
↓ ↓ ↓

0 −→ F (n) −→ G(n) −→ H(n) −→ 0
↓ ↓ ↓

0 −→ F (n+1) −→ G(n+1) −→ H(n+1) −→ 0
↓ ↓ ↓
...

...
...

From Lemma 1.2 we know that all lines of this diagram are exact From Lemma
1.3 follows that they remain exact after applying Γ. Hence the diagram

...
...

...
↓ ↓ ↓

0 −→ ΓF (n−1) −→ ΓG(n−1) −→ ΓH(n−1) −→ 0
↓ ↓ ↓

0 −→ ΓF (n) −→ ΓG(n) −→ ΓH(n) −→ 0
↓ ↓ ↓

0 −→ ΓF (n+1) −→ ΓG(n+1) −→ ΓH(n+1) −→ 0
↓ ↓ ↓
...

...
...
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can be considered as a short exact sequence of complexes. We can apply Lemma
II.2.1 to obtain the long exact cohomology sequence:

1.5 Theorem. Every short exact sequence 0 → F → G → H → 0 induces a
natural long exact cohomology sequence

0 → ΓF −→ ΓG −→ ΓH
δ−→ H1(X,F ) −→ H1(X,G) −→ H1(X,H)

δ−→ H2(X,F ) −→ · · ·

The next Lemma shows that the cohomology of flabby sheaves is trivial.

1.6 Lemma. Let
0 → F −→ F0 → F1 −→ · · ·

be an exact sequence of flabby sheaves (finite or infinite). Then

0 → ΓF −→ ΓF0 → ΓF1 −→ · · ·

is exact.

Corollary. For flabby F one has:

Hi(X,F ) = 0 for i > 0.

Proof. We use the so-called splitting principle. The long exact sequence can
be splitted into short exact sequences

0 −→ F −→ F0 −→ F0/F −→ 0, 0 −→ F0/F −→ F1 −→ F1/F0 −→ 0, . . . .

From 1.4 we get that the F0/F, F1/F0, . . . are flabby. The claim now follows
from Lemma 1.3. ⊔⊓

A sheaf F is called acyclic if Hn(X,F ) = for n > 0. Hence flabby sheaves
are acyclic. By an acyclic resolution of a sheaf we understand an exact sequence

0 −→ F −→ F0 −→ F1 −→ F2 −→ · · ·

with acyclic Fi.

1.7 Proposition. Let 0 → F → F0 → F1 → · · · be an acyclic resolution of
F . Then there is a natural isomorphism between the n-the cohomology group
Hn(X,F ) and the n-th cohomology group of the complex

· · · −→ 0 −→ΓF0 −→ ΓF1 −→ ΓF2 −→ · · ·
↑

zero position
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Proof . Taking the canonical flabby resolutions of F and of all Fn on gets a
diagram

0

��

0

��

0

��

0

��
0 // F //

��

F0
//

��

F2
//

��

F3
//

��

· · ·

0 // F (0) //

��

F
(0)
0

//

��

F
(0)
1

//

��

F
(0)
2

//

��

· · ·

0 // F (1) //

��

F
(1)
0

//

��

F
(1)
1

//

��

F
(1)
2

//

��

· · ·

0 // F (2) //

��

F
(2)
0

//

��

F
(2)
1

//

��

F
(2)
2

//

��

· · ·

...
...

...
...

All lines and columns are exact. We apply Γ to this complex. Then all lines
and columns besides the first ones remain exact. We can apply Lemma II.2.2.

⊔⊓
One may ask what “natural” means in Proposition 1.7 means. It means

that certain diagrams in which this ismomorphism appears are commutative.
Since it is the best to check this when it is used we give just one example:
Consider the above commutative diagram in the following new meaning: All
occurring sheaves besides F are acyclic. Then II.2.2 gives an isomorphism
between the n-th cohomology groups of the complexes 0 → ΓF0 → ΓF1 → · · ·
and 0 → ΓF (0) → ΓF (1) → · · ·. Both are isomorphic to Hn(X,F ). This gives
a commutative triangle.

2. Sheaves of rings and modules

A sheaf of A-modules is a sheaf F of abelian groups such that every F (U) carries
a structure as A-module and such the the restriction maps F (U) → F (V )
for V ⊂ U are A-linear. A homomorphism F → G is called A-linear if all
F (U) → G(U) are so. Then kernel and image carry natural structures of
sheafs of A-modules. Also the stalks carry such a structure naturally. Hence
the whole canonical flabby resolution is a sequence of sheafs of A-modules. This
implies that the cohomology groups also are A-modules.
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There is a refinement of this construction: By a sheaf of rings O we under-
stand a sheaf of abelian groups such that every O(U) is not only an abelian
group but a ring and such that all restriction maps O(U) → O(V ) are ring
homomorphisms. Then the stalks Oa carry a natural ring structure such that
the homomorphisms O(U) −→ Oa (U is an open neighborhood of a) are ring
homomorphisms.

By an O-module we understand a sheaf M of abelian groups such every
F (U) carries a structure as O(U)-module and such that the restriction maps
are compatible with the module structure. To make this precise we give a short
comment. Let M be an A-module and N be a module over a different ring
B. Asssume that a homomorphism r : A → B is given. A homomorphism
f : M → N of abelian groups is called compatible with the module structures
if the formula

f(am) = r(a)f(m) (a ∈ A, m ∈M)

holds. An elegant way to express this is as follows. We can consider N also as
an module over A by means of the definition an := r(a)n. Sometimes this A-
module is written as N[r]. Then the compatibility of the map f simply means
that it is an A-linear map

f :M −→ N[r].

Usually we will omit the subscript [r] and simply say that f : M → N is
A-linear.

If M is an O-module then the stalk Ma is naturally an Oa-module. An
O-linear map f : M → N between two O-modules is a homomorphism of
sheaves of abelian groups such the maps M(U) → N (U) are O(U) linear.
Then the Kernel and image also carry natural structures of O-modules. Clearly
the canonical flabby resolution of an O-module is naturally a sequence of O-
modules.

Since for every open subset U ⊂ X we have a ring homomorphism O(X) →
O(U) all M(U) can be considered as O(X)-modules. Hence a O-module can be
considered as sheaf of O(X)-modules. Especially Hn(X,M) carries a natural
structure as O(X)-module.

We consider a very special case. We take for O the sheaf C of continuous
functions. There are two possibilities: CR is the sheaf of continuous real-valued
and CC the sheaf of continuous complex-valued functions. If we write C we
mean one of both. The sheaf C or more generally a module over this sheaf have
over paracompact spaces a property which can be considered as a weakend
form of flabbyness.

2.1 Remark. Let X be paracompact space and M a C-module on X. Assume
that U is an open subset and V ⊂ U an open subset whose closure is contained
in U . Assume that s ∈ M(U) is a section over U . Then there is a global
section S ∈ M(X) such that S|V = s|V .
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Proof. We choose a continuous real valued function ϕ on X, which is one on
V and whose support is compact and contained in U . Then we consider the
open covering X = U ∪ U ′, where U ′ denotes the complement of the support
of ϕ. On U we consider the section ϕs and on U ′ the zero section. Since both
are zero on U ∩ U ′ they glue to a section S on X. ⊔⊓

2.2 Lemma. Let X be a paracompact space and M → N a surjective C-linear
map of C-modules. Then M(X) → N (X) is surjective.

Proof. Let s ∈ N (X). There exists an open covering (Ui)i∈I of X such that
s|Ui is the image of an section ti ∈ M(Ui). We can assume that the covering
is locally finite. We take open subsets Vi ⊂ Ui whose closure is contained in
Ui and such that (Vi) is still a covering. Then we choose a partition of unity
(ϕi) with respect to (Vi). By 2.2 there exists global sections Ti ∈ M(X) with
Ti|Vi = ti|Vi. We now consider

T :=
∑

i∈I

ϕiTi.

Since I can be infinite, we have to explain what this means. Let a ∈ X a point.
There exists an open neighborhood U(a) such Vi ∩ U(a) 6= ∅ only for a finite
subset J ⊂ I. We can define the section

T (a) :=
∑

i∈J

ϕTi|U(a).

The sets U(a) cover X and the sections T (a) glue to a section T . Clearly T
maps to s. ⊔⊓

2.3 Lemma. Let X be a paracompact space and M → N → P an exact
sequence of C-modules. Then M(X) → N (X) → P(X) is exact too.

Proof. The exactness of the sequence implies the exactness of

0 −→ Image(M → N ) −→ N −→ Kernel(N → P) −→ 0.

From 2.2 we get

0 −→ Image(M → N )(X) −→ N (X) −→ Kernel(N → P)(X) −→ 0.

Applying 2.2 to M → Image(M → N ) we obtain

Image(M → N )(X) = Image(M(X) → N (X)).

Since also
Kernel(N → P)(X) = Kernel(N (X) → P(X))

we get the exactness of

0 −→ Image(M(X) → N (X)) −→ N (X) −→ Kernel(N (X) → P(X)) −→ 0.

This proves Lemma 2.3. ⊔⊓
Let M be an C-module over a paracompact space. Then the canonical

flabby resolution is also a sequence of C-modules. From 2.3 follows that the
resolution remains exact after the application of Γ. We obtain.



§3. Čech Cohomology 37

2.4 Proposition. Let X be paracompact. Every C-module is acyclic, i.e.
Hn(X,M) = 0 for n > 0.

3. Čech Cohomology

Here we will consider only the first Čech cohomology group of a sheaf. We have
to work with open coverings U = (Ui)i∈I of the given topological space X. Let
F be a sheaf on X. A one-cocycle of F with respect to the covering U is family
of sections

sij ∈ F (Ui ∩ Uj), (i, j) ∈ I × I,

with the following property: For each triple i, j, k of indices one has

sik = sij + sjk on Ui ∩ Uj ∩ Uk.

In more precise writing this means

sik|(Ui ∩ Uj ∩ Uk) = sij |(Ui ∩ Uj ∩ Uk) + sjk|(Ui ∩ Uj ∩ Uk).

We denote by C1(U, F ) the group of all one-cocycles. Assume that a family of
sections si ∈ F (Ui) is given. Then

sij = si|(Ui ∩ Uj)− sj |(Ui ∩ Uj)

obviously is a cocycle. We denote it by

δ(si)i∈I .

A cocycle of this form is called a coboundary. The set of all coboundaries is a
subgroup

B1(U, F ) ⊂ C1(U, F ).

The (first) Čech cohomology of F with respect to the covering U is defined as

Ȟ
1
(U, F ) := C1(U, F )/B1(U, F ).

A homomorphism of sheaves F → G induces a homomorphism

F̌
1
(U, F ) −→ Ǧ

1
(U, F ).

Let f : G→ H be a surjective homomorphism of sheaves and U = (Ui) an open
covering of X. We denote by HU(X) the set of all global sections of H with
the following property:
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For every index i there is a section ti ∈ G(Ui) with f(ti) = s|Ui. By definition
of (sheaf-)surjectivity for every global section s ∈ H(X) there exists an open
covering U with s ∈ HU(X). It follows

H(X) =
⋃

U

HU(X).

Let 0 → F → G → H → 0 be an exact sequence and U an open covering.
There exists a natural homomorphism

δ : HU(X) −→ Ȟ1(U,F ),

which is constructed as follows: Let be s ∈ HU(X). We choose elements
ti ∈ G(Ui) which are mapped to s|Ui. The differences ti − tj come from
sections tij ∈ F (Ui ∩Uj). They define a 1-cocycle δ(s). It is easy to check that
this corresponding element of Ȟ1(U, F ) doesn’t depend on the choice of the ti.

3.1 Lemma. Let 0 → F → G→ H → 0 be an exact sequence of sheaves and
U an open covering. The sequence

0 −→ F (X) −→ G(X) −→ HU(X)
δ−→ Ȟ1(U, F ) −→ Ȟ1(U, G) −→ Ȟ1(U, H)

is exact.

Remark. This sequence doesn’t extend naturally to a long sequence.

This Lemma indicates that Čech cohomology must be related to usual coho-
mology. Another result in this direction is:

3.2 Remark. Let F be a flabby sheaf. Then for every open covering

Ȟ1(U, F ) = 0.

Proof. We start with a little remark. Assume that the whole space X = Ui0
is a member of the covering. Then the Čech cohomology vanishes (for every
sheaf): If (sij) is a cocycle one defines si = si,i0 . Then δ((si)) = (sij). For the
proof of 3.2 we now consider the sequence

0 −→ F (X) −→
∏

i

F (Ui) −→
∏

ij

F (Ui ∩ Uj) −→
∏

ijk

F (Ui ∩ Uj ∩ Uk)

s 7−→ (s|Ui)
(si) 7−→ (si − sj)

(sij) 7−→ (sij + sjk − sik)

We will proof that this sequence is exact. (Then Remark 3.2 follows.) The
idea is to sheafify this sequence: For an open subset U ⊂ X one considers F |U
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and also the restricted covering U ∩ Ui. Repeating the above construction for
U instead of X on obtains a sequence of sheaves

0 −→ F −→ A −→ B −→ C.

Since F is flabby, also A,B, C are flabby. The remark at the beginning of the
proof shows that 0 −→ F (U) −→ A(U) −→ B(U) −→ C(U) is exact, when U is
contained in some Ui. Hence the sequence of sheaves is exact. From Lemma 1.6
follows that the exactness is also true for U = X. ⊔⊓

Let now F be an arbitrary sheaf, F (0) the associated flabby sheaf. We get
an exact sequence 0 → F → F (0) → H → 0. let U be an open covering. We
know that Ȟ1(U, F (0)) vanishes (Remark 3.2). From Lemma 3.1 we obtain an
isomorphy

Ȟ1(U, F ) ∼= HU(X)/G(X).

From the long exact cohomology sequence we get for the usual cohomology

H1(X,F ) ∼= H(X)/G(X).

This gives an injective homomorphism

Ȟ1(U, F ) −→ H1(X,F ).

This gives us:

3.3 Proposition. Let F be a sheaf. Then

H1(X,F ) =
⋃

U

Ȟ1(U, F ).

The following commutative diagram shows that the Čech combining δ from
Lemma 3.1 and that of general sheaf theory Theorem 1.5 coincide:

3.4 Remark. For a short exact sequence 0 → F → G→ H → 0 the diagram

0 −→ F (X) −→ G(X) −→ HU(X)
δ−→ Ȟ1(U, F )

‖ ‖ ↓ ↓
0 −→ F (X) −→ G(X) −→ H(X)

δ−→ H1(X,F )

is commutative.

The proof is left to the reader. ⊔⊓
LetV = (Vj)j∈J be a refinement of U = (Ui)i∈I and ϕ : J −→ I a refinement

map (Vϕ ⊂ Ui). Using this refinement map one obtains a natural map

Ȟ1(U, F ) −→ Ȟ1(V, F ).

This shows the following result.
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3.5 Remark. Let V be an refinement of U and ϕ : J → I a refinement map.
The diagram

Ȟ1(U, F ) //

&&▼▼
▼▼

▼▼
▼▼

▼▼
Ȟ1(V, F )

xxqqq
qq
qq
qq
q

H1(X,F )

commutes. Especially it doesn’t depend on the choice of the refinement map.

Usually it is of course very difficult to control all open coverings of a topological
space. But sometimes a single covering is sufficient:

3.6 Theorem of Leray. Let F be a sheaf on X and U = (Ui) an open
covering of X. Assume that H1(Ui, F |Ui) = 0 for all i. Then

H1(X,F ) = Ȟ1(U, F ).

Proof . Since two coverings admit a joint refinement it is sufficient to prove that
Ȟ1(U, F ) → Ȟ1(V, F ) is an isomorphism for each refinement V of U. Since the
map is injective, it remains to prove surjectivity. We choose a refinement map
ϕ : J → I. We denote the indices form I by i, j, . . . and those of J by α, β, . . ..
Let be (sα,β) ∈ C1(V, F ). We consider the covering Ui ∩ V := (Ui ∩ Vα)α
of Ui. From the assumption Ȟ1(Ui ∩ V, F |Ui) = 0 we get the existence of
tiα ∈ F (Ui ∩ Vα) such that

sαβ = tiα − tiβ on Ui ∩ Vα ∩ Vβ .

From this equation follows that

tjα − tjα = tjβ − tjβ on Ui ∩ Uj ∩ Vα ∩ Vβ .

Hence these differences glue to section Tij ∈ F (Ui ∩ Uj),

Tij = tiα − tjα on Ui ∩ Uj ∩ Vα.

Clearly (Tij) is a cocycle in C1(U, F ). We consider its image (T(ϕα,ϕβ) in
C1(V, F ). It is easy to check that this cocycle and the one we started with
(sαβ) define the same cohomology class: The differ by the coboundary (hβ−hα)
with hα = tϕα,α ∈ F (Vα). ⊔⊓
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4. Some vanishing results

Let X be a topological space and A an abelian group. We denote by AX the
sheaf of locally constant functions with values in A. This sheaf can be identified
with the sheaf which is generated by the presheaf of constant functions. We
will write

Hn(X,A) := Hn(X,AX).

We mention that these groups under reasonable assumptions (for example for
paracompact manifolds) agree with the singular cohomology in the sense of
algebraic topology.

4.1 Proposition. Let U be an open and convex subset of Rn. Then for every
abelian group A

H1(U,A) = 0.

Actually this is true for all Hn, n > 0. The best way to prove this to use the
comparison theorem with singular cohomology as defined in algebraic topology.
But we do not want to use this. Therefore we restrict to H1, where we can
give a simple argument.

Proof of 4.1. Every convex open subset of Rn is topologically equivalent to
Rn. Hence it is sufficient to restrict to U = Rn. Just for simplicity we assume
n = 1. (The general case should then be clear.) We use Čech cohomology.
Because of Proposition 3.3 and Remark 3.5 it is sufficient to show that every
open covering admits a refinement U such that H1(U, AX) = 0. To show this
we take a refinement of a very simple nature. It is easy to show that there
exists a refinement of the following form. The index set is Z. There exists a
sequence of real numbers (an) with the following properties:

a) an ≤ an+1

b) an → +∞ for n→ ∞ and an → −∞ for n→ −∞
c) Un = (an, an+2).

Assume that sn,m is a cocycle with respect to this covering. Notice that Un
has non empty intersection only with Un−1 and Un+1. Hence only sn−1,n is of
relevance. This a locally constant function on Un−1 ∩ Un = (an, an+1). Since
this is connected, the function sn−1,n is constant. We want to show that it is
coboundary, i.e. we want to construct constant functions sn on Un such that
sn−1,n = sn−sn−1 on (an, an+1). This is easy. One starts with s0 = 0 and then
constructs inductively s1, s2, . . . and in the same way for negative n. ⊔⊓

Consider on the real line R the sheaf of complex valued differentiable func-
tions C∞. Taking derivatives one gets a sheaf homomorphism C∞ → C∞,
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f 7→ f ′. The kernel is the sheaf of all locally constant functions, which we
denote simply by C. Hence we get an sequence

0 −→ C −→ C∞ −→ C∞ −→ 0.

This sequence is exact since every differentiable function has an integral.
Hence this sequence can be considered as acyclic resolution of C. We ob-
tain Hn(R,C) = 0 for all n > 0. For n = 1 this follows already from 4.1.
There is a generalization to higher dimensions. For example a standard result
of vector analysis states in the case n = 2.

4.2 Lemma. Let E ⊂ R
n be an open and convex subset, f, g ∈ C∞ a pair of

differentiable functions with the property

∂f

∂y
=
∂g

∂x
.

Then there is a differentiable function h with the property

f =
∂h

∂x
, g =

∂h

∂y
.

In the language of exact sequences this means:

The sequence

0 −→ C −→ C∞(E) −→ C∞(E)× C∞(E) −→ C∞(E) −→ 0

f 7−→
(
∂f
∂x
,
∂f
∂y

)

(f, g) 7−→ ∂f
∂y

− ∂g
∂x

is exact. When E is not convex, this sequence needs not to be exact. But since
every point in R

2 has an open convex neighborhood, the sequence of sheaves

0 −→ CX −→ C∞
X −→ C∞

X × C∞
X −→ C∞

X −→ 0

is exact for every open subset X ⊂ R
2. This is an acyclic resolution and we

obtain:

4.3 Proposition. For convex open E ⊂ R
2 we have

Hi(E,C) = 0 for i > 0.

On can of course consider real valued differentiable functions and the same
proof shows Hi(E,R) = 0 for i > 0.

As an application we prove the following proposition.
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4.4 Proposition. For convex open E ⊂ R
n one has

H2(E, Z) = 0.

Proof. We consider the homomorphism

C −→ C
.
, z 7−→ e2πiz.

The kernel is Z. This can be considered as an exact sequence of sheaves for
example on an open convex E ⊂ R

n. A small part of the long exact cohomology
sequence is

H1(E,C
.
) −→ H2(X, Z) −→ H2(E,C).

Since the first and the third member of this sequence vanish (Propositions 4.1
and 4.3), we get the proof of Proposition 4.4. ⊔⊓

Next we treat an example of complex analysis.

4.5 Lemma of Dolbeault. Let E ⊂ C be an open disk. For every function
f ∈ C∞(E) there exists g ∈ C∞(E) with

f =
∂g

∂z̄
:=

1

2

(∂g
∂x

+ i
∂g

∂x

)
.

A proof can be found in [Fo], Satz 13.2. We give a short sketch here. In a first
step one restricts to the case where f has compact support. In this case the
function g can be constructed as an integral:

g(z) = − 1

π

∫ 2π

0

∫ 1

0

f(z + reiϕ)e−iϕdrdϕ.

One can show that ∂g/∂z̄ = f . But this is not trivial. One has to make use of
the Theorem of Stokes V.7.6. We do not give the details.

If f has not compact support, one needs an approximation argument. One
writes f as limit of a sequence of functions fn with compact support such that
f and fn coincide for |z| < 1 − 1/n. Then one writes ∂gn/∂z̄ = fn using the
first part of the proof. We have the freedom to add to gn a polynomial Pn(z).
In this way one can get the convergence of the sequence gn to a solution g.

⊔⊓
The lemma of Dolbeault is related to an exact sequence of sheaves. Recall

that a (real-) differentiable function is analytic (=holomorphic) if and only if
∂f/∂̄z = 0. We denote by O the sheaf of holomorphic functions. The Lemma
of Dolbeault shows that the sequence of sheaves

0 −→ OX −→ C∞
X

∂̄−→ C∞
X −→ 0

is exact for an open subset X ⊂ C. This is an acyclic resolution of OX .
Applying the Lemma of Dolbeault once more, we get the following result.
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4.6 Proposition. Let E ⊂ C be an open disk. Then

Hi(E,OE) = 0 for i > 0.

We denote by C̄ the Riemann sphere.

4.7 Theorem. One has
H1(C̄,OC̄ ) = 0.

For the proof we consider a covering of C̄ by two disks E1, E2 such that the
intersection is a circular ring 1 < |z| < 2. By Leray’s theorem 3.6 and the
vanishing result Proposition 4.6 it is sufficient to show that the Čech cohomol-
ogy with respect to this covering vanishes. A Čhech cocycle simply is given by
a holomorphic function on the circular ring. We have to show that it can be
written as difference f1 − f2 where fi is holomorphic on the disk Ei. This is
possible by the theory of the Laurent decomposition. ⊔⊓
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1. Geometric spaces

In the following we denote by C(X) the set of complex valued continuous func-
tions on the topological space X.

1.1 Definition. A geometric structure O on a topological space is a collection
of subrings O(U) ⊂ C(U), where U runs through all open subsets, such that the
following conditions are satisfied:

1) The constant functions are in O(U).

2) If V ⊂ U are open sets then

f ∈ O(U) =⇒ f |V ∈ O(V ).

3) Let (Ui)i∈I be a system of open subsets and fi ∈ O(Ui) such that

fi|Ui ∩ Uj = fj |Ui ∩ Uj for all (i, j),

then there exist a f ∈ O(U) where U =
⋃
i∈I Ui with the property

f |Ui = fi for all i.

We see that O is a sheaf of rings. We call the functions of O(U) the distin-
guished functions. Conditions two and three mean that to be distinguished
is a local property. Our main example at the moment is X = C, where the
distinguished functions are the holomorphic functions.

A geometric space is a pair (X,O) consisting of a topological space and a
geometric structure.

1.2 Definition. A morphism f : (X,OX) → (Y,OY ) of geometric spaces is
a continuous map f : X → Y with the following additional property. If V ⊂ Y
is open and g ∈ OY (V ) then g ◦ f is contained in OX(f−1(V )).
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Quite trivial facts are:

The composition of two morphisms is a morphism.
The identical map (X,O) → (X,O) is a morphism.

A morphism f : (X,OX) → (Y,OY ) of geometric spaces is called an isomor-
phism if f is topological and if f−1 : (Y,OY ) → (X,OX) is also a morphism.
This means that the rings OX(U) and OY (f(U)) are naturally isomorphic.

Let U ⊂ X be an open subset of a geometric space (X,O). We can define
the restricted geometric structure O|U by

O|U(V ) := O(V ) (V ⊂ U open).

It is clear that the natural embedding i : (U,OX |U) →֒ (X,OX) is a morphism
and moreover that a map f : Y → U from a geometric space (Y,OY ) into U is
a morphism if and only if i ◦ f is a morphism.

A morphism f : (X,OX) → (Y,OY ) is called an open embedding if it is the
composition of an isomorphism (X,OX) → (U,OY |U), U ⊂ Y open, and the
natural injection.

2. The notion of a Riemann surface

We equip C and more generally an open subset V with the sheaf of holomorphic
functions. The geometric space obtained in this way is denoted by (V,OV ). A
Riemann surface is a geometric space which is locally isomorphic to such a
space:

2.1 Definition. A Riemann surface is a geometric space (X,OX), such that
for every point there exists an open neighborhood U and an open subset V ⊂ C

such that the geometric spaces (U,OX |U) and (V,OV ) are isomorphic geometric
spaces. We always assume that X is a Hausdorff space with countable basis of
the topology.

Of course (C,OC ) is a Riemann surface. An open subspace of a Riemann
surface (equipped with the induced geometric structure) is a Riemann surface.
In particular, every open subset U ⊂ C carries a natural structure of a Riemann
surface. If U, V are two open subsets of C then for a map f : U → V the
following two conditions are equivalent:

a) The map f is analytic in the sense of complex analysis.

b) The map f defines a morphism of geometric spaces f : (U,OU ) → (V,OV ).

This allows us to define:
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2.2 Definition. A map f : (X,OX) → (Y,OY ) between Riemann surfaces is
called holomorphic if it is a morphism of geometric spaces.

A biholomorphic map between Riemann surfaces of course is a bijective map
with is analytic in both directions.

A (topological) chart on a Riemann surface X is a topological map from
an open subset U ⊂ X onto an open subset V ⊂ C. The chart is called
analytic if it is moreover biholomorphic, i.e. an isomorphism of geometric spaces
(U,OX |U) → (V,OV ).

Let ϕ : U → V and ψ : U ′ → V ′ be two charts on X. then we can consider
the topological map

γ := ψ ◦ ϕ−1 : ϕ(U ∩ U ′) → ψ(U ∩ U ′).

The notation “ψ ◦ϕ−1” is not in accordance with the strong rules of set theory,
but we allow this and related notations when it is clear from the context what
is meant.

The sets ϕ(U ∩ U ′) and ψ(U ∩ U ′) are open subsets of C. If the charts ϕ,
ψ are analytic then the chart change map γ is biholomorphic.

A set of charts ϕ : U → V is called an atlas of X if the domains of definition
U cover X. The set of all analytic charts is an atlas.

Riemann surfaces via charts

Assume that a topological space X and a set A of two dimensional charts
(topological maps from open subsets of X to open subsets of C) is given. We
assume that A is an atlas. We also assume that all chart changes γ = ψ ◦ ϕ−1

(ϕ,ψ ⊂ A) are biholomorphic. We call than A an analytic atlas.

2.3 Remark. Let A be an analytic atlas on X. Then there exists a unique
structure as Riemann surface (X,OX) such that all elements of A are analytic
charts with respect to this structure

It should be clear how OX has to be defined: A function f : U → X for open
U ⊂ X belongs to OX(U) is and only if for every chart ϕ : Uϕ → Vϕ the
function

fϕ = f ◦ ϕ−1 : ϕ(U ∩ Uϕ) −→ C

is analytic in the usual sense.

The atlas A then is part of the atlas of all analytic charts of (X,OX), but it
can be smaller. The atlas of all analytic charts is the unique maximal analytic
atlas which contains A.
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3. The notion of a differentiable manifold

An n-dimensional topological manifold X is a topological space such that each
point contains an open neighbourhood which is homeomorphic to some open
subset of Rn. In the case n = 2 we call this a topological surfaces. Every Rie-
mann surface has an underlying topological surface. Hence Riemann surfaces
should be considered as surfaces with an additional structure. We introduced
this additional structure as a sheaf OX . This approach is very flexible and can
be used to consider other geometric structures. For example, one can consider
for an open subset U ⊂ R

n the set C∞(U) of all differentiable functions in the
sense of real analysis. One can take them real- or complex valued. A complex
valued function is differentiable if and only if real ind imaginary part are dif-
ferentiable. For our purposes it is better to take them complex valued. Hence
from now on we will use the notation C∞(U) for the set of complex valued dif-
ferentiable functions. We then can consider the geometric space (U, C∞

U ) where
C∞
U (V ) := C∞(V ). Similar to the definition of a Riemann surface we define an
n-dimensional differentiable manifold (X, C∞

X ) to be a geometric space that is
locally isomorphic to an (U, C∞

U ), U ⊂ Rn, open. A morphism between diffe-
rentiable manifolds is just called a differentiable map. Isomorphisms between
differentiable manifolds are called diffeomorphisms.

Let X be a Riemann surface and U be an open subset. One can define what
it means that a function f : U → C is differentiable (C∞). For every point
a ∈ U there exists an analytic chart ϕ : Uϕ → Vϕ such that the transported
function fϕ(z) = f(ϕ−1(z)) is differentiable in the usual sense. It is clear that
this defines a structure C∞

X as differentiable surface on X. We call this the
underlying differentiable surface of X. Holomorphic maps between Riemann
surfaces are differentiable maps for the underlying differentiable surfaces.

One reason that it is useful to consider the underlying differentiable surface
of a Riemann surface is that in the differentiable world partitions of unity
exist. Here a partition of unity (ϕi) is called differentiable if all functions ϕi
are differentiable.

3.1 Proposition. Let X be a paracompact differentiable manifold. For every
locally finite open covering there exists a differentiable partition of unity.

The same proof as in the case of continuous functions works. ⊔⊓
Hence there is the following variant of Proposition IV.2.4.

3.2 Proposition. Let X be a paracompact differentiable manifold, then every
C∞
X -module is acyclic.
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4. Meromorphic functions

We recall the topology of the Riemann sphere. A subset U ⊂ C̄ = C ∪ {∞} is
open if U ∩ C is open C ist ind if in the case ∞ ∈ U there exists C > 0 with
the property

z ∈ C, |z| > C =⇒ z ∈ U.

Obviously C̄ is a compact space. The subset C is open and the induced topo-
logy is the usual one.

Let U ⊂ C̄ an open set and f : U → C a function. We assume that ∞ ∈ U .
Then f(1/z) is defined in an open neighborhood of 0. We call f analytic at
∞ if f(1/z) is analytic in an open neighborhood of zero. For any open set we
define OC̄ (U) to be the set of all functions with the following properties:

a) The restriction of f to U ∩ C is analytic in the usual sense.
b) When ∞ ∈ U then f is analytic at ∞.

It is easy to see that (C̄,OC̄ ) is a Riemann surface. We describe two analytic
charts which cover C̄. They can be used to introduce C̄ as Riemann surface
via charts.

C̄ − {∞} = C
idC−→ C,1)

C̄ − {0} −→ C, z 7−→ 1/z (1/∞ = 0).2)

The chart change map is

C − {0} −→ C − {0}, z 7−→ 1/z.

We consider now holomorphic maps f : X → C̄ of an arbitrary Riemann
surface into the Riemann sphere.

4.1 Definition. A meromorphic function f on a Riemann surface X is an
analytic map

f : X −→ C̄,

such that f−1(∞) is a discrete subset of X.

The constant function f(z) = ∞ is an analytic map but not meromorphic. Let
S ⊂ X be a discrete subset and f : X → C a holomorphic function. It may
happen that f extends to a meromorphic function on X. Then we call the
points in S inessential singularities. Since the extension of f to X is unique we
will use the same letter for it.

We denote by M(X) the set of all meromorphic functions on X. Let f, g ∈
M(X) be two meromorphic functions on X and denote by S the union of the
points were f or g has the value ∞. Then we can define on X −S the analytic
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functions f + g and f · g. The points of S are inessential singularities. Hence
we have defined

f + g, fg ∈ M(X).

It follows that M(X) is a ring.

If f is a meromorphic function with discrete zero set then 1/f is an analytic
function on the complement of this set. Since the singularities are inessential
it extends as meromorphic function on X.

When f ∈ OX(X) is an analytic function the composition with the natural
inclusion C →֒ C̄ is a meromorphic finction. We identify f with this mero-
morphic function. This means that we can consider OX(X) as a subring of
M(X).

We want to show that M(X) is a field, wenn X is connected. For this we
need a a variant of the principle of analytic continuation.

4.2 Lemma. Let f, g : X −→ Y be two analytic maps of a connected Riemann
surface X into a Riemann surface Y . Assume that there exists a subset A ⊂ X
which is not discrete and such that f and g agree on A. Then f = g.

Corollary. Let f : X → Y , X connected, be a non-constant analytic map than
f−1(y) is discrete for every y ∈ Y . b ∈ Y discrete in X.

Corollary. The set M(X) of all meromorphic functions on a connected Rie-
mann surface is a field.

Proof. Consider the set of all cumulation points of the set {x ∈ X; f(x) =
g(x)}. It is sufficient to show that this set is open and closed. Since this
is a statement of local nature, one can take analytic charts and reduce the
statement to the case where X and Y are open subsets of C. Now one can use
the standard principle of analytic continuation. ⊔⊓

5. Ramification points

An analytic map f : X → Y of Riemann surfaces is called locally biholomorphic
at a point a ∈ X if f maps some open neighborhood of a biholomorphic to an
open neighborhood of f(a). If this is not the case, a is called a ramification
point .

5.1 Remark. Let f : X → Y be a non-constant holomorphic map of con-
nected Riemann surfaces. The set of ramification points is discrete in X.

Proof. Taking charts one can assume that X and Y are open subsets of C.
The ramification points then are the zeros of the derivative of f . ⊔⊓

We recall a result of complex calculus. Let f : U → C be a non-constant
analytic function on an open connected neighborhood of 0 with the property
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f(0) = 0. There exists a small open neighborhood 0 ∈ V ⊂ V and an analytic
function h : V → C with the properties

f(z) = h(z)n, h′(0) 6= 0.

If V is taken small enough then h maps V biholomorphic onto an open neigh-
borhood of 0. (The number n is the zero order of f .) We refer to [FB] for a
proof. There it has been used for the proof of the Open Mapping Theorem
III.3.3.

We want to reformulate this result for Riemann surfaces. For sake of con-
venience we will use the following notation:

A disk around a ∈ X on a Riemann surface X is a biholomorphic map (=an-
alytic chart)

ϕ : U
∼−→ E, ϕ(0) = 0.

Here
E :=

{
q ∈ C; |q| < 1

}

denotes the unit disk.

If b is a point of U , we also say that the disk contains a. If U is a subset of a
subset A ⊂ X, then we say that the disk is contained in A. (This is not quite
correct since a disk is a map and not only the set U .)

If a is a point of a Riemann surface, then of course there exists a disk around
a. One simply takes an arbitrary analytic chart ϕ : U → V , a ∈ U . Then one
replaces V be a small disk around f(a) and U by the inverse image. For trivial
reasons there exists a biholomorphic map of an arbitrary disk to the unit disk,
such that the center goes to the center. One can a say a little more:

Around an arbitrary point a of a Riemann surface there exist arbitrary small
disks.

This means of course that for a given neighborhood one can find a disk which
is contained in it.

5.2 Remark. Let f : X → Y be a non-constant map of connected Riemann
surfaces and a ∈ X a given point. There exist disks ψ : V → E around
f(a) ∈ Y and ϕ : U → E around a such that the diagram

U
ϕ //

f

��

E

��

q
❴

�

❴

�
V

ψ // E qn

commutes for some natural number n which is uniquely determined.

This is just a reformulation of the discussion above. ⊔⊓
A simple way to express Remark 5.2 is:

Analytic maps of Riemann surfaces look locally like “q 7→ qn”.

The point is a ramification point if and only if n > 1.
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Proper maps

For proper analytic maps f : X → Y there are better results. We will use in
the following frequently the following trivial fact: Let V ⊂ Y an open subset
and U = f−1(V ) its (full!) inverse image. Then f : U → V is proper too
(Lemma I.3.1).

The basic fact which we have to use is the following purely topological result.

5.3 Proposition. Let f : X → E
.
be a locally topological proper map of a

connected Hausdorff space into the punctured unit disk E
.
= E − {0}. Then

there exists a topological map σ : X → E
.
such that the diagram

X
σ //

f ��❅
❅❅

❅❅
❅❅

❅ E
.

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

q❅

���
��
��
��
❅

���
��
��
��

E
.

qn

commutes.

The proof uses topological covering theory. A quick proof can be found in [Fr1],
Chapt. I, Sect 3, Appendix A. We will not give the details of the proof here. We
just mention the topological background. Locally topological and proper maps
are special cases of (unramified) topological coverings. These are classified by
the fundamental group of the space. We will introduce the fundamental group
in Sect. 8 of this chapter. The fundamental group of E

.
is isomorphic to Z.

This implies that for each natural number n there exists only one covering of
E
.
of degree n. ⊔⊓
We point out as a consequence.

5.4 Corollary of 5.3. Let in addition X be a Riemann surface and f
analytic. Then the map σ is biholomorphic.

A simple consequence of Proposition 5.3 states:

5.5 Lemma. Let f : X → E, a 7→ 0, be a holomorphic and proper map of
a connected Riemann surface, which is locally biholomorphic outside a. Then
there exists a biholomorphic map σ : X → E such that the diagram

X
σ //

f ��❄
❄❄

❄❄
❄❄

❄ E

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

q❅

���
��
��
��
❅

���
��
��
��

E qn

commutes.
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Proof. From Proposition 5.3 follows the existence of a biholomorphic map
f : X − {a} → E

.
. We extend by f(a) = 0. The Riemann extension theorem

shows that this map is still holomorphic. ⊔⊓
We treat a topological application of Proposition 5.3. We take (in the

notation of Proposition 5.3) a symbol a which is not contained in X. We define
X̄ = X ∪ {a}. We extend the map σ to the map

σ̄ : X −→ E, σ̄(a) = 0.

This is bijective map. Then we equip X̄ with the unique topology such that
this map is topological. Then X is an open subspace of X̄. We also extend f
to a map

f̄ : X̄ −→ E, f(a) = 0.

This map still is continuous, even proper but not locally topological.

This trivial construction admits an important extension:

5.6 Proposition. Let Ȳ be a surface and Y ⊂ Ȳ an open subset such that
T := Ȳ − Y is a finite set. Assume that f : X → Y is a locally topological
proper map of a Hausdorff space X into Y . Then there exists a surface X̄ with
the following property:

a) X is an open subset of X̄ and the topology of X is the induced topology.
b) T := X̄ −X is a finite set. The map f extends to a continuous and proper

map
f̄ : X̄ −→ Ȳ .

c) For every point a ∈ T there exist neighborhoods a ∈ U ⊂ X̄ and ∈ V ⊂ Ȳ
and topological maps U → E and V → E such that the diagram

U //

f

��

E

��

q
❴

�

❴

�
V // E qn

commutes.

Additional Remark. When Ȳ is compact then so is X̄.

Proof. For each b ∈ T we choose an open neighborhood V (b) and a topological
map V (b) → E, b 7→ 0. We can assume that the V (b) for different b are
disjoint. Next we take the inverse image f−1(V (b)) in X. This needs not to be
connected. Hence we consider the connected components. From the properness
of f follows that there are only finitely man connected components. Let U be
one of them. The map

U → V (b)− {b} ∼= E
.
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still is proper. To this situation we apply the above construction adding one
extra point to U . To be precise we take for each point b ∈ T and for each
connected component of f−1(V (b)) an extra symbol aU . Then we add to U
this symbol to get Ū = U ∪ {aU}. Then we consider

X̄ = X ∪
⋃

b∈T, U

{aU}.

Then Ū is a subset of X̄. It is clear how to extend f to a map f̄ : X̄ → Ȳ .
It is also clear how to define the topology on X̄: a subset is called open if the
intersection with X and all U is open. ⊔⊓

If f : U → C is a non-constant function on a connected open subset U ⊂ C.
Then for a ∈ U the zero order of f(z) − f(a) at a is called the multiplicity of
f at a. If f : X → Y is a non-constant holomorphic map of Riemann surfaces,
then the multiplicity of f at a point a ∈ X can defined in an obvious way via
charts. It also can be defined by means of Remark 5.2.

5.7 Definition. Let f : X → Y be a non-constant holomorphic maps of
Riemann surfaces. The multiplicity of f at a point a is the number n such that
f looks locally at a like q 7→ qn (see Remark 5.2).

From Lemma 5.5 and the above discussion we deduce:

5.8 Proposition. Let f : X → Y be a proper non-constant holomorphic map
of Riemann surfaces. Assume that Y is connected. Denote for b ∈ Y by d the
number of all a ∈ X with f(a) = b counted with multiplicity. The number d is
independent of b. In particular, f is surjective.

We denote the number d the covering degree of f .

Proof of Proposition 5.8. The statement is trivial for the map E → E, q 7→ qn.
The covering degree in this case is n. We claim that the function that associates
to b ∈ Y the number d is locally constant. It is sufficient to prove this in the
case Y = E. In this case we can apply Lemma 5.5 to the connected components
of X. So we have proved that the function b 7→ d is locally constant. Since Y
is connected, it is constant. ⊔⊓

6. Examples of Riemann surfaces

The only Riemann surfaces which we introduced so far is the Riemann sphere
and its open subsets. We give some more interesting examples but keep short
since they are not needed for the development of the general theory. We will
treat now three examples, complex tori, the Riemann surface of an analytic
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function and the compact Riemann surfaces that can be associated to alge-
braic functions. In the last Chapter VIII we will introduce another important
example, namely the Riemann surface that can be associated to a discrete
subgroup of SL(2,R).

Tori

Let L ⊂ C be a lattice, i.e. L = Zω1 + Zω2, where ω1, ω is an R-basis of C.
The quotient XL = C/L carries a natural structure as Riemann surface. The
topology is the quotient topology. A function f : U → C on an open subset
U ⊂ XL is called holomorphic if and only if the composition with the natural
projection p : C → XL is a holomorphic function in the usual sense on p−1(U).
The natural projection p is holomorphic and even more locally biholomorphic.
It follows the meromorphic functions f : XL → C̄ are in 1-1-correspondence to
the elliptic functions F = f ◦p (meromorphic functions on C which are periodic
with respect to L.

It can be shown that two tori XL1 and XL2 are biholomorphic equivalent
if and only if there exists a complex number a ∈ C such that L2 = aL1.
Since this is usually not the case and since two tori are always topologically
equivalent, we see that topologically equivalent Riemann surfaces are usually
not biholomorphic equivalent.

Concrete Riemann surfaces

A function element (a, P ) is point a ∈ C together with an element P ∈ Oa. We
can think of P as power series with center a and positive convergence radius.
Let α : [0, 1] → C be a curve with starting point a = α(0). Assume that a
function element (a, P ) is given. We say that (a, P ) admits analytic continua-
tion along α if there exist for every t ∈ [0, 1] a function element (α(t), Pt) such
that the following condition hold:

a) (a, P ) = (α(0), P0).
b) Let t ∈ [0, 1]. If t′ ∈ [0, 1] is close enough to t than the (open) convergence

disks of Pt and Pt′ have non empty intersection and both functions agree
in the intersection.

It is easy to see that such an analytic continuation is unique. Two function
elements (a, P ) and (b,Q) are called equivalent if there exists a path α with
α(0) = a and α(1) = b such that (a, P ) can be continued analytically to b with
the end-element (q,Q).

The basic truth is that (b,Q) depends on the choice of the curve α. As an
example on considers the function element (1,

√
z), where

√
z is defined by the

principal part of the logarithm. This function element can be continued to −1.
But if one takes the continuation along the half circle in the upper half plane
one gets a different result as if one takes the half circle in the low half plane.
The two continuations differ by a sign.
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The idea of the Riemann surface is to count the point −1 twice. This means
one takes a two fold covering of C∗. On this covering

√
z can be defined as an

unambiguous.

To define this in mathematical rigorous way, one starts with an analytic
function f : D ⊂ C on some connected open subset of C. The elements (a, fa)
of course all are equivalent. Now we introduce the setR = R(f) od all functions
element which are equivalent to the elements (a, fa). So R contains all possible
analytic continuations of f .

We introduce a topology on R. Let (a, P ) ∈ R. Consider a positive number
ε which is smaller than the convergence radius of r. Then we define

Uε(a, P ) :=
{
(b,Q); b ∈ Uε(a), Q is the germ of P in b

}
.

A subset U ⊂ R is called open if for every point a ∈ U there exists a small
ε > 0 such that

Uε(a, P ) ⊂ U.

It is clear that this is a (Hausdorff) topology on R. The natural projection

p : R −→ C, (a, P ) 7−→ a,

is continuous and moreover the restriction

Uε(a, P ) −→ Uε(a) (ε small enough)

is topological. Hence we see that the map R → C is locally topological. This
is enough information to equip R with a structure as Riemann surface.

6.1 Remark. Let Y be a Riemann surface and f : X → Y a locally topological
map of a Hausdorff space X into Y . Then X carries a unique structure as
Riemann surface such that f is holomorphic.

Proof. One defines OX(U) to be the set of all function f : U → C such that
for all Uε(a, P ) ⊂ the composition

Uε(a)
∼−→ Uε(a, P )

f−→ C

id analytic in the usual sense. It is easy to verify the demanded properties.
⊔⊓

Besides the projection R → C on can consider the map

F : R −→ C, F (a, P ) = P (a).

This function is of course analytic. There is a natural map

D −→ R, a 7−→ (a, fa),
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which obviously is an open imbedding. The basic fact is the commutative
diagram

D

f   ❅
❅❅

❅❅
❅❅

❅
// R

F~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

C

shows F to be an extension of the original function f . This extension includes
all possible analytic continuations of f . In a naiv sense they are a multi-valued
function. The idea of the Riemann surface R is to obtain a single-valued
function on a covering of C.

The Riemann surface of an algebraic function

We show how a compact Riemann surface can be associated to an algebraic
function. We will keep rather short. More details can be found in [Fr1],
Chapt. I, Sect. 3.

Let P (z, w) by a polynomial of two variables. We assume in the following
that P is irreducible. This means that P cannot be written as product of two
non-constant polynomials. We also assume that P depends on both variables
properly.

The “algebraic function” f related to P is the solution of P (z, f(z)) = 0. This is

not a function in the usual sense, since it is multi-valued. The origin of the theory of

Riemann surface can be seen in the wish to get a precise definition of f as a single val-

ued function on a suitable surface. One could use the technique of concrete Riemann

surfaces to construct such a surface. We prefer to use the algebraic curve related

to P . In both approaches the main problem is to get a compact Riemann surface.

One can show that every compact Riemann surface is biholomorphic equivalent to

one which comes from an algebraic function. Hence compact Riemann surfaces and

algebraic functions describe the same objects.

The affine curve associated to P is defined as

N :=
{
(z, w) ∈ C × C; P (w, z) = 0

}
.

6.2 Lemma. The fibres of the map p : N → C, p(z, w) = z, are finite.

This is an easy application of the fact, that a non-zero polynomial in one
variable has only finitely many zeros. ⊔⊓

6.3 Proposition. There are finite subsets S ⊂ C and T = p−1 such that

p : N − T −→ C − T

is proper and locally topological.
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We just describe the set S: A point a ∈ C is contained in S if one the following
conditions is satisfied:

a) There is a b such that P and ∂P/∂w both vanish at (a, b).
b) Write P in the form

P (z, w) = a0(z) + · · ·+ an(z)w
n, an 6= 0.

Then an(s) = 0.

We don’t give more details and mention just that b) implies that p : N −T −→
C−T is locally topological. (One has to use the theorem of implicit functions.)
That p is proper uses a). ⊔⊓

Now we imbed C−S into the Riemann sphere C̄ and apply Proposition 5.6.

6.4 Theorem. There exists a compact Riemann surface X which contains
N−T as open sub-surface (with the induced topology and the restricted geomet-
ric structure). The complement is a finite set. The map p : N − T −→ C − T
extends to a meromorphic function

p : X −→ C̄.

We also mention a result, which often is clear in concrete situations but needs
a proof in general. We refer to [Fr1] for a proof.

6.5 Theorem. The compact Riemann surface X attached to an algebraic
function is connected. The second projection q(z, w) = w extends also to a
meromorphic function

q : X −→ C̄.

We end this section with a special example in which the above results can be
proved less more easily. Let Q(z) be a non-constant polynomial in 1 variable
without multiple zeros and take P (z, w) = w2−Q(z). It is easy to show that P
and ∂P/∂w have no common zeros. It follows that N is already a surface (an
imbedded manifold in the sense of analysis). It carries a structure as Riemann
surface such that p : N → C is proper and holomorphic. The covering degree
is two. The compactification N ⊂ X needs one or two additional points. If it
is one, the map p is locally of the form z 7→ z2. If there are two, the map is
locally biholomorphic at both. Later we will see that the compactification by
one (resp. two) points depends on whether the degree of Q is odd (resp. even).

Recall that we have two projections p, q : X → C̄ which are induced by
p(z, w) = z and q(z, w) = w. The first projections plays of the role of the
natural “coordinate” on X. Hence we write simply z instead of q. The second
projection q describes the solution of the equation w2 = Q(z). Hence we write
simply

√
Q(z) for q. We see that the a priori “double valued function

√
Q(z)

appears as usual single-valued function q on a two fold covering of C̄.
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7. Differential forms

Let U ⊂ C be an open subset. We consider the space Ap(U) (p = 0, 1, 2) of
complex valued C∞-differential forms,

A0(U) = C∞(U), A1(U) = C∞(U)× C∞(U), A2(U) = C∞(U).

As usually we write the elements of A1(U) in the form fdx + gdy and the
elements of A2(U) in the form fdx ∧ dy. We recall the operators

A1(X)×A1(X) −→ A2(X),

(f1dx+ g1dy) ∧ (f2dx+ g2dy) = (f1g2 − f2g1)dx ∧ dy,

(exterior product) and the exterior derivatives

d : A0(U) −→ A1(U), df =
∂f

∂x
+
∂f

∂y

and

d : A1(U) −→ A2(U), d(fdy + gdy) =
(∂f
∂x

− ∂f

∂y

)
dx ∧ dy.

One has d ◦ d = 0. From Lemma IV.4.2 we obtain the following result.

7.1 Lemma of Poincaré. The sequence

0 −→ C −→ A0(U) −→ A1(U) −→ A2(U) −→ 0

is exact for convex U .

We use the notations

dz = dx+ idy, dz̄ = dx− idy

and
∂

∂z
:=

1

2

( ∂
∂x

− i
∂

∂y

)
,

∂

∂z̄
:=

1

2

( ∂
∂x

+ i
∂

∂y

)
.

We can write a one-form also as fdz + gdz̄. The operator d can be rewritten
as

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄ and d(fdz + gdz̄) =

∂f

∂z̄
dz̄ ∧ dz + ∂g

∂z
dz ∧ dz̄

Notice
dz ∧ dz̄ = −dz̄ ∧ dz = 2idx ∧ dy.
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We obtain a splitting

A1(U) = A1,0(U)⊕A0,1(U)

with A1,0(U) = C∞(U)dz and A0,1(U) = C∞(U)dz̄. A one-differential is called
holomorphic if it is of the form fdz with holomorphic f . From the Cauchy–
Riemann equations follows

d(f(z)dz) = f ′(z)dz for holomorphic f.

The set of all holomorphic one-forms is denoted by Ω(U). It is a subspace of
A1,0(U). We also introduce the operators

∂̄ : A0(U) −→ A0,1(U), ∂̄(f) :=
∂f

∂z̄
dz̄

and

∂̄ : A1,0(U) −→ A1,1(U), ∂̄(fdz) :=
∂f

∂z̄
dz̄ ∧ dz.

The latter coincides with d. We can reformulate the Lemma of Dolbeault IV.4.5
as follows

7.2 Lemma of Dolbeault. For a disk U the sequence

0 −→ O(U) −→ A0(U)
∂̄−→ A0,1(U) −→ 0

is exact or equivalently

0 −→ Ω(U) −→ A1,0(U)
∂̄−→ A1,1(U) −→ 0

is exact.

Transformation of differential forms

Let γ = γ1 + iγ2 : U → V be a C∞-map of open subsets U, V ⊂ C. One defines
the pull-back

γ∗ : Ap(V ) −→ Ap(U)

as follows:

a) for 0-forms: γ∗(f) = f ◦ γ,
b) for 1 forms: γ∗(fdx+ gdy) = (f ◦ γ) dγ1 + (f ◦ γ) dγ2,

c) for 2-forms: γ∗(fdx ∧ dy) = (f ◦ γ)
(∂γ1
∂x

∂γ2
∂y

− ∂γ1
∂y

∂γ2
∂x

)
dx ∧ dy.
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The chain rule says: γ∗1 ◦ γ∗2 = (γ2 ◦ γ1)∗. Another consequence of the chain
rule is that the derivative d is compatible with transformation:

γ∗(dω) = d(γ∗ω).

When w = γ(z) is holomorphic and f(w)dw a holomorphic 1-form, then the
transformation formula simplifies because of the Cauchy–Riemann equations
as follows:

γ∗(f(w)dw) = f(γz)γ′(z)dz (f holomorphic).

Finally we mention

γ∗(ω ∧ ω′) = (γ∗ω) ∧ (γ∗ω′)

which is easy to verify.

Differential forms on Riemann surfaces

By a p-form on a Riemann surface one understands a family of p-forms ωϕ ∈
Ap(Vϕ), where ϕ : Uϕ → Vϕ runs through all analytic charts, such that the
following condition is satisfied:

If ϕ,ψ are two analytic charts and γ = ψ ◦ ϕ−1 is the coordinate change map
then

ωψ = γ∗ωϕ

holds on the open subsets where γ is defined. If one has a family, which is
only defined for all ϕ form an atlas of analytic charts then this family extends
uniquely to the atlas of all analytic charts. All what one has to use to us is the
chain rule γ∗1 ◦ γ∗2 = (γ2 ◦ γ1)∗ and the fact that transformation and derivatives
are compatible with restriction to smaller open subsets.

A zero form especially is a family of functions fϕ : Vϕ → C such that the
transported functions in Uϕ coincide in the intersections. Hence they glue to
a function f : X → C. We will identify f with the family (fϕ). We denote by
Ap(X) the space of p-forms. We have A0(X) = C∞(X).

A 1-form is called holomorphic if all its components ωϕ are holomorphic. It
is enough to demand this for an atlas of analytic charts, since the transform of
a holomorphic 1-form by a holomorphic transformation is holomorphic again.
(Here we make use of the fact that we have a Riemann surface and not only
a differentiable surface in the sense of real analysis). We denote by Ω(X) the
space of holomorphic 1-forms.

Another obvious property of holomorphic transformations is that it pre-
serves the type A0,1 and A0,1. This also follows from the Cauchy Riemann dif-
ferential equations. Hence we can define A0,1(X) and A1,0(X) for a Riemann
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surface componentwise. The operations d and ∂ commute with holomorphic
transformations. Hence we can define operators

d : C∞(X) −→ A1(X), d : A1(X) −→ A2(X),
∂̄ : C∞(X) −→ A0,1(X), ∂̄ : A1,0(X) −→ A2(X)

also componentwise (for example d(ω)ϕ := d(ωϕ).)

Also the exterior product generalizes to Riemann surfaces via charts.

Sheaves of differential forms

If one attaches to each open subset U of a Riemann surface the various spaces
of differential forms one obtains sheaves which we denote by Ap

X , A0,1
X , A1,0

X ,
ΩX . We also obtain sequences of sheaves:

0 −→ CX −→ C∞
X −→ A1

X −→ A2
X −→ 0,

0 −→ OX −→ C∞
X −→ A0,1

X −→ 0,

0 −→ ΩX
inclusion−→ A1,0

X −→ A2
X −→ 0.

The Lemma of Poincaré 7.1 and the Lemma of Dolbeault 7.2 imply that these
sequences of sheaves are exact. Hence we obtain the following two theorems:

7.3 Theorem of de Rham. Let X be a connected Riemann surface. Then

H0(X,C) = C, H1(X,C) =
Kernel(A1(X) −→ A2(X))

Image(C∞(X) −→ A1(X))

H2(X,C) =
A2(X)

Image(A1(X) −→ A2(X))
, Hq(X,C) = 0 for q > 2

7.4 Theorem of Dolbeault. Let X be a connected Riemann surface. Then

H1(X,OX) =
A0,1(X)

Image(C∞(X) −→ A0,1(X))
, Hq(X,OX) = 0 for q > 1.

and

H1(X,ΩX) =
A2(X)

Image(A0,1(X) −→ A2(X))
, Hq(X,ΩX) = 0 for q > 1.

Who is familiar with alternating differential forms in arbitrary dimensions will know
the sequence

0 −→ R −→ A0
X −→ A1

X −→ · · · −→ An
X −→ 0.

Here X is a differentiable manifold of dimension n and Ai
X denotes the sheaf of

alternating differential forms of degree i. The general Lemma of Poincaré states that
one gets an exact sequence if one takes global sections on an open subset which is
diffeomorphic to an open convex domain in Rn. Hence this sequence is an acyclic
resolution of RX for arbitrary X. We obtain
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Theorem of de Rham. For a differentiable manifold X on has

dimHi(X,CX) ∼=
Kern(Ai(X) −→ Ai+1(X))

Image((Ai−1(X) −→ Ai(X))
.

TdR

The Stokes formula

We explain shortly the integration of differential forms. If ω = f1dx + f2dy
is a 1-form on an open set V ⊂ C and α : [0, 1] → U a smooth (=infinitely
differentiable) curve, α = α1 + iα2, then one defines

∫

α

ω :=

∫ 1

0

(
f1(α(t))α

′
1(t) + f2(α(t))α

′
2(t)

)
dt.

When γ : U → V is a a diffeomorphism then

∫

α

ω =

∫

α◦γ

γ∗ω.

This allows us to generalize this to Riemann surfaces: Let ω ∈ A1(X) and
α : [0, 1] → X a smooth curve. (It is clear how to define smoothness for α. One
uses charts.) Then one can define

∫
α
ω. One divides α in pieces which lie in

analytic charts. Then one uses the local formula. Because of the transformation
invariance this is independent of the choice of the charts.

Similarly one defines the integral of a two-form ω. In the local case of an
open subset V ⊂ C one takes for

∫

V

f(z)dx ∧ dy

the usual 2-dimensional integral of f (if it exists). Again we need transforma-
tion invariance. If γ : U → V is a diffeomorphism then

∫

α

ω =

∫

α◦γ

γ∗ω

only holds if the (real) Jacobi determinant of γ is positive. When γ is biholo-
morphic, this is automatically the case, since the real Jacobi determinant of
γ is |γ′|2. This is an important fact because otherwise we could not integrate
2-forms on Riemann surfaces. We want to keep it in mind:
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7.5 Proposition. Riemann surfaces are oriented in the following sense: The
chart change map of two analytic charts has positive real Jacobi determinant.

If ω is a 2-form on X which vanishes outside a chart ϕ then we can define

∫

X

ω :=

∫

Vϕ

ωϕ.

The general case is reduced to this one by means of a partition of unity. Now
we can formulate the formula of Stokes:

7.6 Theorem of Stokes. Let U ⊂ X an open subset of a Riemann surface
with compact closure. Assume that the boundary of U is the union of a finite
number of (the images of) closed double point free regular curves αi : [0, 1] → X,
1 ≤ i ≤ n. Assume furthermore that U is on the left of these curves. Then for
every one-form ω on X ∫

U

dω =
n∑

i=1

∫

αi

ω.

We recall that a closed curve α is called double point free if α(t) = α(t′) if
only for t, t′ ∈ {0, 1}. Regular means α′(t) 6= 0 for all t in case of a plain curve
α : [0, 1] → C. The general case is reduced to that one by means of charts. An
open subset U ⊂ C is called to the left of a regular curve α if for every t the
following condition is satisfied. Consider the two vectors of norm 1 which are
orthogonal to the tangent vector α′(t). Call n+ the one which goes to the right
(this makes sense in the plane) and n− the other one. Then there exists ε > 0
such that for all 0 ≤ s ≤ ε

α(t) + sn− ∈ U, α(t) + sn+ /∈ U.

This can be generalized to open subsets U in a Riemann surface by means of
analytic charts. One has to use 7.5.

The residue theorem on compact Riemann surfaces

Recall that a holomorphic differential (=1-form) on a Riemann surface is a
collection fϕ(z)dz, where fϕ is a holomorphic function fϕ : Vϕ → C for every
analytic chart (an atlas of analytic charts is enough) such that for two charts
ϕ,ψ with chart change map γ the transformation formula

fψ(γz) = γ′(z)fϕ(z)

holds. Instead of holomorphic functions one can take meromorphic functions.
This leads to the notion of a meromorphic differential on a Riemann surface.



§7. Differential forms 65

We recall the following residue formula from complex calculus: Let γ : U →
V be a biholomorphic map of open subsets U, V ⊂ C. Let f : V → C be a
holomorphic function and a ∈ U . Then

Res(f(w), γ(a)) = Res(γ′(z)f(γz), a).

It is an important fact that the factor γ′(z) occurs. This means that it makes
no sense to talk about residues of meromorphic functions on Riemann surfaces.
But for a meromorphic differential ω the definition

Res(ω, a) := Res(ωϕ, ϕ(a)) (a ∈ Uϕ)

makes sense since it is independent of the choice of a chart.

7.7 Residue theorem. Let ω be a meromorphic differential on a compact
Riemann surface. Then ∑

a∈X

Res(ω; a) = 0.

The sum is of course a finite sum. For the proof we take for each pole a a small
neighborhood U(a) such that the closures of two different are disjoint and such
that the boundaries are nice (take disks with respect to charts). Then we apply
the Stokes formula to the set

U = X −
⋃

a

U(a).

Since ω is holomorphic we have dω = 0. It follows
∑

a

∫

∂U(a)

ω = 0.

This proves 7.7. ⊔⊓
If f is a non-vanishing meromorphic function on a connected Riemann sur-

face, then we can consider the meromorphic differential df/f . From the formula

Res
(df
f
; a
)
= Ord(f, a)

follows:

7.8 Remark. Let f be a non-constant meromorphic function on a connected
compact Riemann surface. The number of poles and zeros – counted with mul-
tiplicity – is the same.

This remark can also be proved without residue theorem. In Sect. 5 (Proposi-
tion 5.5.8) we have seen that this result has a merely topological background.

7.9 Remark. Every holomorphic function on a connected compact Riemann
surface is constant.

This follows from Remark 7.8, but it follows also already form the maximum
principle of complex calculus.
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1. Generalities about vector bundles

In the following we assume that the considered Riemann surfaces are connected.

1.1 Definition. A vector bundle on a Riemann surface X is a locally free
OX-module, i.e. a OX module such that every point admits an open neighbor-
hood such that M|U is isomorphic to (OX |U)n for some integer n ≥ 0. If n
can be taken to be 1, then M is called a line bundle.

When n is the same for all U , for example when X is connected, we call n then
the rank of M. Hence line bundles are vector bundles of rank 1.

We give a basic example for a line bundle. A divisor on a Riemann surface
is a map D : X → Z such that D(a) = 0 outside a discrete set. We are mainly
interested in compact surfaces. Then this means that D(a) = 0 outside a finite
set. We write D as formal linear combination

D =
∑

a∈X

D(a)a.

The set of all divisors is an additive group Div(X) (componentwise addition).
To every meromorphic function which is not zero on a component, we associate
the so-called principal divisor (f).

(f)(a) = Ord(f, a).

From the formula (fg) = (f)+(g) follows that the set of all principal divisors is
a subgroup H(X) ⊂ Div(X). The elements of the factor group Div(X)/H(X)
are called divisor classes. Let f be a meromorphic function on some open
subset U . The notation

(f)(a) ≥ n (a ∈ X, n ∈ Z)

means that Ord(f, a) ≥ n if f doesn’t vanish in a neighborhood of a. Hence
(f)(a) ≥ n is always true if f = 0 in a neighborhood of a. Let D be a divisor
on X. We write (f) ≥ D if (f)(a) ≥ D(a) for all a. Now we associate to a
divisor D on X the following sheaf.

OD(U) :=
{
f : U → C̄ meromorphic, (f) ≥ −D

}
.
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Clearly OD is an OX -module. We claim that it is a line bundle: let U be a
sufficiently small neighborhood of a given point. Then there exists a meromor-
phic function g whose divisor on U coincides with −D. One simply has to take
U so small that it is in the domain of definition of a chart and that at most
one a ∈ U with D(a) 6= 0 exists. The map

OX(U)
∼−→ OD(U), f 7−→ gf,

then is an isomorphism. Since U can be replaced by smaller open subsets, we
obtain OD|U ∼= OX |U .

Two line bundles are called isomorphic if they are isomorphic asOX -module.

1.2 Proposition. Let X be a Riemann surface. Two divisors D and D′

are in the same divisor class, if and only if the line bundles OD and OD′ are
isomorphic.

Proof. We use the following trivial algebraic fact. Every homomorphism
f :M → N between R-modules which are isomorphic to R is given by multipli-
cation with some element form R. From this follows easily: let OD → OD′ be
an isomorphism of line bundles. Then each point admits an open neighbour-
hood U and a meromorphic function fU : U → C̄, such that OD|U → OD′ |U
is given by multiplication with fU . The functions fU glue to a meromorphic
function f on X. We have D′ = D + (f). ⊔⊓

If D is a divisor on a compact Riemann surface, then the degree

deg(D) =
∑

a∈X

D(a)

is defined. As we know, the degree of a principal divisor is zero. Hence degD
only depends on the divisor class. This enables us to define:

1.3 Remark. Let L be a line bundle on a compact Riemann surface. Assume
that there exists a divisor D such that L ∼= OD. The degree

degL := degD

does not depend on the choice of D.

Let M, N be two OX -modules. We denote by HomOX
(M,N ) the set of all

OX -linear maps M → N . This is an OX(X)-module. More generally, we can
consider for every open U ⊂ X

U 7−→ HomOX |U (M|U,N|U).

It is clear that this is presheaf. It is easy to check that it is actually a sheaf
and moreover an OX -module. We denote it by

HomOX
(M,N ).
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We denote by the OX(U)p×q the set of all p × q-matrices with entries from
OX(U). This is a free OX -module. There is an obvious natural isomorphism

HomOX
(Op

X ,Oq
X) ∼= Op×q

X .

Hence HomOX
(M,N ) is a vector bundle if M and N is a vector bundle. It is

a line bundle if both are line bundles. The dual bundle of a vector bundle M
is

M∗ := HomOX
(M,OX).

It has the same rank as M.

There is another construction which rests on the tensor-product of modules.
Let M, N be two OX -modules. The assignment

U 7−→ M(U)⊗OX(U) N (U)

defines a presheaf. This is usually not a sheaf. Hence we consider the generated
sheaf and call it by M⊗OX

N . Clearly this is an OX -module. The notion of
an OX -bilinear map M×N → P for OX -modules M,N ,P and the following
universal property should be clear. For an OX -bilinear map M × N → P of
OX -modules there exist a unique commutative diagram

M×N //

##●
●●

●●
●●

●●
M⊗OX

N

zzttt
tt
tt
tt
t

P

with an OX -linear map M⊗OX
N → P.

One also has On
X ⊗OX

Om
X

∼= On×m
X . Since the construction of the tensor

product is compatible with the restriction to open subsets,

(M⊗OX
N )|U ∼= M|U ⊗OX |U N|U,

we obtain that the tensor product of two vector bundles is a vector bundle and
moreover, the tensor product of two line bundles is a line bundle.

WhenM is an R-module andM∗ = HomR(M,R) its dual, one has a natural
bilinear map M ×M∗ −→ R, (a, l) 7→ l(a). This induces a linear map M ⊗R
M∗ → R. Sheafifying we get an OX -bilinear map

M⊗OX
M∗ −→ OX .

Clearly this is an isomorphism when M is a line-bundle.

We denote by [L] the class of all line bundles which are isomorphic to L. We
denote be Pic(X) (Picard group) the set of all isomorphy classes of line-bundles.



§2. The finiteness theorem 69

Since constructions as the “set of sets” are forbidden in set theory, there seems to

be a logical difficulty. But this is not really there because one can easily prove that

there exists a set of line-bundles such that every line bundle is isomorphic to one of

this set.

We define the tensor product in Pic(X) by

[L]⊗ [L′] := [L ⊗OX
L′].

This is clearly well-defined. We notice that this product is associative and
commutative.

The element [OX ] is neutral element in Pic(X). Finally we notice that
[L]⊗ [L∗] = [OX ]. Hence every element of Pic(X) has an inverse.

1.4 Remark. The set Pic(X) of isomorphy classes of line bundles is an
abelian group under the tensor product.

This group is called the Picard groupPicard group of.

2. The finiteness theorem

We introduce the notion of a coherent sheaf.

2.1 Definition. An OX-module M on a Riemann surface X is called a
skyscraper sheaf if Ma is zero for all a outside a discrete set and if Ma is a
finite dimensional complex vector space for all a.

The skyscraper sheaf is determined by the stalks:

2.2 Remark. For a skyscraper sheaf the natural map

M(X)
∼−→

∏

a∈X

Ma

is an isomorphism.

Proof. The map is injective because M is a sheaf. To prove the surjectivity,
we consider the discrete set S of all a with Ma 6= 0. Let (sa) ∈ ∏Ma. We
choose for each a ∈ X an open neighborhood U(a) such that U(a) ∩ S is {a}
or empty and such that sa can be represented by a section sU(a) ∈ M(U(a)).
This sections and the zero section on X − S glue to a global section. ⊔⊓

The notion of a “coherent sheaf” includes skyscraper sheafs and vector
bundles.
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2.3 Definition. A coherent sheaf on a Riemann surface is an OX-module
such that there exists an exact sequence

0 −→ W −→ M −→ N −→ 0

with a skyscraper sheaf W and a vector bundle N .

An element of r of a ring R is called a zero divisor if multiplication by r is not
an injective map R → R. An element a of an R-module M is called a torsion
element if there exists a non-zero divisor r ∈ R such that ra = 0. The set of
all torsion elements is the torsion submodule M tor.

2.4 Lemma. Let

0 −→ Wa −→ Ma −→ Na −→ 0

be an exact sequence as in Definition 2.3. Then Wa is the torsion sub-module
of Ma.

Proof. It is helpful to make use of some very simple structure theory of algebra.
Recall that an R-sub-module a of a ring R is called an ideal in R. If a is an
element of R then Ra is an ideal and such an ideal is called a principal ideal.
A ring is called principal ideal ring if every ideal is a principal ideal.

We are interested in the ring C{z} of all convergent power series in one
variable. If a is a point of a Riemann surface, then OX,a is isomorphic to
C{z}. From the point of view of algebra, the ring C{z} is an extremely simple
ring. Every ideal is a principal ideal which is generated by zn for a suitable
integer n ≥ 0. A known result of algebra states that every finitely generated
moduleM over a principal ideal ring R is isomorphic to the finite direct product
of modules of the type R/a.

Since Wa is a finite dimensional vector space, the structure theorem shows
that all its elements are torsion elements. Hence it is contained in Mtor

a . Con-
versely every torsion element of Ma maps to 0, since Na is torsion free. This
proves Lemma 2.4. ⊔⊓

Lemma 2.4 implies that “coherence” is a local property:

Let (Ui) be an open covering. An OX module M is coherent if and only if all
M|Ui are coherent.

2.5 Theorem. Let M be a coherent sheaf on a compact Riemann surface.
Then:

a) Hn(X,M) is finite dimensional for all n.
b) Hn(X,M) = 0 for n > 1.
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Proof. Skyscraper sheaves are flabby. The statement is clear in this case. Hence
we can restrict to vector bundles:

First we show the vanishing statement b). We will use the Dolbeault com-
plex 0 → OX → A0

X → A0,1
X → 0. We know that this is an exact sequence

(Lemma of Dolbeault V.7.2). The essential point is that ∂̄ : A0
X → A0,1

X is
OX -linear. This comes from the fact that ∂̄f = 0 for holomorphic functions.
Hence we can consider the Dolbeault complex as sequence of OX -modules and
we can tensor it with M. The sequence

0 −→ M −→ A0
X ⊗OX

M → A0,1 ⊗OX
M → 0

remains of course exact. Since A
.
X ⊗OX

M carries a natural structure as C∞
X -

module we have an acyclic resolution of M (Proposition V.3.2). The long exact
cohomology sequence gives Hi(X,M) = 0 for i > 1.

Next we prove the finiteness of H0(X,M). We choose a finite open covering
U = (Ui) such that each Ui has compact closure and that it is biholomorphic
equivalent to a disk in the plane. This is possible since X is compact. We can
take the Ui so small that M|Ui is free. We choose a trivialization M|Ui ∼= On

Ui
.

We choose open subsets Vi ⊂ Ui whose closure (taken in X) is contained in
Ui and such that V = (Vi) is still a covering of X. We can assume that
all Vi are biholomorphic equivalent to disks. By means of the isomorphism
M(Ui) ∼= O(Ui)

n we can equip M(Ui) with a structure as a Frèchet space.
Here we use Remark I.7.4 and the trivial fact that a finite direct product of
Frèchet spaces is Frèchet space (Remark I.7.2). In particular,

∏
iM(Ui) also

carries a structure as Frèchet space. We can consider M(X) as a (closed)
subspace of this space. A closed subspace of a Frèchet space is also a Frèchet
space (Remark I.7.2). Hence M(X) is a Frèchet space too. We can repeat
this with the covering V. It is easy to see that both Frèchet structures on
M(X) are the same. From Montel’s theorem (in the form of Proposition I.7.8)
follows that the identity map M(X) → M(X) is compact. From Corollary
I.7.7 follows that M(X) is finite dimensional.

Next we prove the finiteness of H1(X,M). From Leray’s lemma 4.3.6 we
know

H1(X,M) = Ȟ1(U,M) = Ȟ1(V,M).

We consider the space of Čech cocycles C1(U,M). This is a closed subspace of∏
ijM(Ui ∩ Uj) and hence a Frèchet space. The same is true for C1(V,M).

The natural restriction operator

r : C1(U,M) −→ C1(V,M)

is a compact operator by Montel’s theorem (in the form of Proposition I.7.8).
Now we consider the map

C1(U,M)×
∏

i

M(Vi) −→ C1(V,M),

(A, (si)) 7−→ r(A) + δ((si)).
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This map is a continuous surjective linear map of Frèchet spaces. It differs
from the map

C1(U,M)×
∏

i

M(Vi) −→ C1(V,M),

(A, (si)) 7−→ δ((si)).

only by a compact operator (essentially r). By the Schwartz theorem I.7.6 this
map has a finite dimensional cokernel. But the cokernel is Ȟ1(V,M). ⊔⊓

3. The Picard group

In section 1 we introduced the Picard group Pic(X), i.e. the group of iso-
morphism classes of line bundles. We want to compare it with the group
Div(X)/H(X) of divisor classes. Recall that we associated to a divisor D on a
Riemann surface X a line bundle OD. For two divisors D,D′ there is a natural
OX -bilinear multiplication map

OD ×OD′ −→ OD+D′ .

It is clear that the induced homomorphism

OD ⊗OX
OD′ −→ OD+D′

is an isomorphism. Hence we get a homomorphism Div(X) → Pic(X). Since
principal divisors are in the kernel (Proposition 1.2) we get a homomorphism
of the group of divisor classes into Pic(X). This homomorphism is injective
(1.2). We claim more:

3.1 Proposition. Let X be a compact Riemann surface. The natural homo-
morphism

Div(X)/H(X)
∼−→ Pic(X)

is an isomorphism.

The proof is non-trivial and will use the finiteness theorem. We will use twists
of sheaves. The twist of a coherent sheaf M with a line bundle L simply is
M⊗OX

L. We will use a very special twist. For the rest of the section we fix
a point a ∈ X. For an integer n we consider the divisor (a)

(a)(x) =
{
1 for x = a,
0 elswhere.

We denote by O(n) the associated line bundle and by M(n) the twist of M
with O(n). (This construction depends on the choice of a.)
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Next we use the natural inclusion O(n) →֒ O(n + 1). It induces M(n) →֒
M(n+1). We assume now for simplicity that M is a vector bundle. Then this
map is injective and we have an exact sequence

0 −→ M(n) −→ M(n+ 1) −→ W(n) −→ 0

with a skyscraper sheaf W(n). From the exact cohomology sequence we get
that H1(X,M(n)) → H1(X,M(n+1)) is surjective. By the finiteness theorem
these are finite dimensional vector spaces. The dimension dn of H1(X,M(n))
gives a decreasing sequence of non-negative integers. This must be constant
for big n. Hence we get:

3.2 Lemma. Let M be a vector bundle on a compact Riemann surface X.
For sufficiently large n the homomorphism

H1(X,M(n)) → H1(X,M(n+ 1))

is an isomorphism

Now we make use of the exact sequence

H0(X,M(n+ 1)) −→ H0(X,W(n)) −→ H1(X,M(n)) −→ H1(X,M(n+ 1)).

For large n the last arrow is an isomorphism, hence H0(X,M(n + 1)) −→
H0(X,W(n)) is surjective. Since H0(X,W(n)) is not zero we get:

3.3 Proposition. Let M be a vector bundle of positive rank on a compact
Riemann surface. Then M(n) admits for large enough n a non-zero global
section.

Taking products, one gets a bilinear map O(−n)×O(n) → OX . More generally
one gets for a vector bundle M a natural map

M×O(−n)×M∗ ×O(n) −→ OX .

This induces an OX -linear map

M(−n)∗ ∼−→ M∗(n).

A local computation shows that this an isomorphism. For suitable (large
enough) n one has a non-zero global section S ∈ H0(X,M(n)). We can use
this section to define a non-zero OX -linear map

M(−n) −→ OX , (a 7−→ S(a)).

Next we need a lemma.
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3.4 Lemma. Let M be a vector bundle on a Riemann surface and M → OX

a non-zero OX-linear map. Then the image is line bundle of the form O−D

with D ≥ 0.

Proof. We can replace X by a small open neighborhood of a given point a.
Hence we may assume that X = U is an open neighborhood of a = 0 in C.
Taking U small enough, we can assume M = Od

U . The map M → OU is given
a system of holomorphic functions f1, . . . , fd ∈ O(U). We can assume that non
of the fi is zero and then that fi = znigi where gi is without zero. Modifying
the map M → OU we reduce to the case gi = 1. Now we see that the image is
znOU , where n is the minimum of the n1, . . . , nd. This proves 3.4. ⊔⊓

The same type of argument gives also information about the kernel. We
can assume n1 ≤ . . . ≤ nd. But then the first component of a section of the
kernel can be computed form the rest. Hence we get that the kernel again is
free. This shows:

3.5 Coherence lemma. Let M → L be an OX-linear map of a vector
bundle into a line bundle (on a Riemann surface). Then the kernel is a vector
bundle too.

We go back to the map M(n) → OX . We know that the image is a line bundle.
Tensoring with O(−n) we obtain:

3.6 Lemma. Every vector bundle M of rank n > 0 sits in an exact sequence
0 → N → M → L → 0, where L is a line bundle and N a vector bundle of
rank n− 1.

The proof shows a little more, namely that this line bundle can be taken in the
form OD for some divisor. Since a vector bundle of rank 0 is zero, we obtain
the proof of Proposition 3.1. ⊔⊓

When we apply Proposition 3.3 to M = OX we get:

3.7 Theorem. Every compact Riemann surface admits a non-constant mero-
morphic function

4. Riemann–Roch

For a vector bundle on a Riemann surface we have defined the rank n =
rank(M). This can be generalized to a coherent sheaf M: There exists a
discrete subset S ⊂ X such that M|(X − S) is a vector bundle. We define
rank(M) := rank(M|(X − S)). The rank of a skyscraper sheaf is 0.
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4.1 Remark. For a short exact sequence of coherent sheaves

0 −→ M1 −→ M2 −→ M3 −→ 0

one has
rank(M2) = rank(M1) + rank(M3).

Proof. One has to use the following. Assume that R is an integral domain and

0 −→ Rm −→ Rn −→ Rp −→ 0

an exact sequence of R-modules. Then n = m + p. This is well-known from
linear algebra when R is a field and can be reduced to this case by imbedding
R into a field. ⊔⊓

There are other quantities, which have the additive property as in 4.1. For
a coherent sheaf we define

χ(M) =
∑

i

(−1)i dimHi(X,M) = dimH0(X,M)− dimH1(X,M).

in analogy to 4.1 we have:

4.2 Remark. For a short exact sequence of coherent sheaves

0 −→ M1 −→ M2 −→ M3 −→ 0

one has
χ(M2) = χ(M1) + χ(M3).

Proof. One has to use the long exact cohomology sequence and the following
simple result of linear algebra: Let

0 −→ V1 −→ · · · −→ Vn −→ 0

en exact sequence of finite-dimensional vector spaces, then

n∑

i=1

(−1)i dimVi = 0. ⊔⊓

4.3 Theorem. Let X be a compact Riemann surface. There exists a unique
function which associates to an arbitrary coherent sheaf M on X a non-negative
integer degM such that the following properties are satisfied:

1) degM depends only on the isomorphy class of M.
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2) For a skyscraper sheaf W

deg(W) =
∑

a∈X

dimWa.

3) If D is a divisor and OD the associated line-bundle then

deg(OD) = degD.

4. For a short exact sequence of coherent sheaves

0 −→ M1 −→ M2 −→ M3 −→ 0

one has
deg(M2) = deg(M1) + deg(M3).

We will prove this together with the

4.4 Riemann–Roch theorem. Let M be a coherent sheaf on a compact
Riemann surface X. Then

χ(M) = deg(M) + rank(M)(1− g).

Corollary. dimH0(X,M) ≥ deg(M) + rank(M)(1− g).

So far, the degree has been defined for skyscraper sheaves. The Riemann–
Roch theorem is trivial in this case. Since the rank of a skyscraper sheaf is 0
it reduces to the equation dimM(X) = degM which follows from 2.2.

The Riemann–Roch theorem is also trivial for OX , since

χ(OX) = dimH0(X,OX)− dimH1(OX) = 1− g.

Next we prove the Riemann–Roch theorem for a divisor D. We add to the
divisor D a point divisor (a). (This divisor is 1 in a and 0 elsewhere). We have
an exact sequence

0 −→ OD −→ OD+(a) −→ W −→ 0

with a skyscraper sheaf W. Since we have deg(D + (a)) = deg(D) + deg(W),
the Riemann–Roch theorem holds for OD if and only if it holds for OD+(a).
Adding and subtracting point divisors one can reduce the case of an arbitray
D to the zero divisor in a finite number of steps. But for the zero divisor
(L = OX) Riemann–Roch has been proved.

We now make a little trick. We define deg(M) by the Riemann–Roch
formula. For skyscraper sheaves and for line bundles this coincides with the
definition we gave already. But also 4) in 4.3 is true since additivity holds
for χ and rank. The uniqueness of deg with the properties 1)-4) follows from
3.1 and 3.6. This proves the existence of the degree and the Riemann–Roch
theorem. ⊔⊓
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4.5 Lemma. Let M,N be a two vector bundles, then

deg(M⊗OX
N ) = degM · rankN + degN · rankM.

Let M, N be two vector bundles than

deg(HomOX
(M,N )) = degN − degM.

Proof. For line bundles the statements are clear. The general case can be
reduced to this one by induction on the ranks using exact sequences of the
type as 0 → M1 −→ M −→ L −→ 0 where L is a line bundle (Lemma 3.6).

⊔⊓
There is another useful formula. Since we will not use it, we keep short:

Let M be a vector bundle of rank n. One can define
∧pM as the sheaf of

OX -multilinear alternating forms M∗ × · · · ×M∗ → OX (n-copies). It should
be clear what this means. In the case p = n one obtains a line bundle which
sometimes is called the determinant of M.

4.6 Remark. A vector bundle and its determinant have the same degree.

We indicate the proof. If 0 → M1 → M2 → M3 → 0 is a short exact
sequence, then the determinant of M2 and M1 × M3 are isomorphic. This
allows to reduce the statement to the case where M = L1×· · ·×Ln is product
of line bundles. But then the determinant equals L1 ⊗ · · · ⊗ Ln. ⊔⊓

5. A residue map

In this section X is a compact (and connected) Riemann surface. We now have
to make use of the sheaf ΩX of holomorphic differentials. For sake of simplicity
we well write O = OX , Ω = ΩX . Basic will be the

”
residue map“

Res : H1(X,Ω) −→ C.

5.1 Remark and first definition of the residue map. Consider the exact
sequence

0 −→ Ω −→ A1,0 ∂−→ A2 −→ 0

and the resulting isomorphism

H1(X,Ω) ∼= A2(X)/∂A1,0.

For an ξ ∈ H1(X,Ω) consider a representant ω ∈ A2(X). The integral

Res ξ :=
1

2πi

∫

X

ω

is independent of the choice of the representant ω.
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The independence follows from Stokes’ theorem
∫
X
dω = 0. Notice that on the

level of A1,0 we have ∂ = d. ⊔⊓
We come to another property which justifies the notation “residue”. For

this we consider the sheaf M of meromorphic 1-forms and the exact sequence

0 −→ Ω −→ M −→ M/Ω −→ 0.

This induces the map

H0(X,M/Ω)
δ−→ H1(X,Ω).

We define now a residue map

Res : H0(X,M/Ω) −→ C.

Recall that the elements of (M/Ω)(X) are families (ωa)a∈X , ω ∈ Ma/Oa,
which locally fit together. This means that there exists an open covering U =
(Ui) and meromorphic differentials ωi ∈ M(Ui), which represent the ωa for all
a ∈ Ui. The differences ωi − ωj are holomorphic in Ui ∩ Uj . Hence the residue
Res(ωa, a) is well defined.

5.2 Remark and second definition of the residue. There is a natural
linear map

Res : H0(X,M/Ω) −→ C,

which can be defined as

Res((ωa)) =
∑

a∈X

Res(ωa, a).

Both definitions of the residue are related:

5.3 Proposition. The diagram

H0(X,M/Ω)
δ //

Res
%%❑❑

❑❑
❑❑

❑❑
❑❑

❑
H1(X,Ω)

Res
zz✈✈
✈✈
✈✈
✈✈
✈

C

commutes.
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Proof. We start with an element from H0(X,M/Ω). As we have seen there
exists an open covering (Ui) and meromorphic differentials ωi on Ui, such that
ωij := ωi − ωj is holomorphic on Ui ∩ Uj . The family ωij is a Čech cocycle
with coefficients in Ω and defines an element of H1(X,Ω). This is the image of
(ωi) ∈ H0(X,M/Ω) under the combining map δ : H0(X,M/Ω) −→ H1(X,Ω).
We can consider the forms (ωij) also as a Čech-cocycle of A1,0. Since the first
cohomology of this sheaf vanishes there exist elements ηi ∈ A1,0(Ui) such that

ηi − ηj = ωij (= ωi − ωj)

The advantage of the ηi compared to the ωi is that they have no poles in Ui.
The prize which we have to pay is that they are not holomorphic. Since ωi−ωj
is holomorphic we have dωi = dωj and hence dηi = dηj on Ui ∩ Uj . Hence
the dηi glue to a differential ω ∈ A2(X). This defines a cohomology class in
H1(X,Ω) = A2(X)/∂A1,0. One can check (we leave this to the reader) that
this cohomology class corresponds to the cocycle (ωij).

We have to compute
∫
X
ω and to relate it to the residues of (ωi). Hence

we consider the finite set of poles S. The differences ηi − ωi are smooth on
X ′ = X − S and glue to a differential η ∈ A1,0(X ′). We have dη = −ω on X ′.
Hence dη (but not η) has a smooth extension to X.

We now consider the integral
∫
X
ω. We cut out the disk of radius ε around

each a ∈ S (with respect to some chart) and denote the complement of the
disks by X(ε). We have ∫

X

ω = lim
ε→0

∫

X(ε)

ω.

Now Stokes’ formula applies and gives

∫

X(ε)

ω =
∑

a∈S

∮

α

η,

where α denotes a small circle around a (mathematically negative orientation).

The proof of Proposition 5.3 will be complete if we show

lim
ε→0

∮

α

η = 2πi Resωi (a ∈ Ui).

Here we have chosen i such that a ∈ Ui. On a small punctured neighborhood
of a we have η = ηi − ωi. Since the integral of −ωi produces the residue, it
remains to show

lim
ε→0

∮

α

ηi = 0.

But this is clear since ηi is smooth on Ui (including a). ⊔⊓
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5.4 Proposition. The residue map H1(X,Ω) → C is different from zero.

Proof. Because of 5.3 it is sufficient to show that the map H0(X,M/Ω) → C

is not zero. For this one takes a point a ∈ X and a meromorphic differential
ω1 on a small open neighborhood U1 which has a simple pole at a and no other
pole. Then we consider the zero form ω2 on U2 = X −{a}. Both together glue
to a global section of M/Ω. Its residue is different from 0. ⊔⊓

6. Serre duality

Let M be a vector bundle on the compact Riemann surface X. We consider
the vector bundle Hom(M,Ω). There is a natural OX -bilinear map

M×Hom(M,Ω) −→ Ω.

Locally it is given by (m, l) 7→ l(m). For a fixed global section fromHom(M,Ω)
this induces a map

M −→ Ω.

Taking cohomology we get a map

H1(X,M) −→ H1(X,Ω).

Varying the global section we get a bilinear map

H0(X,Hom(M,Ω))×H1(X,M) −→ H1(X,Ω).

Combining it with the residue map we get

H0(X,Hom(M,Ω))×H1(X,M) −→ C.

This can be considered as a linear map

H0(X,Hom(M,Ω)) −→ H1(X,M)∗

where V ∗ denotes the dual of a vector space (V ∗ = HomC (V,C)). We call this
map the duality map.

6.1 Serre duality. For a vector bundle M on a compact Riemann surface
the duality map

H0(X,Hom(M,Ω)) −→ H1(X,M)∗

is an isomorphism.

Corollary. dimH1(X,M) = dimH0(X,Hom(M,Ω)).
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Proof. In a first step we prove the injectivity of the duality map. Let f : M −→
Ω be a non-zero O-linear map. We have to show that its image in H1(X,M)∗

is not zero. For this, we use the sequence

0 −→ Kernel(f) −→ M −→ f(M) −→ 0.

We know that f(M) and Kernel(f) are vector bundles (see Lemma 3.4 and the
Coherence Lemma 3.5). Since f is non-trivial, f(M) is a line bundle. Since
H2(X,Kernel(f)) = 0 we get, that H1(X,M) → H1(X, f(M)) is surjective.

Now we use the sequence

0 −→ f(M) −→ Ω −→ f(M)/Ω −→ 0.

Since f(M)/Ω is a skyscraper sheaf, its first cohomology group vanishes and
we get the surjectivity of H1(X, f(M)) → H1(X,Ω). As a consequence, the
composition H1(M) −→ H1(Ω) is surjective. Because of Proposition 5.4 the
composition with the residue map H1(M) → C is non-zero. It is easy to check
that this is the image of f under the duality map. So we have shown that the
image of f under the duality map is not 0. This proves the injectivity of the
duality map. ⊔⊓

Next we will proof the surjectivity of the duality map. This is more in-
volved, since it needs some control that H1(X,M) is not to big. The idea
is to consider twists M(−n). Recall that to define M(−n), one has to
choose a point a and then to consider the divisor −n(a) which is concen-
trated on a with multiplicity −n. The associated line bundle O(−n) is con-
tained in O when n ≥ 0. Hence M(−n) can be considered as subsheaf of
M for n ≥ 0. Especially dimH0(X,M(−n)) ≤ dimH0(X,M). We use
the formula deg(M(−n)) = deg(M) − n · rankM (Lemma 4.5). Of course
rank(M) = rank(M(n)). Hence Riemann–Roch gives

dimH1(X,M(−n)) =dimH0(X,M(−n)) + n · rankM
− deg(M) + rank(M)(1− g).

As we have seen, dimH0(X,M(−n)) is bounded for n > 0.

6.2 Lemma. For n→ ∞ the asymptotic formula

dimH1(X,M(−n)) = n · rankM+O(1)

holds.

Similarly we get the asymptotic behavior of dimH0(X,Hom(M(−n),Ω)). By
Lemma 4.5 one has degHom(M(−n),Ω) = nrankM − degM + deg(Ω). The
inclusion M(−n) →֒ M gives a surjection Hom(M,Ω) → Hom(M(−n),Ω) and
this induces a surjection in the first cohomology (vanishing of H2). We get
the boundedness of dimH1(X,Hom(M(−n),Ω)). Now Riemann–Roch shows
the following asymptotic formula which, together with Lemma 6.2, can be
considered as a weak form of the duality theorem.
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6.3 Lemma. For n→ ∞ the asymptotic formula

dimH0(X,Hom(M(−n),Ω)) = n · rankM+O(1)

holds.

Rge following asymptotic formula can be proved in the same way.

6.4 Lemma. For n→ ∞ the asymptotic formula

dimH0(X,O(n)) = n+O(1)

holds.

Next we have to investigate the behavior of the duality map under twisting.
From the exact sequence 0 → M(−1) → M → M/M(−1) → 0 we obtain the
exact sequence

H0(X,M/M(−1)) −→ H1(X,M) −→ H1(X,M(−1)).

Dualizing gives the sequence

H1(X,M(−1))∗ −→ H1(X,M)∗ −→ (Ma/M(−1)a)
∗

We have to construct a second sequence: the imbedding M(−1) ⊂ M gives a
map

HomO(M,Ω) −→ HomO(M(−1),Ω).

Next we use the fact that an O-linear map of O-modules M1 → M2 induces
a natural map M1 ⊗O L → M2 ⊗O L. We can read this as an isomorphism
Hom(M1,M2) ∼= Hom(M1 ⊗O L,M2 ⊗O L). In particular, we can identify

HomO(M(−1),Ω) = HomO(M,Ω(1)).

LetM′ be the sheaf of meromorphic differentials which are holomorphic outside
a and have possibly in a a pole of order at most one. There is an obvious
isomorphism Ω(1) → M′ which sends ω⊗ f to fω. The residue map M′

a → C

induces a map Ω(1)a → C.

Let ϕ : M(−1) → Ω be anO-linear map. As we mentioned, this corresponds
to a map ϕ : M → Ω(1). It induces a map Ma → Ω(1)a. We can combine it
with the residue map above to produce a map ϕ : Ma → C. This map is zero
on Ma(−1). Hence it induces a linear map ϕ : Ma/M(−1)a → C. We can
read this construction as a map

H0(X,HomO(M(−1),Ω) −→ (Ma/M(−1)a)
∗.

By means of the natural embedding M → M(−1) we obtain the sequence

H0(X,HomO(M,Ω) −→ H0(X,HomO(M(−1),Ω) −→ (Ma/M(−1)a)
∗

The two framed sequences can be combined to a commutative diagram.
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6.5 Lemma. The diagram

0 // H1(X,M)∗ // H1(X,M(−1))∗ // (Ma/M(−1)a)
∗

0 // H0(X,Hom(M,Ω)) //

OO

H0(X,Hom(M(−1),Ω)) //

OO

(Ma/M(−1)a)
∗

‖

OO

0

OO

0

OO

is commutative. Its lines and columns are exact.

Proof. It is easy to check that the rows are exact. The exactness of the columns
follows from the injectivity of the duality map. ⊔⊓

Let λ ∈ H1(X,M)∗. Our goal is to show that it is contained in the image
of H0(X,Hom(M,Ω)). We make the weaker assumption that the image of λ in
H1(X,M(−1))∗ comes from H0(HomO(M(−1),Ω)). Simple diagram chasing
in Lemma 6.5 shows that then λ itself comes from H0(X,HomO(M,Ω)). We
can apply this several times and obtain the following result.

6.6 Lemma. Let λ ∈ H1(X,M)∗ and D ≥ 0 a divisor. We write M−D :=
M ⊗ O−D. (This is imbedded in M.) Assume that the image of λ under
H1(X,M)∗ →֒ H1(X,M−D)

∗ comes from H0(X,HomO(M−D,Ω)). Then λ
comes from H0(X,HomO(M,Ω)).

We need a last preparation of the proof of the duality theorem. Assume that
a function f ∈ H0(X,O(n)) is given, i.e. a meromorphic function which is
holomorphic outside a ans has in a at most a pole of order n > 0. Multiplication
by f defines a O-linear map f : M(−n) → M. (We considered up to now this
map for f = 1.) This map induces a linear map

f : H1(X,M)∗ −→ H1(X,M(−n))∗.

Now we fix a non-zero element λ ∈ H1(X,M)∗. (Recall that our goal is to
prove that it is in the image of the duality map.) We use it to define the map

H0(X,O(n)) −→ H1(X,M(−n))∗, f 7−→ f(λ).

6.7 Lemma. For non zero λ ∈ H1(X,M(−m))∗, the map

H0(X,O(n)) −→ H1(X,M(−n))∗, f 7−→ f(λ),

is injective.

Proof. We have to show that f(λ) 6= 0 for f 6= 0. This can also be interpreted
as follows. For fixed f 6= 0 the map f : H1(X,M)∗ −→ H1(X,M(−n))∗ is
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injective, or equivalently, the map f : H1(X,M(−n)) −→ H1(X,M) is surjec-
tive. This follows from the long exact cohomology sequence since M/f(M(−n)
is a skyscraper sheaf. ⊔⊓

Now we consider the triangle

H0(X,O(n))
f 7→f(λ)// H1(X,M(−n))∗

H0(Hom(M(−n)),Ω)

OO

We know the both arrows are injective. We use the asymptotic formulas in
the Lemmas 6.2, 6.3 and 6.4. They show that the images of H0(X,O(n))
and H0(Hom(M(−n)),Ω) for large n have a non-zero intersection in the space
H1(X,M(−n)). Therefore, for large n, there must exist a non-zero f ∈
H0(X,O(n)) such that f(λ) is in the image of the vertical arrow (=duality map
for M(−n)). We consider the divisor D = n(a)+(f) with the property D ≥ 0.
Hence M−D is naturally imbedded in M. Multiplication by f gives already
a map f : M−D → M. Hence the map f : H1(X,M)∗ → H1(X,M(−n))∗
factors as

H1(X,M)∗
natural imbedding−→ H1(X,M−D)

∗ f−→ H1(X,M(−n))∗
λ 7−→ λ 7−→ f(λ)

In the same way we get a factorization

H0(X,Hom(M,Ω))
nat. i.−→ H0(X,Hom(M−D,Ω))

f−→ H0(XHom(M(−n),Ω)).

This shows that λ ∈ Hom(M−D,Ω) is contained in the image of the duality
map. Now Lemma 6.6 applies and shows that already λ ∈ Hom(M,Ω) is
contained in the duality map. This completes the proof of the duality theorem.

⊔⊓

7. Some comments on the Riemann–Roch theorem

The Riemann–Roch theorem can now be written in the cohomology free form

dimH0(X,M)− dimH0(X,Hom(M,Ω)) = deg(M) + rank(M)(1− g).

We formulate it in its classical form for divisors. A divisor K is called canonical
if the associated line bundle is isomorphic to Ω. One can get a canonical divisor
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as follows: Let ω be a meromorphic 1-form. It is clear how to associate to ω
a divisor D = (ω) which describes the poles and zeros of ω. This is obviously
a canonical divisor, since the sections of OD are the meromorphic functions f
with the property that fω is holomorphic. This gives an isomorphism OD

∼= Ω.
By the way, a non vanishing meromorphic 1-form exists. One can take one of
the form df , where f is a non-constant meromorphic function, which exists by
Theorem 3.7.

Using the notation

l(D) := H0(X,OD) = dim
{
f meromorphic on X; (f) ≥ −D

}

we now get

7.1 Classical Riemann–Roch. Let D be a divisor on a compact Riemann
surface and let be K a canonical divisor. Then

l(D)− l(K −D) = deg(D) + 1− g.

We consider some special cases: let D be the zero divisor. Then l(D) = 1,
deg(D) = 0 and we obtain a different definition for the genus.

7.2 Theorem. One has dimΩ(X) = g.

We now take D = K in the Riemann–Roch formula. We get g− 1 = deg(D) +
1− g:

7.3 Theorem. The degree of a canonical divisor (or of Ω) is 2g − 2.

If f is a non zero meromorphic function with the property (f) +D ≥ 0, then
deg(D) ≥ 0. Hence l(D) = 0 for deg(D) < 0. Applying this to K −D we get:

7.4 Theorem. Let D be a divisor with deg(D) > 2g − 2. Then

l(D) = deg(D) + 1− g.

Finally we derive a formula which allows to compute the genus. Assume that
f : X → Y is a non-constant holomorphic map of compact Riemann surfaces.
Let a ∈ X. Recall that one can define the multiplicity v(f, a) of f in a. We
call

b(f, a) := v(f, a)− 1

the ramification order. This is zero if and only if f is locally biholmorphic at
a. We denote by

b(f) =
∑

a∈X

b(f, a)

the total ramification order. The sum is of course finite.
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7.5 Riemann–Hurwitz ramification formula. Let f : X → Y a non-
constant holomorphic map of compact Riemann surfaces. Let n be the covering
degree of f (see Proposition V.5.8). Then the following relation between the
genus gX of X and gY of Y holds:

gX = b(f)
2 + n(gY − 1) + 1.

We just give a short hint for the proof. Consider a meromorphic function g on
Y and compare the divisors of the differentials dg on Y and d(g ◦f) on X. Use
Theorem 7.3. ⊔⊓

We treat some simple examples.

1) Since H1(C̄,O) = 0 (Theorem IV.4.7) we have that the genus of the Rie-
mann sphere is zero.

2) A meromorphic differential on C̄ is given by dz. It has pole of order 2 in
∞ (use the chart 1/z and the fact that the derivative of 1/z is −1/z2) and
no further poles or zeros. Hence the degree of the canonical divisor is −2
in concordance with the expression 2g − 2.

3) Consider the map C̄ → C̄, z 7→ z2. There are two ramification points 0,∞
of ramification order 1. The covering degree is 2, the total ramification
number is also 2. The Riemann–Hurwitz formula gives 0 = 1+ 2(0− 1) + 1
which is correct.

4) Consider a complex torus X = C/L. The differential dz on C is invariant
under translations. Hence it gives a holomorphic differential on X. It has
no poles and zeros, hence its degree is zero. From 2g − 2 = 0 we get g = 1.
Hence the genus of a torus is one.

5) Another way to see it is to use the Weierstrass ℘-function. This is holo-
morphic map C/L → C̄ with 4 ramification points (the zeros of ℘′ and
∞). The covering degree is 2, the total ramification number is 4. The
Riemann–Hurwitz formula gives g = 2 + 2(−1) + 1 = 1.

5) At the end of chapter V and section 5, we explained the Riemann surface of
the “function

√
P (z)”, where P is polynomial without multiple zeros. Let

the degree of P be n = 2g+1 or n = 2g+2. We explained that this Riemann
surface is a two fold covering f : X → C̄. The number b of ramification
points (all of order two) turned out to be n ≤ b ≤ n+1. Since we know from
the Riemann–Hurwitz formula 7.5 that the total ramification order is even,
we can conclude that in both cases b = 2g is the correct number. From the
Riemann–Hurwitz formula we get:

The genus of the Riemann surface “
√
P (z)” is g, where where the degree of

P is 2g + 1 or 2g + 2.
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We consider the projection z : X → C̄. Then dz is a meromorphic differen-
tial on X. Recall that

√
P (z) has been defined as a meromorphic function

on X. Hence we can consider the meromorphic differentials on X

zkdz√
P (z)

.

If one goes carefully through the construction of X one can work out when
this differential has no poles. The result is that this is the case if and only
if

0 ≤ k < g.

Since these differentials are linearly independent, by 7.2 they must give a
basis of Ω(X).

The integration of these integrals is a major problem. In the case g = 0
one has so-called circle integrals. The integration is elementary and leads
to the functions sin and cos. The case g = 1 is more involved. The integrals
are called elliptic integrals. Their integration leads to the theory of elliptic
functions. In the language of Riemann surfaces this means that one can
show that X is biholomorphic equivalent to a complex torus C/L and that
every complex torus arises in this way. (The fact that both types have
genus 1 may be considered as a weak hint that this is true.) In the case
g > 1 the integrals are called “hyperelliptic integral” and the corresponding
Riemann surfaces are called hyperelliptic Riemann surfaces. The integration
of hyperelliptic differentials leads deep into the theory of Riemann surfaces.
With their help deep open problems as the Jacobi inversion problem could
be solved.
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1. Harmonic differentials

Recall that a function u on an open subset U ⊂ C is called harmonic if it
satisfies

∆u :=
( ∂2
∂x2

+
∂2

∂y2

)
u = 0.

A function is harmonic if and only if its real and imaginary part are harmonic.
It is known from complex calculus that a real function u is harmonic if and
only if it is locally the real part of an analytic function. This enables a quick
generalization to Riemann surfaces.

1.1 Definition. A real function f on a Riemann surface X is called har-
monic, if every point admits an open neighborhood U such that u can be written
an U as real part of an analytic function fU : U → C. An arbitrary (complex
valued function u is called harmonic if its real and imaginary part are har-
monic.

We also need the notion of a harmonic differential.

1.2 Definition. A differential ω ∈ A1(X) on a Riemann surface is called
harmonic, if every point admits an open neighborhood U such that ω can be
written on U as du with a harmonic function u : U → C.

Analytic functions are also harmonic. Hence we obtain that holomorphic dif-
ferentials are also harmonic.

We define the complex conjugate ω̄ of a differential ω. In coordinates this
is defined as

fdx+ gdy := f̄dx+ ḡdy.

One checks γ∗ω̄ = γ∗ω for arbitrary differential maps. This allows to generalize
complex conjugation on Riemann surfaces via charts. A differential ω is called
real if ω = ω̄. The formula dz = dz̄ shows that complex conjugation defines an
isomorphism

A1,0(X)
∼−→ A0,1(X), ω 7−→ ω̄.
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The complex conjugate of a harmonic differential is harmonic as well. Hence we
see that not only holomorphic differentials are harmonic but also antiholomor-
phic ones. (A function or a differential is called antiholomorphic if its complex
conjugate is holomorphic.)

1.3 Remark. A harmonic differential ω can be written as the sum of a
holomorphic and an antiholomorphic differential.

Proof. First we notice that a harmonic function locally is the sum of a holomor-
phic and a antiholomorphic function. This shows that a harmonic differential
locally can be written in the form ω = ω1 + ω2 with a holomorphic differential
ω and an antiholomorphic differential ω2. Since this decomposition is obviously
unique, it extends to a global decomposition. ⊔⊓

We introduce the so-called star operator. Recall that we have the direct
decomposition

A1(X) = A1,0(X)⊕A0,1(X).

1.4 Definition. The star operator

∗ : A1(X) −→ A1(X)

is defined by

∗(ω1 + ω2) = i(ω̄1 − ω̄2), ω1 ∈ A1,0(X), ω2 ∈ A0,1(X).

Before we continue we formulate some rules which we will use in the following:

1.5 Some rules.

a) d(fω) = (df) ∧ ω + fω (f ∈ C∞(X), ω ∈ A1(X)).
b) The same as in a) but d replaced by ∂ or ∂̄.
c) ∗ ∗ ω = −ω.
d) ∗ω = ∗ω̄.
e) d(∗ω) = i∂ω̄ for ω ∈ A1,0(X); d(∗ω) = −i∂̄ω for ω ∈ A0,1(X).
f) ∗∂f = i∂̄f̄ ; ∗∂̄f = −i∂f̄ .
g) d(∗df) = 2i∂∂̄f̄ .

The proof can be given by direct calculations with coordinates. ⊔⊓
The announced new characterization of harmonic differentials uses this star

operator:

1.6 Proposition. A differential ω on a Riemann surface is harmonic if and
only if

dω = d(∗ω) = 0.
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Proof. Let ω be harmonic. We show the two differential equations. Because of
1.3 we can assume that ω is holomorphic or antiholomorphic. But then ∗ω is
antiholomorphic or holomorphic and the statement is clear.

Now we assume conversely the two differential equations. From dω follows
that ω can be locally written as df with some function f . A calculation in
coordinates shows that d ∗ ω = d(∗df) = 0 means that f is harmonic (use 1.5,
g)). ⊔⊓

We denote by Harm1(X) the space of all harmonic differentials on X. We
reformulate 1.3 in the form

Harm1(X) = Ω(X)⊕ Ω̄(X).

Hence for compact X we get

dimC Harm1(X) = 2g.

2. Hodge theory of compact Riemann surfaces

For two differentials α, β on a Riemann surface we define

[α, β] = α ∧ ∗β.
This is C-linear in the first variable and satisfies

[β, α] = [α, β].

We express [α, α] in local coordinates and write α for this purpose in the form

α = fdz + gdz̄.

Then
∗α = i(f̄dz̄ − ḡdz)

and hence

[α, α] = i(|f |2 + |g|2)dz ∧ dz̄ = 2(|f |2 + |g|2)dx ∧ dy.
The essential point here is that (|f |2+ |g|2) is non-negative and zero only if the
(smooth) functions f, g are zero.

Now we will assume that the Riemann surface X is compact. Then we can
define

〈α, β〉 =
∫

X

[α, β].

This is a hermitian form on A1(X) (C-linear in the first variable and with the
property 〈β, α〉 = 〈α, β〉). Morover this form is positive definit. Hence A1(X)
has been equipped with a structure as unitary vector space.
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2.1 Proposition. On any compact Riemann surface one has an orthogonal
(with respect to 〈·, ·〉) decomposition

A0,1(X) = ∂̄C∞(X)⊕ Ω̄(X).

Corollary. A form σ in A0,1(X) can be written in the form σ = ∂̄f if and
only if ∫

X

σ ∧ ω = 0

for all holomorphic differentials ω.

Proof. Firstly we prove that ∂̄C∞(X) and Ω̄(X) are orthogonal: We have to
consider ω ∧ ∗∂̄f for antiholomorphic ω. Using the rules 1.5 one shows

ω ∧ ∗∂̄f = −id(f̄ω).

From Stokes formula follows 〈ω, df〉 = 0. From the orthogonality we obtain
that the natural map

Ω̄(X) → A0,1(X)/∂̄C∞(X)

is injective. Hence for the proof of 2.1 it remains to show that both sides have
the same dimension. The dimension of Ω̄ is g (by duality). By Dolbeault’s
theorem V.7.4 the right hand side is isomorphic to H1(X,OX), which by defi-
nition has also the dimension g. This completes the proof of 2.1. ⊔⊓

We mention that by trivial reason the spaces A1,0(X) and A0,1(X) are or-
thogonal (since dz ∧ dz = 0). Hence not only ∂̄C∞(X) but also ∂C∞(X)
is orthogonal to Ω̄(X). Hence also dC∞(X) is orthogonal to Ω̄/X). Since
dC∞(X) is invariant under complex conjugation it is also orthogonal to Ω(X).
It follows that dC∞(X) and Harm1(X) are orthogonal. Let now u be a har-
monic function on X. Then du is a harmonic differential which is orthogonal
to Harm1(X) hence to itself. This means du = 0 and we obtain:

2.2 Proposition. Every harmonic function on a compact Riemann surface
is constant.

We give another application of 2.1. complex conjugation gives

A1,9(X) = ∂C∞(X)⊕ Ω(X)

or
A1(X) = ∂C∞(X)⊕ ∂̄C∞(X)⊕Harm1(X).

Now we use the rule 1.5, f). It shows that

dC∞(X) + ∗dC∞(X) ⊂ ∂C∞(X) + ∂̄C∞(X).

From the same rule follows also df + ∗d(if̄) = ∂f and hence the converse
inclusion. The spaces dC∞(X) and ∗dC∞(X) are also orthogonal. This follows
from df ∧ ∗ ∗ dg = −df ∧ dg = −d(fdg). This gives us
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2.3 Proposition. On a compact Riemann surface one has the orthogonal
decomposition

A1(X) = dC∞(X)⊕ ∗dC∞(X)⊕Harm1(X).

We want to determine the position of K := Kernel(A1(X)
d→ A2(X)) with

respect to this position. We claim that it is orthogonal to ∗dC∞(X). For
dω = 0 one gets

ω ∧ ∗(∗df) = −ω ∧ df = d(fω).

This shows 〈ω, ∗df〉 = 0. On the other side dC∞(X) and ⊕Harm1(X) are
contained in K. Hence K equals their sum:

2.4 Proposition. On a compact Riemann surface one has the orthogonal
decomposition

Kernel(A1(X)
d→ A2(X)) = dC∞(X)⊕Harm1(X).

This proposition induces an isomorphism

Harm1(X) ∼= Kernel(A1(X)
d→ A2(X))

dC∞(X)
.

By the theorem of de Rham the right hand side is isomorphic to H1(X,C).
This gives us

2.5 Theorem of de Rham–Hodge. For a compact Riemann surface one
has

H1(X,C) ∼= Harm1(X).

Hence the dimension of H1(X,C) is 2g.

Notice that H1(X,C) depends only on the topological space X and not on the
complex structure. Hence we see that the genus g for homeomorphic Riemann
surfaces is the same. But homeomorphic Riemann surfaces need not to be
biholomorphic equivalent as already the example of tori shows.
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3. Integration of closed forms and homotopy

A differential ω is called closed if dω = 0 and total if it is of the form ω = df .
From the main theorem of calculus follows the formula∫

α

df = α(1)− α(0)

for every smooth curve α. In the following it will be useful to weaken the
smoothness of a curve. First of all the curve integral

∫
α
ω can be generalized

to piecewise smooth curves in an obvious way. But for closed differentials
it is possible to extend the integral to arbitray continuous curves as follows.
What we have to use is that closed forms are locally total by the Poincaré
lemma. Hence every point admits a neighborhood U , such that

∫
α
ω = 0

for every closed curve in U when ω is closed. Let now α : [0, 1] → X be
an arbitrary (continuous) curve. By a compactness argument we can find a
partition 0 = a0 < · · · < an = 1 and open subsets U1, . . . , Un such that

α([ai−1, ai]) ⊂ Ui (1 ≤ i ≤ n)

and such that ω is total in Ui. Then we combine α(ai−1) and α(ai) by some
smooth curve inside Ui. This defines a new piecewise smooth curve β with the
same origin and end as α. It is easy to see that

∫
β
ω is independent of the

choice of β. (Here we use that ω is total in Ui.) Hence we can define∫

α

ω :=

∫

β

ω.

Let be Q ⊂ C be a compact rectangle, parallel to the axes and let H : Q→ X
be a continuous map. In an obvious way there can be defined a closed curve α
which runs through the image of the boundary of Q. We claim∫

α

ω = 0 (ω closed).

The proof is very simple. One divides Q into small rectangles such that the
image of each of them is contained in an open subset on which ω is total. Then
the corresponding integral for the small rectangles are zero. Summing up all
the integrals over the small rectangles on gets obviously the integral over the
original rectangle. We formulate a special case of this:

3.1 Definition. Two curves α : [0, 1] → X and β : [0, 1] → X with the
property α(0) = β)0) and α(1) = β(1) are called homotopic if there exists a
continuous map H : [0, 1]× [0, 1] → X, such that

H(t, 0) = α(t), H(t, 1) = β(t)

and
H(0, s) = α(0), H(1, s) = α(1).

The above observation shows:
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3.2 Proposition. Let α, β be two homotopic curves. Then

∫

α

ω =

∫

β

ω

for all closed differentials ω.

In the special case, where ω is holomorphic, this is called the homotopy version
of the Cauchy integral theorem.

The fundamental group

We fix a point a ∈ X and consider now closed curves, which start from a and
end in a. Homotopy defines an equivalence relation on this set. The set of all
homotopy classes is denoted by π1(X, a). It is easy to show that composition
of curves defines a well-defined product in π1(X, a). It is not difficult to show
that this product makes π1(X, a) to a group. Details can be found in [Fr1],
Chap. III, Appendix A. This group is called the fundamental group of (X, a).

3.3 Remark. Let ω be a closed differential on X. Then integration defines
a homomorphism

π1(X, a) −→ C, α 7−→
∫

α

ω.

4. Periods

Let ω be a (smooth) closed differential on a Riemann surface. A complex
number C is called a period of ω, if there exists a closed curve α with the
property

C =

∫

α

ω.

To explain the notion “period” we consider the case of a torus X = C/L and “ω =
dz”. Every closed curve α in X lifts to a curve β : [0, 1] → C. Then

∫

α

dz = β(1)− β(0).

Since α is closed we have β(0) ≡ β(1) mod L. Hence we have that the periods are

precisely the elements of L.

It is sometimes necessary to choose a base point a ∈ X and to consider
only curves which start from a. If α is an arbitrary closed curve, one can
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combine a with α(0), then run through α and then go back the same way as
one started. This shows that each period can be obtained by a curve starting
and ending in a. Since the integral of a closed differential is homotopy invariant
(Proposition 3.2) we get a map

π1(X, a) −→ C, “α 7−→
∫

α

ω”,

which is obviously a homomorphism.

The structure of the fundamental group of a compact surface can be deter-
mined by topological methods. A result, which can be obtained without any
further theory is the following lemma.

4.1 Lemma. Let S ⊂ X be a finite subset of a compact Riemann surface,
a ∈ X − S. The fundamental group π1(X − S, a) is countable.

Proof. If X = C̄ this can be seen as follows. Take the base point a to be
rational. This means that real and imaginary part are rational numbers. It is
easy to see that each closed curve with origin a is homotopic to piecewise linear
curve with rational vertices. This is a countable set of curves.

The general case can be settled similarly choosing a non-constant meromor-
phic function f : X → C̄. Then we consider curves in X, which map under f
to piece wise linear curves with rational vertices as considered in the first case.
This is a countable set of curves and the same argument as in the first case
works. ⊔⊓

The importance of the periods shows the following

4.2 Remark. A closed differential (dω = 0) is total, i.e. of the form ω = df
if and only if all its periods vanish.

Proof. The main theorem of calculus says

∫

α

df = f(α(1))− f(α(0)).

This shows that the periods of df vanish. To prove the converse we define

f(x) :=

∫ x

a

ω.

Here a is a fixed chosen base point. The integral is understood as a curve
integral along a curve which connects a with x. Since the periods vanish this
integral is independent of the choice of this curve. A local computation shows
that df = ω. ⊔⊓

Harmonic differentials are closely tied to their periods:
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4.3 Proposition. A harmonic differential on a compact Riemann surface
vanishes if all its periods are zero.

Proof. Assume that ω is a harmonic differential whose periods vanish. Then
ω = df by 4.2. Now 2.3 shows that ω is orthogonal to Harm1(X) hence to
itself.This shows ω = 0. ⊔⊓

A variant of Proposition 4.3 states:

4.4 Proposition. A holomorphic differential on a compact Riemann surface
vanishes if the real parts of all its periods are zero.

Proof. From Proposition 4.3 follows that Reω = (ω + ω̄)/2 is zero. Locally
ω can be written as df with a holomorphic function. It follows that f has
constant real part. But then f is constant and ω = 0. ⊔⊓

We now want to consider the periods of all holomorphic differentials to-
gether. This leads to the following

4.5 Definition. A C-linear form l : Ω(X) → C is called a period of the
compact Riemann surface X, if the exists a closed curve α with the property

l(ω) =

∫

α

ω.

The set L of all periods is a subset of the dual space Ω(X)∗. Actually it is an
additive subgroup L ⊂ Ω(X)∗. Hence we can consider the factor group

Jac(X) := Ω(X)/L.

We will show later that L is a lattice and therefore Jac(X) a torus of real dimen-
sion 2g. This will be explained in detail. Here we take its just as justification
to call Jac(X) the Jacobian variety. We only mention that from Lemma 4.1
follows that L is a countable set.

4.6 Definition of the Abel–Jacobi map. Let X be a Riemann surface
with a base point a. Then the Abel–Jacobi map

A : X −→ Jac(X)

is defined as follows. For a point x ∈ X one chooses a curve α which combines
a with x. Then one considers the linear form

ω 7−→
∫ x

a

ω :=

∫

α

ω.

The image of this linear form in Jac(X) is independent of the choice of α and
is defined to be A(x).



§4. Periods 97

The Abel–Jacobi map admits certain important variants, which we will all
denote by the same letter A: For example one can consider for any natural
number d the d-fold cartesian product Xd := X × . . .×X and define

A : Xd −→ Jac(X), A(ξ1, . . . , ξd) = A(ξ1) + · · ·+A(ξd).

Here we used that Jac(X) carries a natural structure as abelian group.

A closely related extension is obtained as follows. Consider a divisor D on
X. The we define

A(D) :=
∑

a∈X

D(x)A(x).

This is obviously a homomorphism

A : Div(X) −→ Jac(X).

Of course this homomorphism depends on the choice of the base point a. But
now we restrict A to the subgroup Div0(X) of divisors if degree 0. Then we
get:

4.7 Remark. The Abel–Jacobi map A : Div0(X) −→ Jac(X) restricted to
the divisors of degree zero is independent of the choice of the base point.

Proof. We take another base point and choose a fixed curve β which combines
a and b. We use this curve to transform closed curves with origin a to curves
with origin b. Then the two Abel–Jacobi map differ by

∑

x∈X

D(x)

∫

β

ω.

This is zero since D has degree zero. ⊔⊓
The Abel–Jacobi map on Div0(X) can be defined in a slightly different way:

4.8 Remark. Let D = (a1) + · · · + (an) − (b1) − · · · − (bn) be a divisor (of
degree zero) on the compact Riemann surface X. Let γi be curves which join
ai with bi. Then A(D) is represented by the linear form

ω 7−→
g∑

i=1

∫

γi

ω.

Proof. One chooses a base point and joins a and ai by curves αi. Then one
defines curves from a to bi by joining αi and γi. ⊔⊓

Special divisors of degree 0 are the principal divisors (f). Recall that the
define a subgroup H(X) ⊂ Div0(X). The factor group

D0(X)/H(X)

can be identified with a subgroup Pic0(X) of the Picard group (VI.3.1). It can
be considered as the group of all isomorphy classes of line bundles of degree 0.
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4.9 Proposition. The image of a principal divisor in Jac(X) under the
Abel–Jacobi map is zero. Hence it induces a homomorphism

A : Pic0(X) −→ Jac(X).

Proof. Let f be a non-constant meromorphic function on the compact Riemann
surface X. We consider it as a map f : X → C̄. For each z ∈ C̄ we consider
the fibre Dz := f−1(z). Recall that we can talk about the multiplicity of a
point with value a. Hence Dz can be considered naturally as a divisor. We
will show that all Dz have the same image in Jac(X). (This proves 4.9, since
(f) = D0 −D∞.) We have to show that the map

C̄ −→ Jac(X), z 7−→ A(Dz),

is constant. What we will actually prove, that this map is locally liftable.

A map h : C̄ −→ Jac(X) is called locally liftable, if every point of C̄ admits
an open neighborhood U , such that h|U lifts to a holomorphic map H : U →
Ω(X)∗.

It should be clear what “holomorphic map” here means. For example one can
say that H(z)(ω) is holomorphic in the usual sense for every ω ∈ Ω(X). Before
we proof the lifting property we show that it will solve our problem:

4.10 Lemma. Every locally liftable map h : C̄ → Jac(X) is constant.

Proof of the Lemma. We fix a form ω ∈ Ω(X) For a local lift H defined on
some U we consider the holomorphic differential ωH = d(H(z)(ω)) on U . Let
G be a local lift on some other V . Then we have on the intersection

H(z) = G(z) + λ(z), λ(z) ∈ L.

The function λ(z) is a holomorphic function whose values lie in the countable
set L (use Lemma 4.1). This means that λ is locally constant. So ωH and ωG
coincide on the intersection. Hence they glue to a holomorphic differential on
C̄. Since every holomorphic differential on the sphere is zero, we get that h is
locally constant. Since C̄ is connected we get that h is constant. ⊔⊓
Proof of Proposition 4.9 continued. It remains to show that the map h : C̄ →
JacX, h(z) = Dz, is locally liftable. We fix a point b ∈ C̄ and investigate the
map h close to b. Let b1, . . . , bm be the points in X over a with multiplicities
k1, . . . , km. Then n = k1 + · · ·+ km is the covering degree of f . For the Abel–
Jacobi map we need a base point a ∈ X and curves α1, . . . , αn which combine
a with the bi. This is understood as follows. The first m1 curves go from a to
b1, the next m2 from a to b2 and so on. We consider small disk U around b.
We know that then f−1(z) is the union of disjoint disks U1, . . . , Um disks such
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that bi ∈ Ui for 1 ≤ i ≤ m. Now take a point z ∈ U which is different from a.
Since U can been taken small enough the point z will have n inverse images,
where n is the covering degree of f . The n points are distributed over the m
disks U1, . . . , Um. We can assume that the first m1 are in U1, the next m2 in
U2 and so on. Now consider curves βi, 1 ≤ i ≤ n as follows. The first m1 ones
lie in U1 and combine b1 with the z-s which lie in U1. The next m2 ones lie in
U2 ans combine b2 with the z-s which lie in U2 and so on. Now we consider the
sum of the integrals ∫

βi

ω (ω ∈ Ω(X)).

It is independent of the choice of the βi and depends holomorphically on z.
This sum represents the difference of A(Db)−A(Dz). We can take this sum to
get a local lifting of h. ⊔⊓

5. Abel’s theorem

Abels’s theorem states that the map A : Pic0(X) → Jac(X) is injective. To
prove this, we need some local preparation. We consider the unit disk E.

5.1 Definition. A C∞-function f on E − {0} has order k in 0, if g(z) =
f(z) · z−k extends to a C∞-function on E, which has no zero in 0.

We are interested in the logarithmic derivative

df

f
= k

dz

z
+
dg

g
.

Notice that dg/g is smooth on the whole E. Let ω be a differential on E with
compact support. We want to consider the integral

∫

E

df

f
∧ ω.

Since df/f is singular at 0, we have to check the existence of this integral. We
write ω = h1dz + h2dz̄. Then

dz

z
∧ ω =

h1
z
dz ∧ dz̄ = 2i

h1
z
dx ∧ dy.

To compute the integral we use polar coordinates z = reiϕ. Then

∫

E

dz

z
∧ ω = 2i

∫ 1

0

∫ 2π

0

h1(re
iϕ)

reiϕ
rdrdϕ.
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Since the factor r cancels, there is no problem with the existence of the integral.

Let g be a C∞-function with compact support. Then

df

f
∧ dg = d

(
g · df

f

)
.

We want to integrate over a circle |z| = r, where r < 1 has been chosen so
close to 1 such that g vanishes for |z| ≥ r. Since gdf/f has a singularity in the
origin, we have to be careful with the application of the Stokes formula. We
have to choose a small ε > 0 and then we can say

∫

E

df

f
∧ dg = −

∮

|z|=ε

g · df
f
.

(We take the integral in the mathematical positive sense, hence we need a minus
sign.) We will take the limit ε → 0. Then we can replace g by the constant
g(0) and f by zk. This gives:

5.2 Lemma. Let f be a C∞-function on the punctured disk E − {0}, which
is of order k at the origin. Let g be a C∞-function on E with compact support.
Then ∫

E

df

f
∧ dg = kg(0).

The definition of order 5.1 can be generalized to Riemann surfaces in an obvious
way: If f is a differentiable function in a punctured neighborhood of a point a
of a Riemann surface X, one chooses a disk ϕ : U → E, ϕ(a) = 0 around this
point inside this neighborhood. Then f has order k in a if fϕ has order k in 0.
It is clear that this definition doesn’t depend on the choice of the disk.

5.3 Definition. Let D be a divisor on a Riemann surface X. By a weak
solution of D one understands a differentiable function in the complement of
the support of D, such that f has order D(a) for each a of the support.

Lemma 5.2 has then the obvious generalization:

5.4 Lemma. Let f be a weak solution of a divisor D on a Riemann surface
X and let g be a differentiable function on X with compact support. Then

1

2πi

∫

X

df

f
∧ dg =

∑

a∈X

D(a)g(a).

(The sum is finite.)

Next we have to construct weak solution. The essential part is a local con-
struction:
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5.5 Lemma. Let a, b be points of the unit disk E. There is a weak solution
f of the divisor (b) − (a) with the following additional property. There exists
0 < r < 1 such that f(z) is identical one for r ≤ |z| < 1.

Proof. In the case a = b we can take f ≡ 1, hence we can assume a 6= b.
We need a simple but basic observation from complex calculus. The function
(z−1)/(z+1) takes values on the negative real axis of and only if z is contained
in the interval [−1, 1]. Hence the principal value of the logarithm defines a
holomorphic function

C − [−1, 1] −→ C, z 7−→ log
z − 1

z + 1
.

An easy consequence is:

Let a, b be two different points in the disk |z| ≤ r. Then there exists in the
complement |z| > r a holomorphic branch of the logarithm log z−b

z−a .

In our situation we can take r < 1. Now we consider a differentiable function
ψ on [r,1] which is 1 close to r and 0 close to 1. The function

exp
(
ψ log

z − b

z − a

)
r ≤ |z| < 1

is 1 if |z| is close to 1 and z−a
z−b if |z| is close to r. Hence we can glue it with the

function
z − b

z − a
|z| ≤ r (z 6= a, b).

This gives the proof of 5.5. ⊔⊓
Again there is a generalization to Riemann surfaces:

5.6 Lemma. Let α : [0, 1] → X be a curve on a Riemann surface, a = α(0),
b = α(1). There exists a weak solution of the divisor (b)−(a) with the following
properties:
1) The function f is constant one outside some compact set.
2) For every closed differential ω on X one has

∫

α

ω =
1

2πi

∫

X

df

f
∧ ω.

Proof. First we mention that df vanishes outside a compact set. Hence the
existence of the integral on the right hand side is only a local problem around
the singularities a and b, which we settled above.

Let c = α(t0), 0 ≤ t0 < 1 be another point on the curve. Assume that the
problem has been solved for the curve α|[0, t0]. Denote the solution by f1. Let
similarly f2 be a solution for the curve α|[t0, 1]. Then f1f2 gives a solution
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for the total curve α. This observation allows us to restrict to the case, where
the curve is contained in a disk U . In this disk we get a weak solution from
5.5. This solution can be extended by one to a solution on X. Now we have
to prove the integral formula. In the disk U the differential ω is total, ω = dg.
Now we take a smaller disk V ⊂⊂ U such that f is one outside V . We can
modify g to get a differentiable function with compact support such that the
equation ω = dg still holds on V . Then∫

α

ω = g(b)− g(a)

and by 5.4 we also have

1

2πi

∫

X

df

f
∧ ω = g(b)− g(a). ⊔⊓

Now we can see that every divisor of degree zero on a compact Riemann surface
admits a weak solution. We write the divisor in the form

D = (a1) + · · ·+ (an)− (b1)− · · · − (bn).

We join ai and bi by a curve γi. Using 5.6 we find a weak solution f of of the
divisor D which has the additional property

n∑

i=1

∫

αi

ω −
n∑

i=1

∫

βi

ω =
1

2πi

∫

X

df

f
∧ ω

for all closed differentials ω. We will use this for holomorphic ω. Then

df

f
∧ ω =

∂̄f

f
∧ ω.

Recall that f locally is of the form zkg(z) with a differentiable function g
without zero. This implies (locally)

∂̄f

f
=
∂̄g

g
.

Hence

σ :=
∂̄f

f
∈ A0,1(X)

is differentiable everywhere.

Let’s assume now that the divisor D is in the kernel of the Abel–Jacobi
map. Then we get

1

2πi

∫

X

σ ∧ ω =
n∑

i=1

∫

γi

ω = 0

for all holomorphic ω. But this implies σ = ∂̄h (corollary of 2.1). We use h to
modify the weak solution f :

F = e−hf.

We obtain
∂̄F = −e−gf∂̄h+ e−h∂̄f = 0.

Hence F is a meromorphic solution. This gives
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5.7 Abel’s theorem. The homomorphism

A : Pic0(X) −→ Jac(X)

is injective.

In other words: A divisor of degree zero is principal if and only if its image in
Jac(X) is zero.

As an example we treat a torus X = C/L. Recall that Ω(X) is generated by
“ω = dz”. We represent the divisor D of degree zero by a divisor (a1) + · · ·+
(an)− (b1)− · · · − (bn) in the interior of some fundamental parallelogram. We
join ai and bi by curves γi inside this interior Since

n∑

i=1

∫

γi

dz =

n∑

i=1

bi −
n∑

i=1

ai.

This gives the well-known Abel theorem for elliptic functions:

A divisor of degree zero (a1)+· · ·+(an)−(b1)−· · ·−(bn) on a torus is principal
if and only if a1 + · · ·+ an − b1 − · · · − bn = 0.

6. The Jacobi inversion problem

All what we have proved about the group L ⊂ Ω(X)∗ is that it is countable
group. We want to prove more, namely that it is a lattice. By a lattice of a
finite dimensional real vector space V we understand a subgroup L of the form

L = Ze1 + · · ·+ Zen

where e1, . . . , en is a basis of V . A lattice is obviously a discrete subgroup
which generates V as vector space. The converse is also true. We will use this
without proof.

By a lattice of a finite dimensional complex vector space we understand a
lattice of the underlying real vector space.

6.1 Proposition. The set of periods L ⊂ Ω(X)∗ of a compact Riemann
surfaces is a lattice. Hence Jac(X) is a torus of real dimension 2g.

First part of the proof: L is discrete.

Let V be a complex vector space of dimension g. If M is a set of sub-vector
spaces whose intersection is 0, then there exist g vector spaces in M whose
intersection is zero. For a point a ∈ X we can consider the subspace of all
ω ∈ Ω(X), which vanish in a. The above remark shows, that there exist g
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points a1, . . . , ag such that a form ω ∈ Ω(X) vanishes if it vanishes in these
points. Let ω1, . . . , ωg be a basis of Ω(X). We choose disks zi : Ui → E around
the points ai. In these charts ωi = fijdzj . Here we write fij as a function on
Ui and not on E. Then

A =
(
fij(aj))1≤i,j≤g

is an invertible matrix. In the disk Ui and we define the holomorphic function

Fi(x) =

∫ x

ai

ωi,

where the integral is taken along a path from aj to x inside Ui. then we consider
the map

F : U1 × · × Ug −→ C
g, F (ξ1, . . . , ξg) = F1(ξ1) + · · ·+ Fg(ξg).

The (complex) Jacobian of F with respect to the charts is (fij). From the
theorem of invertible functions follows that

W := F (U1 × · · · × Ug) ⊂ C
g

is a neighborhood of F (a1, . . . , ag).

Here we use a complex version of the theorem of invertible functions of several vari-

ables. But this is a consequence of the real version. The point is that F is differenti-

able in the real sense and the real functional determinant is the square of the absolute

value of the complex functional determinant. To prove this one has to express the

real derivatives by the complex ones and then use the Cauchy Riemann equations.

The basis ω1, ωg induces a dual basis ω∗
1 , . . . , ω

∗
g of Ω(X)∗, namely

ω∗
i (ωj) = δij .

We use this basis to identify the space Ω(X)∗ with C
g. Then the map F can

be read as a map
F : U1 × · · · × Ug −→ Ω(X)∗.

The advantage is that it doesn’t depend on the choice of the basis, since

F (ξ1, . . . , ξg)(ω) =

g∑

i=1

∫ ξi

ai

ω.

(We used the coordinates just since the theorem of invertible functions often is
not formulated in a coordinate invariant manner.)

We claim the the neighborhood 0 ∈W has empty intersection with L. (Since
L is a group this implies the discreteness of L.) We argue by contradiction and
assume F (ξ1, . . . , ξg) = 0 Since F (ξ1, . . . , ξg) represents the image of the divisor
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D = (ξ1)+· · ·+(ξg)−(a1)−· · ·−(ag) under the Abel–Jacobi map, we can apply
Abels’s theorem 5.7. There exists a meromorphic function f with (f) = D.
The function f has poles of order one in the ai. We denote by Ci 6= 0 the
residue of f with respect to the chart zi. Then

Resai(fωi) = Cifij(aj).

From the residue theorem applied to the meromorphic differentials fωi follows

g∑

j=1

Cjϕij(aj) = 0.

But then the matrix A cannot be invertible, which gives a contradiction.

Second part of the proof: L generates Ω(X)∗ as real vector space.

We have to show that a real linear form L on Ω(X)∗, which vanishes on L is
zero. Every real linear form is the real part of a C-linear complex linear form.
Every complex linear form on Ω(X)∗ is of the form

l 7−→ l(ω)

for some ω ∈ Ω(X). The real part of this linear form vanishes on L if and only
if the real parts of the periods of ω are zero. But then ω is zero (4.4). ⊔⊓

The first part of the proof of 6.1 shows that a full neighbourhood of 0 ∈
Jac(X) is contained in the image of the Abel–Jacobi map. The image is also
a group. Obviously a torus is generated as group by any neighborhood of the
origin. Hence we obtain that the Abel-Jacbobi map is not only injective but
also surjective.

6.2 Theorem. The Abel–Jacobi map

A : Pic0(X)
∼−→ Jac(X)

is an isomorphism.

We com back to the Abel–Jacobi map in the form

A : Xd −→ Jac(X).

It depends on the choice of a base point a.

6.3 Remark. Let X be compact Riemann surface of genus g > 1. Then

A : X −→ Jac(X)

is injective.



106 Chapter VII. The Jacobi inversion problem

Proof. We mention that a bijective holomorphic map f : X → Y between
Riemann surfaces is biholomorphic. This is known from complex calculus in
the case of open domains in C. The general case works in the same way. Let f
be a meromorphic function on a compact Riemann surface with divisor (b)−(a).
The it is of order one and hence defines a bijective map X → C̄. Hence X is
biholomorphic equivalent to C̄. This implies 6.3. ⊔⊓

We call a point a ∈ Xg generic, if every holomorphic differential ω, which
vanishes at all points occurring in a, vanishes identically. In the fist part of the
proof of 6.1 we have shown that there are generic points. The argument shows
a little more, namely:

6.4 Remark. The set of generic points is open and dense in Xg. The map
A : Xg −→ Jac(X) is locally topological on the set of generic points.

Let now X be a compact Riemann surface of genus one. Then Jac(X) = C/L
is also a Riemann surface. The map A : X → Jac(X) is injective. Since it is
also injective we obtain:

6.5 Theorem. Every compact Riemann surface of genus one is biholomorphic
equivalent to a torus C/L.

Now we switch to A : Xd → Jac(X). One may ask, whether this map is
surjective for suitable d. Since the real dimension of Xd is 2d and of Jac(X) is
2g, one can hope, that this is true for d = g.

6.6 Theorem. The Abel–Jacobi map

A : Xg −→ Jac(X)

is surjective.

Proof. let a ∈ X be the base point. Since Pic0(X) → Jac(X) is surjective, we
only must show the following:

Every divisor D of degree 0 is quivalent to a divisor (b1) + · · ·+ (bg)− g · (a).
For the proof we consider the divisor D′ = D+g(a). It has degree g. Riemann–
Roch implies that dimOD(X) ≥ 1. Hence there exists a non-zero meromorphic
function f such that (f) +D′ ≥ 0. Since the degree of this divisor is g we get
(f)+D′ = (b1)+ · · ·+(bg). This gives (f)+D = (b1)+ · · ·+(bg)−g(a). ⊔⊓

The symmetric group Sg acts on Xg by permutation of the components.
The quotient

X(g) = Xg/Sg

can be considered as the the set of unordered n-tuples of X. Since the map
Xg → Jac(X) does not depend on the ordering of the points, it factors through
the natural projection Xg → X(g). We obtain the Jacobi map

J : X(g) −→ Jac(X).



§8. The fibres of the Jacobi map 107

The Jacobi inversion problem asks for the inversion of this map. Actually for
g > 1 this map is not bijective but it is close to a bijective map. The correct
statement is:

6.7 Jacobi inversion theorem, unprecise statement. The map

J : X(g) −→ Jac(X).

is bimeromorphic.

Up to no we didn’t define what bimeromorphic means. This will be part of
what follows.

7. The fibres of the Jacobi map

We can identify the elements of X(g) with divisors D ≥ 0 of degree 0. We
have to determine the fibre J−1(J(D)). It consists of all divisors D′ ≥= 0 of
degree g which are equivalent to D. Then there exist a meromorphic function
with D′ = D + (f). Because of D′ ≥ 0 we have f ∈ OD(X). The function
f is determined up to a constant factor. Hence it is better to identify two f
if they are contained in the same one-dimensional complex sub-vector space.
Recall that the set of all one-dimensional sub-vector spaces of a vector space V
is called the projective space P (V ). There is a natural map V − {0} → P (V ).
We use this (for finite dimensional V ) to define a topology on P (V ), the quotient
topology. It is easy to show that this is a compact space.

7.1 Remark. Let D ∈ X(g). There is a natural bijective map

P (OD(X))
∼−→ f−1(f(D)), “f 7−→ D + (f)′′.

The space Xg carries the product topology and X(g) = Xg/Sg the quotient
topology. It is easy to see that this is a Hausdorff space.

7.2 Lemma. The map

P (OD(X))
∼−→ f−1(f(D)), f 7−→ D + (f),

is topological.

Corollary. The fibres of the Jacobi map are connected.

From Remark 6.4 we know that a generic point in Xg is isolated in the fibre
of Xg → Jac(X). As a consequence its image in X(g) is isolated in its fibre
as well. From Lemma 7.2 follows that is the only point in its fibre. Hence we
obtain:
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7.3 Theorem. The Jacobi map J : X(g) → Jac(X) is surjective. There
exists an open and dense subset of X(g), on which J is injective.

This can be considered as a weak version of the Jacobi inversion theorem, which
states that J is bimeromorphic.

8. The Jacobian inversion problems and abelian functions

We need some basic facts about holomorphic functions in several variables. A
function f : D → C

m, where D ⊂ C
n is called complex differentiable in a point

a ∈ D if there exists a C-linear map J(f, a) : Cn → C
m, such that

f(z)− f(a) = J(f, a)(z − a) + r(z), lim
z→a

r(z)

z − a
= 0.

Hence complex differentiable implies real differentiable. The usual permanent
properties including the theorem of invertible functions carry over to the com-
plex case. The function f is called holomorphic if and only if it is complex
differentiable in each point. This is the case if and only if every component of
f is holomorphic. There is a basic

8.1 Lemma. Let f : D → C be a continuous function on an open domain
D ⊂ C

n such that f is holomorphic in each variable separately. Then f is
holomorphic. Moreover for every point a ∈ D there exists a power series,
which converges absolutely and locally uniform in some ball Ur(a) ⊂ D and
represents there f :

f(z) =
∑

ν∈Nn
0

(z − a)ν (a ∈ Ur(a)).

Here we use the usual writing with multiindices. The proof uses a simple
generalization of the Cauchy integral formula. Applying the usual one in each
variable one obtains:

f(z) =
1

(2πi)n

∮

|ζ1−a1|=r

· · ·
∮

|ζn−an|=r

f(ζ)dζ1 . . . dζn
(z1 − ζ1) · · · (zn − ζn)

Now the same argument as in the case n = 1 works: One expands the inte-
grand in to a (multivariable) geometric series and interchanges summation and
integration.

The power series expansion shows a weak form of the principle of analytic
continuation: If two analytic functions f, g : D → C

m on a connected open
subset D ⊂ C

n agree on some non empty open subset then the agree every-
where.
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Analytic manifolds

Analytic manifolds of complex dimension n ≥ 1 are the straight forward gen-
eralization of Riemann surfaces (n = 1). Hence we can keep short:

An analytic manifold is a geometric space, which is locally isomorphic to a space
(U,OU ), where U ⊂ Cn is an open subset and OU is the sheaf of holomorphic
functions. An analytic map between analytic manifolds is just a morphism of
geometric spaces.

Basis facts of Riemann surfaces carry over to analytic manifolds. We mention
just the following weak form of the principle of analytic continuation which
easily follows by means of power series:

Let f, g : X → X be two analytic maps between to analytic manifolds. Assume
that X is connected and that f and g agree on some non-empty open subset.
Then f and g agree on the whole X.

Meromorphic functions

Zero sets of analytic functions are not discrete in general as for example the
function z1 ·z2 on C2 shows. This makes the notion of a meromorphic function
more delicated in the higher dimensional case. An example of a meromorphic
function on C2 should be z1/z2. There is now clean way to define a value for
this function at the origin 0. Hence it would be false to define meromorphic
functions simply as holomorphic maps into C̄. This works only in the case
n = 1. We proceed as follows:

Let X be an analytic manifold. We consider pairs (U, f), where U ⊂ X
is an open an dense subset of X and f : U → C is an analytic function. We
call this pair meromorphic on X, if for every point a ∈ X (only a /∈ U is of
interest), there exists a small open connected neigbourhood U and two analytic
functions g, h : U → C, such that h is not identically zero and such that

f(x) =
g(x)

h(x)
for all x ∈ U, h(x) 6= 0.

two meromorphic pairs (U, f) and (V, g) are called equivalent, if f and g agree
on U ∩ V . A meromorphic function on X is a full equivalence class of such
pairs. It is easy to define the sum and product of two meromorphic functions.
It is also not difficult to prove that for connected X the set of all meromorphic
functions is a field. (We don’t know that U is connected. But this deosn’t
matter, since the condition of meromorphicity concerns the whole domain D.)
We denote this field by K(X).

Examples of analytic manifolds

The first example is a torus XL := C
n/L, where L is a lattice. As in the case

n = 1 the meromorphic functions on XL correspond uniquely to the L-periodic
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meromorphic functions on C
n. Sich functions are called “abelian functions.

They generalize the elliptic functions.

The direct product X×Y of two analytic manifolds carries also a structure
as analytic manifold. As a consequence the power Xn = X × . . . × X of a
Riemann surface is an analytic manifold.

We go back to the Abel–Jacobi map

A : Xg −→ Jac(X).

Pulling back a function we get an imbedding of fields

K(Jac(X)) −→ K(Xg).

The image is contained in the subfield K(Sg)Sg of all function which are in-
variant under arbitrary permutations.

It can be shown that The symmetric power X(g) is an analytic manifold as well and

that K(X(g)) can be naturally identified with K(Xg)Sg . We will not prove this and

take K(Sg)Sg just as substitute for the correct field K(X(g)).

8.2 Jacobi inversion theorem, precise statement. The natural map

K(Jac(X)) −→ K(Xg)Sg

is an isomorphism of fields.

We will not prove this here.

We work out a special case of Theorem 8.2, which will lead us to a for-
mulation which is close to what hat Jacobi in mind. Let f : X → C̄ be a
non-constant meromorphic function. It induces an analytic map

fg : Xg → C̄
g
.

The projections give g analytic maps

fν : Xg −→ C̄ (1 ≤ ν ≤ g).

They are just defined by

fν(ξ1, . . . , ξg) = f(ξν).

They can be considered as meromorphic functions on Xg. But they are not
invariant under Sg. Hence we consider the elementary symmetric expressions

Ek =
∑

1≤ν1≤...≤νk≤g

f(ξν1) . . . f(ξνk)

They are also meromorphic functions on Xg with the advantage to be symmet-
ric. The Jacobi inversion theorem predicts the existence of abelian functions
Fν on XL whose pull-back are the Ek.



§8. The Jacobian inversion problems and abelian functions 111

Historical cases

We consider the Riemann surface X of the function
√
P (z where P is a poly-

nomial of degree 3 or 4 without multiple zero. Recall that the corresponding
Riemann surface has genus one. Up to a finite number of points it is the curve
(z, w), w2 = P (z). The natural projection (z, w) 7→ z is a meromorphic func-
tion on X, which we take for f . Recall that dz/

√
P (z) generates Ω(X). The

Abel–Jacobi map is

X −→ C/L, x 7−→
∫ x

a

dz√
P (z)

.

The inversion theorem says in this case, that the function z is the pull-back
of an elliptic function ϕ. Pull-map means that the composition of ϕ with the
Abel–Jacobi map gives x, i.e.

x = ϕ
(∫ x

a

dz√
P (z)

)
.

This reflects the classical observation of Abel that the inversion of the elliptic
integral gives an elliptic function.

The big question was how to generalize this to the hyperelliptic case. Let’s
consider for the case

√
P (z), where P now is of degree 5 ore 6 without multiple

zero. Recall that a basis of Ω(X) in this case is given by

dz√
P (z)

,
zdz√
P (z)

.

The Abel–Jacobi map now is given by

(ξ1, ξ2) 7−→
(∫ ξ1

a

dz√
P (z)

+

∫ ξ2

a

dz√
P (z)

,

∫ ξ1

a

zdz√
P (z)

+

∫ ξ2

a

zdz√
P (z)

)

Now we have to consider the two elementary symmetric functions ξ1+ ξ2, ξ1ξ2.
The Jacobi inversion theorem states:

The are two abelian functions ϕ1, ϕ2 such that

ξ1 + ξ2 = ϕ1

(∫ ξ1

a

dz√
P (z)

+

∫ ξ2

a

dz√
P (z)

,

∫ ξ1

a

zdz√
P (z)

+

∫ ξ2

a

zdz√
P (z)

)

ξ1ξ2 = ϕ2

(∫ ξ1

a

dz√
P (z)

+

∫ ξ2

a

dz√
P (z)

,

∫ ξ1

a

zdz√
P (z)

+

∫ ξ2

a

zdz√
P (z)

)

Jacobi formulated this as a problem before the theorem of Riemann surfaces
existed. The theory of Riemann surfaces enabled to proof this and moreover to
reformulate it in a precise and very natural way. Moreover Jacobi’s inversion
problem opened the door to the theory of complex analytic functions in several
variables.



Chapter VIII. Dimension formulae for automorphic
forms

In his paper [Bo1], at the end of Sect. 4, Borcherds mentions without proof a
beautiful formula for dimensions of spaces of vector valued modular forms of
weight ≥ 2 with respect to the full modular group (here reproduced as Theorem
8.6.1).

Skoruppa informed me that he derived already 1985 in his Ph.D. thesis [Sk]
these dimension formulas for all weights by means of the Shimura trace formula.

More general results, including arbitrary Fuchsian groups, can be found in
the paper [Bo2] of Borcherds, Sect. 7. Most of them have been proved by the
Selberg trace formula, see [Iv] and also [Fi]. The Selberg trace formula in its
standard form causes the restriction that the weight is > 2. Borcherds mentions
that “with a bit more care this also works for weight 2”. As we mentioned,
this bit more care was taken in important cases already 1985 in the thesis of
Skoruppa.

The purpose of this chapter is to produce the dimension formula in all
weights, for general Fuchsian groups and for arbitrary rational weights.

We consider arbitrary discrete subgroups Γ ⊂ SL(2,R)/± with finite volume
of the fundamental domain. For them we consider vector valued modular forms
of a rational weight r. They have the transformation property

f(γτ) = γ′(τ)−r/2v(γ)f(τ),

where v(γ) is matrix-valued. We assume that all v(γ) are of finite order and
that the can be diagonalized simultaneously for all γ in a subgroup of finite
index Γ0. We make some further weak assumption for v (see Assumption 3.1)
which is fulfilled at least for arithmetic groups. These assumptions are not
really necessary. In principle, one could consider arbitrary real weights r and
we could take arbitrary unitary multiplier systems in the sense of [Fi]. But
we found that these restrictions are convenient and they cover all cases which
occur usually in the theory of modular forms.

Since we allow arbitrary rational weights, there is an ambiguity in the def-
inition of γ′(τ)−r/2. One standard way to overcome this, is, to use covering
groups of SL(2,R). Instead of this we found it convenient to use the old-
fashioned method of multiplier systems, here in a matrix-valued sense. They
could be also called “projective representations”. In Sect. 6 we reformulate the
results for representations of the two fold metaplectic covering of SL(2, Z) and
reproduce Borcherds’ formula in [Bo1].

Our proof rests on the Riemann–Roch formula for vector bundles (and not
on the Selberg trace formula). The idea is to use a sufficiently small normal
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subgroup Γ0 for which the vector bundle splits into a sum of line bundles. This
gives a reduction to the well-known case of scalar valued modular forms.

1. Fuchsian groups and Riemann surfaces

The group SL(2,R) can be considered as closed subset of R4. We equip it with
the induced topology. It is a locally compact space with countable basis of the
topology. We consider discrete subgroups Γ ⊂ SL(2,R). Here a subset S of a
topological space X is called a discrete subset if it is closed and if the induced
topology is the discrete topology (every set is open). For locally compact X
this means that the intersection of S with each compact subset of X is finite.
A basic example of a discrete subgroup in SL(2,R) is the group SL(2, Z).

We recall that each matrix M ∈ GL(2,C) induces a biholomorphic trans-
formation of the Riemann sphere onto itself:

Mτ = (aτ + b)(cτ + d)−1, M =

(
a b
c d

)
.

If M is real and has positive determinant, then M maps H onto itself and it
maps also the extended real line R ∪ {∞} onto itself. In particular, the group
SL(2,R) acts on the upper half plane. Two elements of SL(2,R) define the
same transformation if and only they differ by a sign. The elements ±E (E
denotes the unit matrix) build a normal subgroup of SL(2,R). Hence in the
following we are more interested in the factor group SL(2,R)/±. But at the
moment we prefer to work with matrices.

1.1 Definition. An element M ∈ SL(2,R) is called elliptic if |tr(M)| < 2
and parabolic if it is different from ±E and if |tr(M)| = 2.

From the fixed point equation

M(τ) = τ ⇐⇒ cτ2 + (d− a)τ − b = 0

we obtain the following result.

1.2 Lemma. An element M ∈ SL(2,R) is elliptic if and only if it is different
from ±E and if it has a fixed point in H. This fixed point is unique.

An element M ∈ SL(2,R) is parabolic if and only if it has a unique fixed point
in R ∪ {∞}.
We say that a subgroup Γ ⊂ SL(2,R) acts discontinuously if for each two
compact subsets K1,K2 ⊂ H the set

{M ∈ Γ; M(K1) ∩K2 6= ∅}



114 Chapter VIII. Dimension formulae for automorphic forms

is finite. It is enough to demand this for K1 = K2 (consider K1 ∪ K2). In
particular, the stabilizer

Γa := {M ∈ Γ; Ma = a}

is a finite subgroup for every a ∈ H.

1.3 Proposition. Each discrete subgroup Γ ⊂ SL(2,R) acts discontinuously.

The proof of this Proposition and its converse can be found in [Fr1], III.2.3 or
[Fr2], I.1.2. Here we just mention that this is an immediate consequence of the
fact that the map

SL(2,R) −→ H, M 7−→M(i),

is proper. This follows from the fact the the stabilizer of i is the special or-
thogonal group SO(2,R) which is a compact subgroup.

Two points a, b ∈ H are called equivalent with respect to Γ if there exists
M ∈ Γ such that b = Ma. It is easy to check that this is an equivalence
relation. We denote by [a] the equivalence class of a and we denote by H/Γ the
set of all equivalence classes. We equip H/Γ with the quotient topology. There
is a natural projection H → H/Γ. It is continuous and open (i.e the images of
open sets are open).

1.4 Proposition. Let Γ ⊂ SL(2,R) be a discrete subgroup. The quotient
H/Γ is a (Hausdorff) locally compact space with countable basis of the topology.
Moreover the following holds.

For each a ∈ H there exists an open neighborhood U(a) which is invariant
under the stabilizer Γa and such that two points in U(a) are equivalent mod Γ
if and only if they are equivalent with respect to Γa.

For a proof we refer to [Fr2], I.1.7. ⊔⊓
We can define the quotient space U(a)/Γa in the obvious way. There is a

natural map
U(a)/Γa −→ H/Γ.

The condition in Proposition 1.4 says that this map is injective. Moreover, it
is an open embedding. This means that its image is open and that this map
induces a topological map onto this image. Hence H/Γ looks locally (close to
[a]) like U(a)/Γa.

Extension by cusps

Let Γ ⊂ SL(2,R) be a discrete subgroup. An element a ∈ R ∪ {∞} is called a
cusp of Γ if it is the fixed point of a parabolic element M ∈ Γ. The elements
of SL(2,R) which fix ∞ are of the form

(
a b
0 a−1

)
.
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Only in the case a = ±1 they are parabolic. Hence the point ∞ is a cusp if
and only if Γ contains a matrix of the form

±
(
1 b
0 1

)
, b 6= 0.

Let κ 6= ∞. Then we can choose a matrix N ∈ SL(2,R) such that N(κ) = ∞.
For example one can take

N =

(
0 1
−1 κ

)
.

Then the conjugated group NΓN−1 has cusp ∞. This transformation is often
used to reduce properties of arbitrary cusps to the cusp ∞. We have to consider
the stabilizer Γκ of a cusp. We have

NΓκN
−1 = (NΓN−1)∞.

Hence transforming κ to ∞ allows to restrict to κ = ∞. In this case the
elements of Γ∞ act as translations τ 7→ τ + b. There exists a smallest positive
b. Then every transformation of Γ∞ acts as τ 7→ τ + nb with some integer n.
This means that the image of the group Γ∞ in SL(2,R)/± is a cyclic group
generated by ±

(
1 b
0 1

)
.

In the following we denote by H∗ the union of H and the set of cusps. Of
course this depends on Γ. It is easy to see that a subgroup Γ0 ⊂ Γ of finite
index has the same cusps as Γ and hence leads to the same H∗. The group Γ
acts on H∗.

We want to define a topology on H∗. This will not be the induced topology
of the Riemann sphere. Recall that in the Riemann sphere a sequence (an)
tends to ∞ if the absolute values |an| tend to ∞. But we want to have the
following: a sequence (an) of points in the upper half plane should tend to ∞
if the imaginary parts tend to ∞. Hence a typical neighborhood of ∞ should
be defined by Im τ > C (and not by |τ | > C as in the topology of the Riemann
sphere). If we apply to the set Im τ > C a transformation M ∈ SL(2,R) which
fixes ∞ then we obtain a set of the same form (usually with different C). In
all other cases we obtain an open disk in the upper half plane which is tangent
to the real axis.

κ

By a horocycle at the cusp κ we understand such a disk if κ 6= ∞ or a set of
the form Im τ > C > 0 otherwise.
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1.5 Definition. Let Γ ⊂ SL(2,R) be a discrete subgroup. A subset U ⊂ H
∗

is called open if the following two conditions hold.

a) The intersection U ∩ H is open in the usual sense.
b) Assume that the cusp κ is contained in U . Then U contains a horocycle at
the cusp κ.

Hence a typical neighborhood of a cusp κ is the union of a horocycle at κ and
{κ}. It is trivial that this defines a topology on H

∗. It is rather clear that H

is an open subset of H∗ and that the induced topology is the usual one.

But this topology has some properties which look rather strange at a first
glance. For example each cusp has a neighborhood which contains no other
cusp besides κ. This means that the set of cusps is a discrete subset of H∗. We
also mention that H

∗ is not locally compact.

A basic example is the group SL(2, Z). It is easy to see that all rational
numbers and ∞ are cusps. Hence H

∗ = H ∪ Q ∪ {∞} in this case and Q is a
discrete subset!

Every element M ∈ Γ induces a topological map from H
∗ onto itself. It is

clear, how to define the quotient space XΓ := H
∗/Γ and the natural projection

H
∗ −→ XΓ, a 7−→ [a].

It is continuous and open. The following generalization of Proposition 1.4
holds.

1.6 Proposition. Let Γ ⊂ SL(2,R) be a discrete subgroup. The quotient
XΓ = H

∗/Γ is a (Hausdorff) locally compact space with countable basis of the
topology. Moreover the following holds.

For each a ∈ H∗ there exists an open neighborhood U(a) which is invariant
under the stabilizer Γa such that two points in U(a) are equivalent mod Γ if
and only if they are equivalent with respect to Γa.

The set of cusp classes is discrete in XΓ.

A proof can be found in [Fr2], I.1.13. We just mention that the most involved
part of the proof is the Hausdorff property of XΓ. If Γ is a subgroup of finite
index in SL(2, Z), the proof is easier. We refer to [Fr1], Proposition IV.14.6,
for readers who are interested only in this case. ⊔⊓

We define a geometric structure O on XΓ. Let U ⊂ XΓ be an open subset.
We denote by Ũ the inverse image of U in H. By definition, a function f : U →
C on some open subset belongs to O if it is continuous and if the composition
of the natural projection Ũ → U and f is a holomorphic function Ũ → C in
the usual sense.

1.7 Proposition. The geometric structure O defines a structure as Riemann
surface on XΓ.
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Proof. We have to construct for each point ofXΓ an open neighborhood U , such
the geometric space (U,O|U) is isomorphic to an open subset V ⊂ C, equipped
with the usual holomorphic structure. Let a ∈ H

∗ be a representative of this
point. We choose an open neighborhood U(a) which is invariant under Γa and
such that U(a)/Γa → XΓ is an open embedding. We equip U(a)/Γa in the
same way with a structure as geometric space as we did for XΓ. Then the open
embedding induces an isomorphism of the geometric space U(a)/Γa onto its
image in XΓ (equipped with the restricted structure). Hence it is sufficient to
show that U(a)/Γκ is a Riemann surface.

First we treat the case that a is not a cusp. We consider the biholomorphic
map from H onto the unit disk E

α : H
∼−→ E, τ 7−→ w =

τ − a

τ − ā
.

Every element M ∈ Γa induces a transformation of the unit disk

E −→ E, w 7→ α(M(α−1(w))).

This transformation fixes the origin. By a well-known result of complex analysis
it is of the form w → ζw where |ζ| = 1. Since Γa is finite we obtain a finite
subgroup of the multiplicative group of complex numbers. Let n be its order.
Another well-known result says that this group is the set of all nth roots of
unity

G :=
{
e2πiν/n; 0 ≤ ν < n

}
.

The map α induces a topological map

H/Γa
∼−→ E/G.

We consider the natural projection E → E/G and compare it with the map
E → E, w 7→ wn. There exists a unique bijective map ϕ : E/G → E such the
diagram

E

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

��❃
❃❃

❃❃
❃❃

❃ q
⑧

�❄
❄❄

❄❄
❄❄

❄⑧

�❄
❄❄

❄❄
❄❄

❄

E/G
∼
ϕ

// E qn

commutes. A trivial result of complex analysis says that a function f on the
unit disk is holomorphic if and only if f(wn) is holomorphic. This shows that
the bijection ϕ : E/G→ E is an isomorphism of geometric spaces if one equips
E with the usual holomorphic structure. This shows that E/G and hence H/Γa
is a Riemann surface.

The case of a cusp a is similar. We can assume that a is the cusp ∞. We
have to show that H ∪ {∞}/Γ∞ is a Riemann surface. Again we construct an
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isomorphism ϕ : H ∪ {∞}/Γa → E of geometric spaces. Recall that the there
exists a real number b 6= 0 that Γa acts be the translations τ 7→ τ + nb, n ∈ Z.
We take for ϕ the map

ϕ([τ ]) = e2πiτ/b (= 0 for τ = ∞).

The topology of XΓ has been defined in such a way that this map is topological.
Moreover it is an isomorphism of geometric spaces. This shows that H∪{∞}/Γa
is a Riemann surface. ⊔⊓

A point a ∈ H is called an elliptic fixed point of Γ if it is the fixed point of
an elliptic element.

2. Vector valued automorphic forms

In the following we will work with the group Aut(H) of biholomorphic trans-
formations of the upper half plane. As we explained there is a natural homo-
morphism SL(2,R) → Aut(H). It is well-known that this is sutjective. Hence
we get an isomorphism of groups

SL(2,R)/± ∼−→ Aut(H).

In the following we will prefer to work with these groups and not with SL(2,R).
Hence Γ will denote in the following a subgroup of Aut(H). Each element of
Aut(H) determines a matrix in SL(2,R) up to the sign.

Let α : D → D′ be a biholomorphic mapping between two domains in the
complex plane. Once for ever we choose a holomorphic logarithm logα′(z) and
define then

jr(α, z) := α′(z)−r/2 := e−r logα
′(z)/2

for an arbitrary real number r. (This definition is possible for complex r. For
sake of simplicity we restrict here to automorphic forms of real weight.)

There holds a kind of chain rule for two biholomorphic mappings α : D →
D′, β : D′ → D′′:

jr(βα, z) = wr(α, β)
−1jr(β, αz)jr(αz).

Here wr(α, β) is a complex number of absolute value 1. For even r it is one.

Let f be a function on D′. We define the function f |α on D as

(f |α)(z) = (f |
r
α)(z) = f(α(z))jr(α, z).

Then the chain rule reads as

f |(βα) = wr(α, β)(f |β)|α.
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2.1 Definition. Let D ⊂ C be a domain and Γ a group of biholomorphic
transformations of D. By a (vector valued) multiplier system of weight r ∈ R

with values in a finite dimensional complex vector space V we understand a
map

v : Γ −→ GL(V )

with the following properties:

1) v(γ1γ2) = wr(γ1, γ2)v(γ1)v(γ2).
2) There exists a positive definite hermitian form on V such that the operators

v(γ) are unitary.

Property 1) means that

J(γ, z) = jr(γ, z)v(γ)

is a (vector valued) factor of automorphy, i.e.

J(βα, τ) = J(β, ατ)J(α, τ).

So it makes sense to consider functions f : D → V with the transformation
property

f(γz) = J(γ, z)f(z).

2.2 Lemma. Let α : D → D̃ be a biholomorphic map of domains and Γ a
group of biholomorphic transformations of D. Then Γ̃ = αΓα−1 is a group of
biholomorphic transformations of D̃. Let v be a multiplier system of weight r
for (D,Γ) then

ṽ(γ) = v(α−1γα)wr(α
−1, γ)wr(α

−1γα, α−1)

is a multiplier system for (D̃, Γ̃) with corresponding automorphy factor

J̃(γ, w) = J(α−1γα, α−1w) = ṽ(γ)jr(γ, w)
−1.

Let f : D → V be a function with the property f(γz) = J(γ, z)f(z) for γ ∈
Γ then the transformed function f̃ = f |α−1 has the transformation property
f̃(γw) = J̃(γ, w)f(w) for γ ∈ Γ̃.

From now on Γ denotes a group of biholomorphic transformations of the upper
half plane H such that its inverse image in SL(2,R) is discrete. We denote by
S ⊂ R ∪ {∞} the set of cusps of this group and by H

∗ = H ∪ S the extended
upper half plane. We assume that the Riemann surface

X = XΓ := H∗/Γ

is compact. Then the set of cusp classes is finite.
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In the following we fix a group Γ, a rational number r and a multiplier
system v : Γ → GL(V ) of weight r for Γ. Let n be the dimension of V . We
want to define for each point a ∈ H

∗ an unordered n-tuple of numbers

ξ1, . . . , ξn, 0 ≤ ξi < 1 (n = dimV ).

We will call them the characteristic numbers of a (with respect to Γ, v, r).

We start with the case where a ∈ H is an inner point. We transform it to
the origin of the unit disk E by means of the transformation

α(τ) =
τ − a

τ − ā
.

We consider the conjugate group Γ̃ = αΓα−1. We also consider the conjugate
multiplier system ṽ and corresponding automorphy factor J̃ in the sense of
Lemma 2.2.

2.3 Remark and Definition. For a point a ∈ H we consider the conjugate
group

Γ̃ = αΓα−1, α(τ) =
τ − a

τ − ā
,

and the transformed automorphy factor J̃(γ, w). The stabilizer of the origin in
Γ̃ is generated by the transformation re(w) = e2πi/ew where e is the order of
the stabilizer Γa. The transformation R = J̃(re, w) is independent of w and
has the property Re = id. We define the characteristic numbers

ξ1 . . . , ξn, 0 ≤ ξi < 1,

such that e2πiξν are the eigenvalues of R. The numbers eξν are integral.

The proof is rather trivial. Every element γ ∈ Γ̃ which stabilizes the origin
must be of the form w 7→ ζw where ζ is a complex number of absolute number
one. The only subgroup of order e of the multiplicative group of complex
numbers is the group generated by e2πi/e. Since the derivative of γ is constant,
J̃(γ, w) is independent of w. The automorphy property implies that it is a
homomorphism. The image is a group of some order that divides e. ⊔⊓

Another way to describe the characteristic numbers is as follows.

2.4 Remark. (Notations as in Remark and Definition 2.3.) Let β be any
biholomorphic map from H to E with the property β(a) = 0. Consider in the
stabilizer Γa the generator γ that corresponds to the element re(w) = e2πi/ew
in the group βΓaβ

−1. Then the characteristic numbers ξν are defined such that
0 ≤ ξν < 1 and that e2πiξν are the eigen values of J(γ, a).

Supplement. The characteristic numbers depend only on the Γ-equivalence
class of a.
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Proof. In the case where β is the transformation α this follows from the formula
J̃(γ, w) = J(α−1γα, α−1w) (Lemma 2.2). In the general case one has to use
that a general β and α are related by a rotation β(τ) = ζα(τ).

For the proof of the supplement we consider an equivalent point b = γ(a).
We transform a to 0 by α and then use β = γ(a) to transform b to zero. For the
two corresponding generators γa ∈ Γa and γb ∈ Γb we then have γb = γγaγ

−1.
The chain rules for γbγ and γγb show that J(a, γa) and J(b, γb) are conjugate.

⊔⊓
Next we define the characteristic numbers in the case where a is the cusp

∞. The stabilizer Γ∞ is generated by a translation

tN (τ) := τ +N, N > 0.

The matrix
R = J(tN , τ)

is independent of τr. Its eigen values have absolute value 1. The characteristic
numbers are defined such that e2πiξν are the eigenvalues of R.

We treat the case where a is an arbitrary cusp. We choose a transformation
α ∈ Aut(H) with the property α(a) = ∞. We can consider the conjugate group
Γ̃ = αΓα−1 and the conjugate multiplier system ṽ (and of course the same r).
The group Γ̃ has the cusp ∞. We want to define the characteristic numbers of
(Γ, r, v) at the cusp a to be the characteristic numbers of (Γ̃, r, ṽ) at ∞. It is
easy to prove that this definition does not depend on the choice of α.

2.5 Lemma and Definition. Let ∞ be a cusp of Γ and let tN be the
translation in Γ with smallest positive N . The characteristic numbers

ξ1 . . . , ξn, 0 ≤ ξi < 1,

are defined such that e2πiξν are the eigenvalues of R = J(tN , τ).

Let a be an arbitrary cusp and let α ∈ Aut(H) be a transformation with
the property α(a) = ∞. We consider the conjugate group Γ̃ = αΓα−1 and the
conjugate multiplier system ṽ. The characteristic numbers of (Γ̃, r, ṽ) at ∞ are
independent of the choice of α. They are called the characteristic numbers of
the cusp a.

Proof of the second part. We can assume that a = ∞. Then α is of the form
α(τ) = uτ + v. Let tN (τ) = τ +N be the generator of Γ∞. We set Ñ = uN .

Then tÑ = αtNα−1 and this is the generator of Γ̃∞. Taking a suitable basis
of V we can assume that the matrix of R = J(tN , ·) is diagonal. Then we can
assume that V has dimension one and that R acts by multiplication by e2πix

where x is the characteristic number. The function f(τ) = e2πixτ then has the
property f(τ +N) = J(tN , τ)f(τ). From the second part of Lemma 2.2 follows
that the function f̃(τ) = f(uτ + v) has the property

f̃(τ + Ñ) = J̃(tÑ , τ)f̃(τ).

This formula implies that J(tÑ , τ) is also the multiplication by e2πix. ⊔⊓
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2.6 Lemma. The characteristic numbers depend only on the Γ-orbit of a
point a ∈ H

∗. Hence the can be considered for points x ∈ XΓ. They can be
different from (0, . . . , 0) only for cusps or elliptic fixed points.

We want to introduce local automorphic forms. Let U ⊂ XΓ be an open subset.
We denote its inverse image in H

∗ by Ũ . This is a Γ-invariant subset. Hence we
can consider all holomorphic functions f : Ũ −S → C with the transformation
property

f(γτ) = J(γ, τ)f(τ), γ ∈ Γ.

Assume that Γ has cusp ∞ and that it is contained in Ũ . Then Ũ contains
some upper half plane Im τ > C > 0 and f has the transformation property
f(τ + N) = Rf(τ). Since R has finite order, f has some multiple of N as
period. We call f regular at ∞ if f is bounded for Im τ → ∞ and cuspidal if
it tends to 0. We can diagonalize R and describe f by components

fν(τ +N) = e2πiξνfν(τ).

The function gν(τ) = fν(τ)e
−2πiξντ/N has period N . Hence we have a Fourier

expansion

fν(τ) = e
2πi
N
ξντ

∞∑

m=−∞

bν(m)e
2πi
N
mτ .

We want to simplify the notations an introduce for this the symbolic notation

qa := e2πiaτ (a ∈ C).

Then we can write the expansion in the simplified form

fν(τ) =
∑

m∈Λν

aν(m)qm where Λν =
1

N
(ξν + Z)

The function f is called regular at ∞ if aν(m) 6= 0 implies m ≥ 0 and cuspidal
if it implies m > 0.

Using “transformation to ∞” one can define the notions “regular” and “cus-
pidal” also for other cusps. It is clear that this notion does not depend on the
choice of the transformation. It is also clear that this notion depends only on
the Γ-orbit of a cusp.

We define a certain sheaf M = MΓ(r, v) on XΓ. For open U in X = XΓ

the space M(U) consists of all local automorphic forms f : Ũ − S → V which
are regular at the cusps. This defines a sheaf and even more an OX -module.
For even r and the trivial one-dimensional representation v we write M(r)
instead of M(r, v). We also can consider the subsheaf Mcusp = Mcusp

Γ (r, v) of
all cuspidal local automorphic forms. This is also an OX -module.
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2.7 Lemma. The sheafs M = MΓ(r, v), Mcusp = Mcusp
Γ (r, v) are vector

bundles of rank n = dimV , hence coherent.

Proof. We restrict to M since the case Mcusp is similar. We want to show that
Mx is a free OX,x-module for each x ∈ XΓ.

First we assume that a is a cusp. We can restrict to a = ∞. As explained
above, the elements of Mx can be considered as Fourier series of the kind

fν(τ) =
∑

m∈Z, m+ξν≥0

bν(m)e
2πi
N

(m+ξν)τ .

Recall that 0 ≤ ξν < 1. Hence m + ξν ≥ 0 means the same as m ≥ 0. If we
map fν(τ) to ∑

m≥0

bν(m)e
2πi
N
mτ

we get an isomorphism from Mx to On
X,x. This shows that Mx is free. The

case Mcusp is similar.

Next we consider the case where a is an interior point. In this case we can
identify Mx with holomorphic functions f in a small disk around w = 0 which
transform as

f(e2πi/ew) = Rf(w), Re = id .

The components of f with respect to a basis of eigenvectors satisfy

fν(e
2πi/ew) = e2πiξνfν(w).

From the Taylor expansion one can derive that fν(w) = weξνgν(w
e). The local

ring OX,x can be identified with the ring of power series C{we}. The map
fν 7→ gν gives an OX,x-linear isomorphism from Mx to On

X,x.

So we have shown that Mx is free for all x. The statement that M is a
vector bundle means a little more, namely that a basis of Mx gives a basis in
a full neighborhood of x. This follows from the following trivial description of
Mx in the case where a ∈ H is not a fixed point: let f1, . . . , fn be holomorphic
functions in an open neighborhood of a an which do not vanish at a. Denote by
e1, . . . , en the unit vectors. Then f1e1, . . . , fnen defines a basis of the module
Mx.

This completes the proof of Lemma 2.7. ⊔⊓
For later purpose we collect the local description of the sheaf M(v, r) that

we obtained during the proof of Lemma 2.7.

2.8 Lemma. Let ∞ be a cusp of Γ. Then we have

M(v, r)[∞]
∼=
⊕

e2πiξντ/NOXΓ,[∞]eν .

Let a ∈ H be an interior point. Then we have

M(v, r)[a] ∼=
⊕

weξνOXΓ,[a]eν .
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For a multiplier system v of weight r with values in the vector space V one
can define the dual multiplier system v′. It is realized on HomC (V,C). By
definition v′(γ) is the transposed of v(γ−1). It is easy to check that this is a
multiplier system of weight −r. We mention that a multiplier system of weight
r can be considered as multiplier system of weight r′ for each r′ ≡ r mod 2.

As in the case of the sheaf M, we write Mcusp(r) instead of Mcusp(r, v) for
even r and the trivial one-dimensional multiplier system v.

2.9 Lemma. The sheaf Mcusp(2) is a canonical sheaf. The dual sheaf of
M(r, v) is isomorphic to Mcusp(2− r, v′), where v′ denotes the dual multiplier
system.

Proof. The canonical sheaf on a compact Riemann surface is the sheaf of
holomorphic differentials. Let ω be a holomorphic differential on an open subset
U ⊂ XΓ. Its inverse image on Ũ − S is of the form f(τ)dτ . The function
f transforms like an automorphic form of weight two (and trivial multiplier
system). Using the formula

2πidz = dq/q for q = e2πiτ

it is easy to show that the regularity of ω at the cusp classes means that f
is cuspidal. For the elliptic fixed points a similar argument works. We omit
it. ⊔⊓

Next we define a pairing

M(r, v)×Mcusp(2− r, v′) −→ Mcusp(2).

For this we use the natural pairing

V ×Hom(V,C) −→ C, 〈v, L〉 = L(v).

Let f ∈ M(r, v) and g ∈ Mcusp(2− r, v′) be local automorphic forms on some
U ⊂ XΓ. Then 〈f, g〉 transforms like an automorphic form of weight 2 with
respect to the trivial multiplier system. It is clear that it is cuspidal. So the
pairing has been defined. It has to be checked that it is non-degenerated. This
can be done by a local computation at points x ∈ XΓ. We restrict to the case
where x is the image of the cusp ∞. Recall that – using a suitable basis of V –
the elements of M(r, v)x can be identified with Fourier series

fν(τ) =
∞∑

m+ξν≥0

aν(m)e
2πi
N

(m+ξν)τ .

The characteristic numbers yν of the dual multiplier system have the property
ξν + yν ≡ 0 mod 1. Hence – using the dual basis – the elements of Mcusp(2−
r, v′)x can be identified with Fourier series

gν(τ) =

∞∑

m−ξν>0

bν(m)e
2πi
N

(m−ξν)τ
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and the pairing is just
∑
fνgν . The condition m + ξν ≥ 0 is equivalent to

m ≥ 0 and the condition m − ξν > 0 is equivalent to m ≥ 1. Finally M(2)x
can be identified with all Fourier series

h(τ) =
∑

m≥1

c(m)e
2πi
N
mτ .

Let q = e
2πi
N
τ . Using the isomorphisms

M(r, v)x
∼−→ C{q}n, f 7−→

(∑
aν(m)qm

)
,

Mcusp(2− r, v′)x
∼−→ C{q}n, f 7−→

(∑
bν(m)qm−1

)
,

M(2)x
∼−→ C{q}n, h 7−→

(∑
cν(m)qm−1

)
,

the pairing gets equivalent to the standard pairing

C{q}n × C{q}n −→ C{q}, 〈P,Q〉 =
∑

ν

PνQµ,

which is obviously non-degenerated. ⊔⊓

3. The computation of the degree, first method

The first method to compute the degree needs some more assumptions about
(v, r), but it has the advantage to be very simple. In particular, the volume of
the fundamental domain and the Gauss–Bonnet formula will not be used. For
practical use as in the theory of Borcherds products this special case is good
enough. Hence we will describe this method in some detail. In a later section
we will sketch, how these assumptions can be avoided.

3.1 Assumption. The triple Γ, v, r has the following property.

1) The number r is rational.
2) The matrices v(γ) are of finite order.
3) There exists a subgroup Γ0 ⊂ Γ of finite index such that v(γ) can be simul-

taneously diagonalized for γ ∈ Γ0.
4) There exists a normal subgroup of finite index Γ0 ⊂ Γ such that Γ0 acts

fixed point free on H and that the characteristic numbers of all cusps with
respect to Γ0 are zero.

For the rest of this section we take this assumption to be granted. We restrict
v to Γ0 and consider the sheaf

M0 = MΓ0(r, v)
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on the Riemann surface XΓ0 . We want to compare the degrees of M and M0.
Let

π : XΓ0 −→ XΓ

be the natural covering. We know degM∗ = deg(X0/X) degM. There is an
obvious inclusion of sheaves M →֒ π∗M0. By functoriality this induces a map

π∗M −→ M0.

Let x ∈ XΓ0 . The stalk of π∗M is

(π∗M)a ∼= Mπ(x) ⊗OXΓ,π(x)
OXΓ0,x

.

Since OXΓ0,x
is a free OXΓ,π(x)

-module we see that

(π∗M)π(x) −→ (M0)x

is injective. Outside a finite set (images of cusps and of elliptic fixed points of
Γ) it is an isomorphism. So we get an exact sequence

0 −→ π∗M −→ M0 −→ K −→ 0

with a skyscraper sheaf K. We have to compute its degree

degK =
∑

x∈XΓ0

dimKx.

We compute
Kx = (M0)x / (Mπ(x) ⊗OXΓ,π(x)

OXΓ0,x
)

first in the case where x comes from an inner point a ∈ H. Let w = (τ−a)/(τ−
a). Recall that we assume that a is not an elliptic fixed point of Γ0. Then the
local ring OXΓ0,x

can be identified with the ring of power series C{w}. The
ring OXΓ,π(x)

can be identified with C{we}. As in section two we take a basis
of V such that all v(γ) are diagonal. Then we have natural isomorphisms

(M0)x ∼= C{w}n.

and

Mπ(x) =
n∏

ν=1

weξνC{we}.

If we tensor this with C{w} we get

Mπ(x) ⊗OXΓ,π(x)
OXΓ0,x

=

n∏

ν=1

weξνC{w}.

This shows the following result.
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3.2 Lemma. Let π : XΓ0 → XΓ be the natural projection. We consider
a point x ∈ XΓ0 which is the image of an inner point a ∈ H and Let v be a
multiplier system of weight r for Γ. We denote by

σ(a) = ξ1 + · · ·+ ξn

the sum of the characteristic numbers at a. Then the formula

dimKx = eσ(a), K = MΓ0(v, r)/π
∗MΓ(v, r),

holds.

Now we consider the case that x ∈ XΓ0 is the image of the cusp∞. Analogously
to N for Γ, we denote by N0 the smallest positive number such that τ 7→ τ+N0

is in Γ0. The number N0/N is integral. We set

q = e
2πi
N0

τ .

Then the local ring of XΓ0 at x is C{q} and the local ring of XΓ at π(x) is
C{qN0/N}. The stalk of M = MΓ(v, r) at π(x) is (after diagonalization)

Mπ(x) =

n∏

ν=1

e
2πi
N
ξντC{qN0/N}.

We get

Mπ(x) ⊗OΓ,π(x)
OXΓ0,x

=
n∏

ν=1

e
2πi
N
ξντC{q}.

The characteristic numbers y1, . . . , yn of with respect to Γ0 are defined by

yν ≡ (N0/N)ξν mod 1, 0 ≤ yν < 1,

or, using the Gauss bracket,

yν = (N0/N)ξν − [(N0/N)ξν ].

Hence the stalk of M0 = MΓ0(v, r) at x is

M0,x =

n∏

ν=1

e
2πi
N0

yντC{q}.

This shows

dimKx =

n∑

ν=1

[(N0/N)ξν ].

Recall that we assume that the characteristic numbers of the cusp ∞ with
respect to Γ0 are zero. Then (N0/N)ξν is integral. We also mention that
N0/N is the index of Γ0,∞ in Γ∞. Hence we get

dimKx =
n∑

ν=1

[Γ∞ : Γ0,∞]ξν .

We recall that the characteristic numbers for a point x ∈ XΓ depend on (Γ, v, r).
To point out this dependency we will write sometimes ξν = ξν(v, r) and σ(x) =
σΓ(x, v, r) for their sum.
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3.3 Lemma. Let π : XΓ0 → XΓ be the natural projection. We consider a
point x ∈ XΓ0 which is the image of a cusp a. Let v be a multiplier system
of weight r for Γ. We denote by σ(a) = σΓ(a, r) the sum of the characteristic
numbers. Then the formula

dimKx = [Γa : Γ0,a]σ(a), K = MΓ0(v, r)/π
∗MΓ(v, r),

holds.

We use the notation
π : XΓ0 −→ XΓ

for the canonical map. We get a formula for the degree of K.

3.4 Proposition. The formula

degK = [Γ : Γ0]
∑

x∈XΓ

σ(x)

holds. Here σ(x) = σΓ(x, v, x) is the sum of the characteristic numbers at (a
representative of) x.

We now get the link between the degrees of MΓ(v, r) and MΓ0(v, r). The
covering degree of π : XΓ0 → XΓ equals the index [Γ : Γ0]. Using 5) from
Theorem 6.4.3 we get the following formula.

[Γ : Γ0] degMΓ(v, r) = degMΓ0(v, r)− [Γ : Γ0]
∑

x∈XΓ

σ(x).

The group Γ0 can be chosen small enough such that the multiplier system is
diagonal, that it acts fixed point free on H and that the characteristic numbers
of the cusps are zero. Then MΓ0(v, r) is a direct sum of line bundles and we
are reduced to the well-known case V = C which has been treated at various
places in the literature. For sake of completeness we repeat shortly the argu-
ment. Since every line-bundle has a meromorphic section (i.e. a meromorphic
automorphic form) f . We associate to f a divisor D = (f). such that OD is
isomorphic to MΓ0(v, r). If x ∈ XΓ0 is the image of an inner point a ∈ H, then
D(x) is the usual order of f at a. Let a be the cusp ∞. Since the characteristic

number are zero, we can consider f as a holomorphic function in q = e
2πi
N0

τ and
we define D(x) to be the order of this function at q = 0. For an arbitrary cusp
we use “transformation to ∞”. It is easy to check that the order is independent
of the choice of the transformation and even more that it depends only one the
Γ0-orbit of a. Let m be a natural number. Then on has (fm) = m(f) (since
the characteristic numbers of the cusps vanish). We can take m such that mr
is even and such the multiplier system of f is trivial. Now we can compare
with modular forms of weight two.

degMΓ0(v, r) =
r

2
degM(2).
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We use thatMcusp(2) is a canonical bundle and that the degree of the canonical
bundle is 2g0 − 2. We obtain that the degree of M(2) is 2g0 − 2 + h0 where
h0 denotes the number of cusp classes of Γ0. Collecting together we obtain the
following formula.

3.5 Proposition. The formula

degMΓ(v, r) =
rn

2[Γ : Γ0]
(2g0 − 2 + h0)−

∑

x∈XΓ

σΓ(x, v, r).

holds. Here g0 denotes the genus of XΓ0 . The rank of v is denoted by n and
h0 denotes the number of cusp classes of Γ0.

We want to express the formula above in data of the group Γ alone. For this we
apply to use the Riemann–Hurwitz ramification formula VI.7.5 to the natural
projection π : XΓ0 → XΓ. It states

g0 − 1 = deg(π)(g − 1) +
1

2

∑

a∈XΓ0

(Ord(π, a)− 1).

The degree of π : XΓ0 → XΓ equals the index [Γ : Γ0]. Since Γ0 is a normal
subgroup of Γ the order at a point a ∈ XΓ0 depends only on its image b ∈ XΓ.
We denote this order by e(b). So the ramification formula can be written as

g0 − 1

[Γ : Γ0]
= (g − 1) +

1

2

∑

b∈XΓ

(
1− 1

e(b)

)
.

3.6 Lemma. Let b̃ ∈ H∗ be a representative of b ∈ XΓ. Then

e(b) = [Γb̃ : Γ0,b̃].

In particular, if b is not a cusp, then e(b) = #Γb̃ which is independent on the
choice of Γ0.

The number of inverse points of a given cusp class b ∈ XΓ is [Γ0 : Γ]/e(b).
Hence we have

h0 =
∑

b∈XΓ cusp

[Γ0 : Γ]

e(b)
.

Now Proposition 3.7 can be rewritten in the following form.

3.7 Proposition. The degree formula can be written as

degMΓ(v, r) = rn
(
g − 1 +

h

2
+

1

2

∑

b∈XΓ not cusp

(
1− 1

e(b)

))
−
∑

x∈XΓ

σΓ(x, v, r).
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4. The dimension formula

In this section we assume that the assumption 3.1 is true.

The Riemann–Roch formula states

χ(MΓ(v, r)) = deg(MΓ(v, r)) + Rank(MΓ(v, r))(1− g).

We are more interested in the spaces of automorphic forms

[Γ, v, r] := H0(XΓ,MΓ(v, r)).

The Serre dual space is the subspace of cusp forms of [Γ, v′, 2− r]. In the case
r > 2 this space vanishes.

In the case r = 2 there is a difference depending on the fact whether Γ has
a cusp or not. We first mention that v is a representation (homomorphism) in
this case. Modular forms of weight 0 are constants. Hence [Γ, v′, 0] is just the
space of v′-invariants of V . This is isomorphic to the space of v-invariants of
V . We denote the space of invariants by V v. Since constant cusp forms are
zero if there is a cusp, we obtain the following dimension formula.

4.1 Theorem. In the case r > 2 we have

dim[Γ, v, r] =rn
(
g − 1 +

h

2
+

1

2

∑

b∈XΓ not cusp

(
1− 1

e(b)

))

+ n(1− g)−
∑

x∈XΓ

σ(x).

Here g is the genus of XΓ. The dimension of V is n and σ(x) = σΓ(x, v, r)
is the sum of the characteristic numbers. The number e(b) is the order of the
stabilizer of a representative of b in H.

Supplement. When Γ has a cusp then this formula remains true in the case
r = 2. Otherwise one has to add dimV v to the right hand side.

We denote by [Γ, v, r]0 the subspace of cusp forms of [Γ, v, r]. This is the space
of global sections of the sheaf Mcusp = Mcusp(Γ, v, r). Since the quotient
M/Mcusp is a skyscraper sheaf we have

χ(M)− χ(Mcusp) =
∑

x∈XΓ, cusp

dim(Mx/Mcusp
x ).

Recall that Mx is given by Fourier series with summation over integers m such
that m+ ξν(r) ≥ 0 and in the subspace Mcusp

x the summation is restricted to
m+ξν(r) > 0. There is only a difference if the characteristic number ξν is zero.
We see

χ(Mcusp) = χ(M)−
∑

x∈XΓ, cusp

#{ν; ξν(r) = 0}.
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4.2 Remark. Assume that Γ has cusp ∞. The number

#{ν; ξν = 0}

equals the dimension of the subspace of invariants of V under the transforma-
tions J(γ, τ), γ ∈ Γ∞. (These transformations do not depend on τ .)

Finally we formulate the dimension formula for the space of cusp forms. In the
case of weight 2 we have to be careful, since

χ(Mcusp(Γ, v, 2)) = dim[Γ, v, 2]0 − dim[Γ, v′, 0].

In the case of an even weight, v is a representation and [Γ, v′, 0] can be identified
with the space of invariants of v′. We obtain the following result.

4.3 Theorem. Assume that Γ has at least one cusp. In the case r > 2 the
dimension of the space of cusp forms is

dim[Γ, v, r]0 = dim[Γ, v, r]−
∑

x∈XΓ, cusp

#{ν; ξν(r) = 0}.

In the case r = 2 we have to add dimV v to the right hand side.

5. The full modular group

We specialize the dimension formula to the group Γ = SL(2, Z)/±. As usual
it acts on the upper half plane by (aτ + b)(cτ + d)−1. In this case g = 0 and
h = 1. We have two classes of elliptic fixed points of order e = 2 resp. e = 3.
In the dimension formula we get

∑

b∈XΓ not cusp

(
1− 1

e(b)

)
=
(
1− 1

2

)
+
(
1− 1

3

)
=

7

6
.

So the dimension formula gives

dim[Γ, v, r] =
rn

12
+ n−

∑

x∈XΓ

σ(x).

We use the usual generators

T =

(
1 1
0 1

)
,

(
0 −1
1 0

)
.
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Representatives of the elliptic fixed points are i and ζ3 = −1/2 + i
√
3/2. The

elements in their stabilizers which correspond to the rotation with factor e2πi/e

can be computed easily as S resp. (ST )−1.

Let A be a complex matrix of finite order. The eigenvalues are roots of
unity which we can write in the form

λ = exp(2πiα) with 0 ≤ α < 1.

We use the notation
α(A) =

∑

λ

α,

where λ runs through all eigenvalues (counted with multiplicity).

The contributions of the characteristic numbers in the dimension formula
can be written as∑

x∈XΓ

(ξ1(r) + · · ·+ ξn(r)) = α(J(S, i)) + α(J((ST )−1, ζ3)) + α(J(T, ·)).

(The function J(T, τ) is independent of τ .)

5.1 Theorem. In case of the full modular group the dimension formula is
valid for r ≥ 2 (including r = 2) and reads as

dim[Γ, ̺, r] =
rn

12
+ n− α(J(S, i))− α(J((ST )−1, ζ3))− α(J(T, ·)).

For the subspace of cusp forms one has

dim[Γ, v, r]0 = dim[Γ, v, r]− dimV J(T,·) +

{
0 if r > 2,
dimV ̺ if r = 2.

We treat a simple example just to get a feeling how the formula works. The
weight r is assumed to be even and we consider the case of a trivial multiplier
system. This means J(γ, τ) = (cτ + d)r/2. So we get

J(S, i) = e2πir/4

and
J((ST )−1, ζ3) = e2πir/6.

The sum of both is 



0 for r ≡ 0 mod 12,
7/6 for r ≡ 2 mod 12,
1/3 for r ≡ 4 mod 12,
1/2 for r ≡ 6 mod 12,
2/3 for r ≡ 8 mod 12,
5/6 for r ≡ 10 mod 12.

Using the table above, one gets



[
r
12

]
if r ≡ 2 mod 12,

[
r
12

]
+ 1 else.

This formula is true for all even r > 0 (also for r = 2).
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6. The metaplectic group

There is a different way to express multiplier systems using the metaplectic
group. We recall this concept briefly in the case of half-integral weight. The
metaplectic group

Mp(2,R) −→ SL(2,R)

can be described as the set of all pairs (M,J), where M =
(
a b
c d

)
∈ SL(2,R) and

where J =
√
cτ + d is one of the two holomorphic square roots of the function

cτ + d on the upper half plane H. The group law is

(M,
√
cτ + d)(M ′,

√
c′τ + d′) = (MM ′,

√
c′τ + d′

√
cM ′τ + d).

One knows that Mp(2, Z) is generated by

T =
((

1 1
0 1

)
, 1
)
, S =

((
0 −1
1 0

)
,
√
τ
)
, Re τ > 0,

and that the relations

S2 = (ST )3 = Z, Z =

((
−1 0
0 −1

)
, i

)
, Z4 = 1

are defining ones.

Let
̺ : Mp(2, Z) −→ GL(V )

a representation of Mp(2, Z) on some finite dimensional complex vector space.
Let r be an integer or a half integer (2r ∈ Z). An (entire) modular form
of weight r with respect to ̺ is holomorphic function f : H → V with the
transformation law

f(Mτ) =
√
cτ + d

2r
̺(M)f(τ) for all (M,

√
cτ + d) ∈ Mp(2, Z)

and such that f is bounded for Im τ ≥ 1.

We denote by [Mp(2, Z), r, ̺] the space of all entire modular forms.

Let V0 ⊂ V be the subspace on which ̺(−E, i) (E denotes the unit matrix)
acts by multiplication with e−πir = i−2r. It is quite clear that the values of f are
contained in V0 and that V0 is invariant under Mp(2, Z). Let γ ∈ SL(2, Z)/±
a modular transformation. We choose a pre-image (M,

√
cτ + d) ∈ Mp(2,C)

and define the operator

J(γ, τ)a =
√
cτ + d

2r
̺(M)a for a ∈ V0.

This is independent of the choice of the pre-image (since we restrict to V0). By
trivial reason

J(γ, τ)α′(τ)r/2

is a V0-valued multiplier system v and Assumption 3.1 is satisfied. The space of
automorphic forms [SL(2, Z)/±, r, v] of weight r with respect to this multiplier
system coincides with [Mp(2, Z), ̺, r]. Hence the dimension formula gives the
following result.



134 Chapter VIII. Dimension formulae for automorphic forms

6.1 Theorem. Let ̺ : Mp(2, Z) → GL(V ) be a representation on a finite
dimensional vector whose image is finite. Let V0 be the biggest subspace of V
where ̺(−E, i) acts by multiplication with e−πir. We denote by d the dimension
of V0. Then one has for r ≥ 2 (including r = 2)

dim[Mp(2, Z), ̺, r] =
rd

12
+ d−α(eπir/2̺(S))−α

((
eπir/3̺(ST )

)−1
)
−α(̺(T )).

The invariants α have to be taken with respect to the action on V0.

For the subspace of cusp forms one has

dim[Mp(2, Z), ̺, r]0 = dim[Mp(2, Z), ̺, r]− dimV
̺(T )
0 +

{
0 if r > 2,
dimV ̺0 if r = 2.

The operator eπir/2̺(S) (considered on V0) has order 2 and
(
eπir/3̺(ST )

)−1

has order 3. Their α-invariants can be computed very easily be means of the
following lemma.

6.2 Lemma. Let A be a d× d-matrix. We have

α(A) =





d
4 − tr(A)

4 if A2 = E

d
3 − 1

3 Re(tr(A−1)) + 1
3
√
3
Im(tr(A−1)) if A3 = E.
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Appendix. Generalizations of the dimension formula

We sketch another method for the computation of the degree which gives the
dimension formula for arbitrary real weight and arbitrary multiplier systems in
the sense of Definition 2.1. This method is more involved and uses hermitian
metrics on bundles and their Chern forms. It is related to the Gauss–Bonnet
formula.

7. Chern forms

We describe a different method for the computation of the degree of a line
bundle. This uses more general theory which we do not want to develop here
since the cases we could treat so far are sufficient usually. So we will keep very
short and expect a reader which has some experience and is willing to fill the
gaps himself.

We want to consider hermitian forms on a vector bundle M,

M×M −→ C∞
X .

By definition this is a family of maps

〈·, ·〉 : M(U)×M(U) −→ C∞
X (U) (U ⊂ X open),

compatible with restriction such that the rules

〈s1 + s2, t〉 = 〈s1, t〉+ 〈s2, t〉, 〈fs, t〉 = f〈s, t〉, 〈g, f〉 = 〈f, g〉

are satisfied. Here s, s1, s2, t are sections ofM and f is a differentiable function.
The expressions 〈s, s〉 are real functions. We call the hermitian form positive
semidefinit if 〈s, s〉 is nowhere negative.

We want to define what it means that a hermitian form is positive definit .
For this have to introduce the value s(a) of a section s ∈ M(U) at a point
a ∈ U . We consider the C-vector space

M(a) := M⊗OX,a
C.

Here C is considered as module over the ring OX,a through the natural homo-
morphism OX,a → C (evaluation at a). If M has rank n, then M(a) is an
n-dimensional vector space. We define s(a) to be the image of sa under the
natural map

Ma −→ M(a), s 7−→ a⊗ 1.
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In the special case M = OX we can identify OX(a) and C and then f(a) for
a section f ∈ OX(U) is just the value of the function f at the point a.

Now we can define when a positive semidefinit hermitian form is called
definit. The condition is that for each section s ∈ M(U) and each point a ∈ U
we have

〈s, s〉(a) = 0 =⇒ s(a) = 0.

We are mainly interested in hermitian forms on line bundles. In this case the
definition of positive definiteness is still simpler. So let L, 〈·, ·〉 be a line bundle
which has been equipped with a positive definit hermitian form. Let U ⊂ X
an open subset such that L|U is trivial and let s ∈ L(U) be a generator. This
means L(V ) = sO(V ) for all open V ⊂ U . We consider the function 〈s, s〉.
Positive definiteness means that this function is positive everywhere. Hence we
can consider the differential form of degree two ∂∂̄ log〈s, s〉. We claim that this
differential form is independent on the choice of the generator s and hence all
these differential forms for varying U glue to a global differential form on X.

7.1 Proposition. Let L, 〈·, ·〉 be a line bundle which has been equipped
with a positive definit hermitian form. There exists a unique differential form
ω ∈ A2(X) such that for each generator s of L|U on any open subset the
equality

ω|U =
1

2πi
∂∂̄ log〈s, s〉

holds.

Proof. If s is a generator than each other generator is of the form fs with a
holomorphic function without zeros. The operator ∂̄ kills holomorphic functions
Similarly the operator ∂ kills the complex conjugate of a holomorphic function.
Another rule which can be verified is ∂∂̄h = −∂̄∂ for differentiable functions h.
Hence ∂∂̄ kills holomorphic functions and complex conjugates of holomorphic
functions. Locally the function log(ff̄) is the sum of a holomorphic function
and the complex conjugate of a holomorphic function. This shows

∂∂̄ log(ff̄) = 0.

We obtain

∂̄∂ log(ff̄h) = ∂̄∂ log h

for positive differentiable functions h. So the differential form is independent
on the choice of the generator s. ⊔⊓

We call ω a Chern form of the line bundle L. It depends on the choice of
the hermitian form. Chern forms can be used to compute the degree of a line
bundle.
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7.2 Theorem. Let ω be a Chern form of a line bundle X. Then the formula

deg(L) =
∫

X

ω

holds.

We indicate the proof. First one shows that the integral is independent of
the choice of the Chern form. Then one shows that the theorem is true for
a covering X → Y if it is true for Y . So it is sufficient to verify it for the
Riemann sphere and a point divisor, for example the divisor (∞). In this case
everything can be made explicit. ⊔⊓

As a warm-up we apply Theorem 7.2 in the simplest case that X = XΓ

where Γ has no elliptic and parabolic fixed points. Then H/Γ is compact
and the natural projection H → H/Γ ia locally biholomorphic. Holomorphic
(resp. differentiable) functions on an open subset of H/Γ are in one-to-one
correspondence to Γ-invariant holomorphic (resp. differentiable) functions on
the inverse image in H. We consider now for even r the trivial multiplier system
v. Hence we study the bundle M(r) which describes the transformation law

f(γτ) = (cτ + d)2rf(τ), γ ↔ ±
(
a b
c d

)
.

If f, g are two functions with this transformation formula, then

〈f, g〉 := f(τ)g(τ) Im τ r

is Γ invariant and defines a differentiable function on some open subset of H/Γ.
This gives a positive definit hermitian form on M(r). We compute its Chern
form. Since the operators ∂ and ∂̄ are compatible with pull-back with respect
to holomorphic mappings, we obtain that the Chern form can be identified with
the Γ-invariant differential form

∂∂̄ log(yr) =
r

2π

dx ∧ dy
y2

.

Now we have a new formula for the degree of M(r). In Proposition we obtained
the expression 2r(p − 1). Comparing it with the new computation we obtain
(from Theorem 7.2)

1

2π

∫

H/Γ

dxdy

y2
= 2g − 2.

This is a special case of the Gauss Bonnet formula from differential geometry.
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8. The computation of the degree, second method

Now we allow that Γ contains elliptic and parabolic fixed points. We make
some comments about integration on H/Γ. Let D ⊂ C be an open domain
and Γ a group of biholomorphic transformations acting discontinuously. Let
π : D → D/Γ be the natural projection. There exists a discrete subset S ⊂ D
such that Γ acts without fixed points on D − S. Let ω be a nowhere negative
top differential form on X = (D − S)/Γ. This defines a measure on X. This
measure extends to a measure on D/Γ such that the image of S gets measure
0. In particular, we can talk about the volume of D/Γ which may be finite or
not. The volume can be computed with the help of a fundamental domain. We
briefly explain what this means. We consider subsets F ⊂ D with the following
property. We assume that F is the closure of its interior and that the boundary
has measure 0. We say that F is a fundamental set if D is the union of all γ(D),
γ ∈ Γ. It is called a fundamental domain if, in addition, two different points
in the interior of F are not inequivalent mod Γ. For a fundamental domain F
the formula ∫

F/Γ

ω =

∫

F

π∗ω

holds for trivial reason. If F is only a fundamental set then still the inequality
“≤” holds.

8.1 Lemma. Let Γ be subgroup of Aut(H) such that its inverse image in
SL(2,R) is discrete and such that H∗/Γ is compact. The volume of H/Γ with
respect to the measure dxdy/y2 is finite.

Proof. We construct a suitable fundamental set. Let ∞ be a cusp of Γ. By a
cusp sector at ∞ we understand a domain of the form Im τ ≥ C, |Re τ | ≤ C ′

where C,C ′ are positive. The notion of a cusp sector at an arbitrary cusp is
defined in the usual way by transforming it to ∞. From the compactness of
H

∗/Γ one can deduce that there exists a fundamental set which is the union of
a compact set in H and finitely many cusp sectors ([Fr2], Proposition I.1.15).
So we are reduced to the statement that the cusp sector at ∞ has finite volume
with respect to dxdy/y2. This is easy to check. ⊔⊓

We want now to construct a hermitian form onM(r, v) in the general (scalar
valued) case. Of course we could try to take

〈f, g〉 := f(τ)g(τ) Im τ r

also in this case. But this causes problems at the elliptic fixed points and
at the cusps. At the elliptic fixed points the following problem arises. The
transformation law f(γτ) = J(γ, τ)f(τ) implies that f(a) = 0 od a is the fixed
point of a γ with the property J(γ, a) 6= 1. Hence 〈f, f〉 would vanish at such
fixed points. But this would contradict to the definiteness. The situation in



§8. The computation of the degree, second method 139

the cusps is still worse. Let ∞ be cusp, then 〈f, f〉 Im τ r can not be expected
to extend to a C∞-function at [∞]. Hence we have to modify the definition of
〈f, g〉 close to an elliptic fixed point or a cusp.

We modify the definition of the hermitian metric es follows. We will con-
struct a certain Γ-invariant positive differentiable function φ on H − S where
S denotes the set of elliptic fixed points. With this function we will modify the
definition of the hermitian metric as follows. Let U ⊂ XΓ be open and Ũ its
inverse image in H. Then we will define

〈f, g〉 := 〈f, g〉0 := f(τ)g(τ) Im τ r · φ(τ).

This is a Γ-invariant function on Ũ and can be considered as a function Ũ/Γ.
This is an open subset of U but cusp classes may be missing. So we will have
to make the choice of φ in such a way that φ extends to a continuous function
on the whole U and even more, this function should be differentiable. And we
want to have the that the modified 〈·, ·〉 is positive definit.

Assume that such a function has been constructed. Then we get the formula

degM(v, r) =
1

2π

∫

H/Γ

dxdy

y2
+

1

2πi

∫

H/Γ

∂∂̄ log φ(τ).

To construct a suitable φ we choose for each point x ∈ XΓ which it the image
of an elliptic fixed point or cusp a small open neighborhood such that these
are pairwise disjoint. We will construct φ such that its support of φ(τ) − 1 is
contained in the union of the U(x). The construction of φ can be done in each
U(x) separately.

We treat first that x = [a] is the image of an elliptic fixed point a. We use
the chart w = (τ −a)(τ −a)−1 as has been described in Remark and Definition
2.3. The neighborhood is defined by |w| < r where r is sufficiently small. We
have to make use of the characteristic number ξ, 0 ≤ ξ < 1. From its definition
follows follows that the function the function

s = weξ (e = #Γa)

defines a section of M(v, r) in U(a). It is clear that this is a generating section.
The expression s̄siτ r vanishes at a. This is reason why we have to introduce
the modifying function ϕ. Close to a it should agree with (w̄w)−eξ. So we have
to demand:

For an elliptic fixed point a the function φ should be defined such that it is
differentiable function such that φ(τ) − 1 has compact support on U(a) and
such that it agrees with (w̄w)−eξ on a small neighborhood of a.

The elliptic fixed point gives an extra contribution to the degree, namely

∫

U(a)/Γa

∂∂̄ log φ.
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This integral agrees with
1

e

∫

U(a)

∂∂̄ log φ.

This can be computet as follows.

8.2 Lemma. Let r > 0 and let ϕ be a differentiable function with compact
support on the disk |w| < r. Assume that ϕ agrees on a small neighborhood of
the origin with the function (w̄w)ξ for some real number ξ. Then the formula

1

2πi

∫

|w|<r

∂∂̄ log φ = ξ

holds.

Proof. The prove is an application of the Stokes formula. First we notice that
∂∂̄ = d∂̄. This follows from the rule ∂̄2 = 0. Then we consider for small ε the
domain ε < |w| < r. (“Small” means that 2ε < r and that φ agrees with w̄wξ

for |w| < 2ε.) To this domain we can apply the formula of Stokes.

∫

|w|<r

∂∂̄ log φ =

∮

|w|=ε

∂̄ log φ.

The circle line |w| = ε has to be oriented such that the integration area is on
its left. This means that have to take the clockwise orientation (opposite to
the usual mathematical orientation). We set w = u+ iv and compute

∂

∂w̄
log φ =

1

2

( ∂
∂u

+ i
∂

∂v

)
log(u2 + v2)ξ =

ξ

w̄
.

Hence we obtain ∮

|w|=ε

∂̄ log φ = ξ

∮

|w|=ε

dw̄

w̄
.

To compute the integral of dw̄/w̄ we use the general formula for line integrals∫
η =

∫
η̄ and we use that the integral of dw/w is −2πi due to the “wrong”

orientation of the circle line. The integral is independent of ε. So there is no
problem to take the limit ε→ 0 which completes the proof of Lemma 8.2.

⊔⊓
One should compare this with the degree formula 3.7. There is a term σ(ξ)

whose occurrence – for elliptic fixed points – now finds a new explanation.

Next we treat the case that a is cusp. We can assume that it is the cusp
∞. Then we take the neighborhood in the form Im τ > C with sufficiently big
C. The stabilizer Γ∞ is generated by a substitution τ 7→ τ +N . The function
qξ/N is a generating section. Hence in this case it looks natural to define the
compensating function φ(τ) for ∈ τ > C such that it is periodic and such that
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for very big Im τ it agrees with q̄q−ξ/N and, finally, that φ(τ)−1, considered as
a function of q1/N , it has compact support. But this is not correct. The reason
is that have also the function yr which is increasing fir y → ∞. This function
has to by compensated too. Hence the correct choice of φ is as follows.

For the cusp ∞ the function φ should be defined such that it is differentiable
periodic function for Im τ > C such that φ(τ)−1, considered as function q1/N ,
has compact support and such that it agrees with

(q̄q)−ξ/N log y−r

for very big Im τ .

The computation is now essentially the same as in the case of an elliptic fixed
point. There only occurs an extra contribution

∮

|q|=ε

∂̄yr.

It is easy to evaluate this integral and to show that it tends to 0 for ε → 0.
Collecting together we obtain (in the scalar valued case) the degree formula

degM(v, r) =
1

2π

∫

H/Γ

dxdy

y2
−
∑

a

ξ(a).

For example for even r and trivial v it must coincide with the degree formula
3.7 that we derived with our first method. Comparing them gives the following
variant od the Gauss–Bonnet formula.

8.3 Theorem.

1

2π

∫

H/Γ

dxdy

y2
= 2g − 2 + h+

∑

a∈H/Γ (no cusp)

(
1− 1

e(a)

)
.

As an example we can take the modular group SL(2, Z)/±. The volume of the
fundamental domain |Re τ | ≤ 1, |τ | ≥ 1 computes as π/3. There is one cusp
class, and there are two classes of elliptic fixed points of order 2 and 3. The
genus is zero.

The vector valued case

We want to extend the degree formala to the case of a vector valued multiplier
system (v, r). For this we want to use the fact that a vector bundle M and
its determinant (highest exterior power)

∧nM have the same degree (Remark
VI.4.6). The determinant of M(v, r) is related to the scalar valued multiplier
system (det v, rn). To explain this, we assume that V = C

n. The vector
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valued modular forms are written as columns. Then we can consider the OXΓ

multilinear map

M(v, r)n −→ M(det v, rn), (f1, . . . , fn) 7−→ det(f1, . . . , fn).

This is an alternating multilinear map of OXΓ -modules which induces a map∧nM(v, r) → M(det v, rn). This map is injective. Hence we obtain an exact
sequence

0 −→
n∧
M(v, r) −→ M(det v, rn) −→ K −→ 0.

We compute Ka. The computation will show that this is 0 if a is not the image
of an elliptic fixed point or a cusp. We explain the computation in the case
that a is the image of the cusp ∞ and leave the other cases to the reader.
We can assume that v(tN ) is diagonalized for the generating translation. Then
Ma(v, r) is generated by qξν/Neν . Taking the determinant we get the generator

qσ(a)/N , σ(a) = ξ1 + . . .+ ξn.

But the generator for the line bundle M(det v, rn) is

q(σ(a)−[ξ1+...+ξn])/N .

Here we use the Gauss bracket [x] = max{ν ∈ Z; ν ≤ x}. Notice that x− [x]
is the representative of the coset x+ Z in [0, 1). So we see

dimKa = [ξ1 + . . .+ ξn].

As we mentioned a similar computation works for all points a. This shows

deg(K) =
∑

a

[σ(a)].

The short exakt sequence gives

degM(v, r) = degM(det v, rn)−
∑

a

[σ(a)].

Now we can insert the degree formula for the scalar valued case.

8.4 Theorem. The degree formula that we derived under the special assump-
tions for (v, r) in Proposition 3.7holds for arbitrary real weight and multiplier
system v. In particular, the dimension formula in Theorem 4.1

dim[Γ, v, r] =rn
(
g − 1 +

h

2
+

1

2

∑

b∈XΓ not cusp

(
1− 1

e(b)

))

+ n(1− g)−
∑

x∈XΓ

σ(x).

for r > 2 (and with the same correction in the case r = 2) is true in the general
case.



References

[Bo1] Borcherds, R.: The Gross–Kohnen–Zagier theorem in higher dimensions,
Duke Math. J. 97, no. 2, 219–233 (1999), Correction: Duke Math. J. 105,
no. 1, 183–184 (2000)

[Bo2] Borcherds, R.: Reflection groups of Lorentzian lattices, Duke Math. J. 104,
no. 2, 319–366 (2000)

[FB] Freitag, E., Busam, R.: Complex Analysis, Springer–Universitext, Springer-
Verlag Berlin Heidelberg New-York (2005)

german edition: Funktionentheorie 1, Springer–Lehrbuch, 4. Auflage, Sprin-
ger-Verlag Berlin Heidelberg New-York (2006)

[Fi] Fischer, J.: An approach to the Selberg trace formula via the Selberg zeta-
function, Lecture Notes in Mathematics, 1253, Springer Verlag, Berlin,
Heidelberg, New York (1987)

[Fo] Forster, O.: Lectures on Riemann Surfaces, Graduate Texts in Mathemat-
ics 81 Springer-Verlag Berlin Heidelberg New-York (1999),
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Leray 40
— theorem of 40
liftable 98
line bundle 66
local automorphic form 122
locally biholomorphic 50
— compact 6
— liftable 98

Meromorphic function 49, 109
metaplectic covering 112
— group 133
metric space 3
metrizable 11
modular form 133
— forms 112
module 18
monstrous presheaf 26
Montel 12
Montel’s theorem 71
Montel theorem of 12
morphism 45
multiplicity 54
multiplier system 119

Neighborhood 4
norm 11
normed space 11

One-cocycle 37
open embedding 46
oriented 64

Parabolic 113
paracompact 8
partition of unity 9
Picard 68f
— group 68f, 72
piecewise smooth 93
Poincaré 59, 62
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