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Modular forms, Eisenstein series and Ramanujan equations
Definition 1. A (full) modular form of weight k is a holomorphic function (submitted to a growth
condition) f : H ⊂ C→ C defined on the upper half plane which satisfy

f (A • z) = (cz + d)kf (z), A =
[
a b
c d

]
∈ SL(2,Z). (1)

Modular forms can be seen as functions in the space of lattices of the form which transform as
f (λΛ) = λ−kΛ. They can be seen, also, as functions on a variable q = e2πiz, since they satisfy
f (z) = f (z + 1).

The most important modular forms are the Eisenstein series Ek. Those are given by

Ek(q) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn, k > 2, (2)

where Bk are the Bernoulli numbers and σk(n) is the sum of the k-th powers of the positive divisors
of n.

Theorem 1 ([1], Chapter 1, Prop. 4). The algebra of modular forms is generated by E4 and E6. That
is, any modular form is a polynomial in E4 and E6.

The remaining series, E2, is not a modular form, but it also satisfies an identity similar to (1). It is
the first example of a quasi-modular form. The point of adding E2 to the algebra generated by E4

and E6 is that we get the following

Theorem 2 ([1],Chapter 1, Prop. 15). The algebra generated by E2, E4 and E6 is closed under
differentiation. Specifically, we have:

E′2 =
E2

2 − E4

12
, E′4 =

E2E4 − E6

3
, E′6 =

E2E6 − E2
4

2
, (3)

where E′k = 1
2πi

dEk
dz = qdEk

dq

The relations given in (3) were first discovered by S. Ramanujan and are sometimes called Ra-
manujan equations. They have many applications in number theory, specifically in transcendence
theory. We want to give a geometric interpretation of these equations and then find analogues of the
Eisenstein series in more general contexts.

Algebraic De Rham cohomology and Gauss-Manin connection
The main tool needed in order to carry out our program are the algebraic de Rham cohomology and
the Gauss-Manin connection.

Definition 2. Let X → T be a smooth family of quasi-projective varieties. Then, one can define the
relative de Rham cohomology sheaf as

HqDR(X/S) = Rqπ∗
(

ΩẊ/S

)
. (4)

This sheaf can be show to be locally free, and one can see it as the bundle whose fibers are given by
the cohomologies Hq

dR(Xt) of each element of the family.
The Gauss-Manin connection ∇ is defined on this bundle. We are not going to give its formal

definition, but only its main property: ∫
∇σ = d

(∫
σ

)
(5)

where σ is a section ofHqDR(X/S) (and therefore its integral is a function on T ). For details, see [4].

Enhanced elliptic curves
To give a geometric interpretation of the Ramanujan equations (3), we have to deal with elliptic curves
and elliptic integrals. In order to deal with both at the same time we will consider enhanced elliptic
curves. This idea was first implemented in [5].

Definition 3. A triple (E,α, ω), where α is a holomorphic 1-form (first piece of the Hodge filtration)
and ω is not holomorphic such that 〈α, ω〉 = 1 is called enhanced elliptic curve.

Here, 〈, 〉 is the usual intersection product on the algebraic de Rham cohomology. The definition
above allow us to consider, the integrals of α and ω over paths in E, that is, to study elliptic integrals.

Theorem 3 ([5], Prop 5.4). The moduli space of enhanced elliptic curves is given by

T = {(t1, t2, t3) ∈ C3 | 27t23 − t
3
2 6= 0}, (6)

where the (t1, t2, t3) corresponds to the triple

E : y2 = 4(x− t1)3 + t2(x− t1) + t3 α =
dx

y
ω = x

dx

y
.

We now have a universal family X → T of enhanced elliptic curves and a basis of sections of the de
Rham cohomology bundle. If we compute the Gauss-Manin connection in this basis (α, ω), we get an
explicit matrix in terms of the differentials dti. After that, the Ramanujan equations from Theorem 3
make their appearance!

Theorem 4 ([5], Prop. 4.1). Let R be a vector field in T such that ∇Rα = −ω and ∇Rω = 0. Then
R is unique and it is given by

R =

(
t21 −

1

12
t2

)
∂

∂t1
+ (4t1t2 − 6t3)

∂

∂t2
+

(
6t1t3 −

1

3
t22

)
∂

∂t3
(7)

If R is written as a system of differential equations, after multiplying ti by some constants, we get
exactly the Ramanujan equations! By looking at the locus L for which R generates the tangent space,
the maps t1, t2, t3 restricted to L will be the Eisenstein series after a change of coordinates! This is
a sign that we can generalize modular forms by looking at functions on a suitable moduli space for
each case.

Remark 1. The locus L in the last paragraph has an interpretation based on the integrals of α and ω
over integral cycles.

Applications to Mirror Symmetry
Mirror Symmetry arose in late 80s, when physicists from string theory started studying different ob-
jects for which the quantum field theories are equivalent. Comparing computations from one side of
the mirror with computations from the other yields impressive mathematical results, as the numbers
of rational curves on a quintic threefold! Here we deal with the most basic example: a generic quintic
on P4 and its mirror, which is a family of manifolds known as mirror quintic family.
Definition 4. Let ψ5 6= 1 and let G =

{
(a0, . . . , a4) ∈ Z5

5 :
∑
i ai ≡ 0 mod 5

}/
Z5 , where Z5 is em-

bedded diagonally. This group acts on P4 in the natural way: (a0, . . . , a4) • [x0, . . . , x4] 7→ [µa0x0 :

. . . µa4x4], where µ is a primitive fifth root of unit. For us, a mirror quinitic Xψ is the resolution of
singularities of the quotient{

[x0 : x1 : x2 : x3 : x4] ∈ P4 | x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4 = 0

}
/G. (8)

Rational curves on the quintic

Our goal is to follow the same ideas as for enhanced elliptic curves. We defined enhanced mirror
quintics by considering Xψ and a basis α1, . . . , α4 for the third de Rham cohomology. This basis has
constant intersection product and is compatible with the Hodge filtration.
Theorem 5 ([6], Thm. 3). The moduli space of enhanced mirror quintics is given by

T = {(t0, . . . , t6) ∈ C7 | t4t5(t50 − t4) 6= 0}. (9)

Besides that, there exists a unique vector field R for which the Gauss-Manin connection satisfy

∇R (α1) = α2 ∇R (α2) = Y α3 ∇R (α3) = −α4 ∇R (α4) = 0, (10)

for some function Y in T . This vector field and the function Y have explicit expressions in terms of
the ti.

Writing R as differential equation and solving it considering the ti as functions of q, we find expres-
sions for ti and find that Y is (up to constant) the so called Yukawa coupling, first computed in [2],
which is the generating function for the counts of rational curves on the quintic, denoted by nd.

Y = 5 +
∑
d

ndd
3 qd

1− qd
(11)

Disk counts with boundary on the real quintic

Another interesting problem is to consider not curves on the quintic, but holomorphic disks with
boundary on the real quintic lagragian. In this case, we have to consider a slightly different situation.
We need to study not only the de Rham cohomology of the mirror quintic, but the homology with
boundary on a pair of rational curves. We do not get a Hodge structure, but a mixed Hodge structure.

We can still define a moduli space of mirror quintics enhanced with a basis of the de Rham co-
homology with boundary with constant intersection product and compatible with the mixed Hodge
structure.
Theorem 6 ([3], Thm. 2). The moduli space of relatively enhanced mirror quintics is given by

T = {(t0, . . . , t8) ∈ C9 | t0t4t5(t10
0 − t

10
4 ) 6= 0}. (12)

Besides that, there exists a unique vector field R for which the Gauss-Manin connection satisfy

∇R (α0) = 0 ∇R (α1) = α2 ∇R (α2) = Fα0 + Y α3 ∇R (α3) = −α4 ∇R (α4) = 0,

(13)
for some functions F and Y in T . This vector field and the functions F and Y have explicit expres-
sions in terms of the ti.

Again, by solving the differential equation associated with the vector field, we get that Y is the same
Yukawa coupling as before and that F is (up to constant) the generating function for the disk counts,
which was first predicted in [7].

F =
∑
d

ndiskd d2 qd/2

1− qd

Remark 2. In both cases, the locus tangent to R has a more intrinsic interpretation related to the in-
tegral of the differential forms over cycles. That’s where the conditions satisfied by the Gauss-Manin
connection in theorems 5 and 6 come from.
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