Bibliography on Euclidean Rings
- A. G. Agargün,
Nagata's theorem,
Math. Japon. 43 (1996), no. 3, 421--423;
- A. G. Agargün,
On Euclidean rings
Proyecciones 16 (1997), no. 1, 23--36;
- A. G. Agargün, C. R. Fletcher,
Euclidean rings,
Turkish. J. Math. 19 (1995), 291--299
- R. Akhtar,
Cyclotomic Euclidean Number Fields,
Senior Thesis, Harvard Univ. 1995
- K. Amano,
A remark on Euclidean algorithm,
Bull. Fac. Gen. Ed. Gifu Univ. 1981, no. 17 (1982), 55--56;
correction
- K. Amano,
A note on Euclidean ring,
Bull. Fac. Gen. Ed. Gifu Univ. No. 20 (1984), 13--15 (1985)
- K. Amano,
On 2-stage Euclidean ring and Laurent series,
Bull. Fac. Gen. Ed. Gifu Univ. No. 22 (1986), 83--86 (1987)
- K. Amano,
On the Euclidean modules
Bull. Fac. Gen. Ed. Gifu Univ. No. 27 (1991), 63--66
- K. Amano, K. Iwata,
A Euclidean algorithm on \(M_n(\Delta)\) ,
Bull. Fac. Gen. Ed. Gifu Univ. No. 23, (1987), 25--29 (1988)
- V. S. Atabekyan,
The Euclidean algorithm for integer quaternions and
the Lagrange theorem (Russ.),
Erevan. Gos. Univ. Uchen. Zap. Estestv. Nauki (1993), no. 1 (179),
125--127;
- M. Baica,
Baica's general Euclidean algorithm (BGEA) and the solution of Fermat's last theorem,
Notes Number Theory Discrete Math. 1 (1995), no. 3, 120--134
- R. P. Bambah,
{\em Some Results in The Geometry of Numbers},
Cambridge University Thesis 1950
- R. P. Bambah,
Nonhomogeneous binary quadratic forms I,
Acta Math. 86 (1951), 1--29;
- R. P. Bambah,
Nonhomogeneous binary quadratic forms II,
Acta Math. 86 (1951), 31--56;
- E.S. Barnes,
Non-homogeneous binary quadratic forms,
Quart. J. Math., Oxford Ser. (2) 1 (1950), 199--210;
- E.S. Barnes,
Note on non-homogeneous linear forms,
Proc. Cambridge Phil. Soc. 49 (1953), 360--362
- E.S. Barnes,
The inhomogeneous minima of binary quadratic forms IV,
Acta Math. 92 (1954), 235--264
- E.S. Barnes, H.P.F. Swinnerton-Dyer,
The inhomogeneous minima of binary quadratic forms I,
Acta Math. 87 (1952), 259--323;
- E.S. Barnes, H.P.F. Swinnerton-Dyer,
The inhomogeneous minima of binary quadratic forms II,
Acta Math. 88 (1952), 279--316;
- E.S. Barnes, H.P.F. Swinnerton-Dyer,
The inhomogeneous minima of binary quadratic forms III,
Acta Math. 92 (1954), 199-234;
- E. Bedocchi,
L'anneau \({\mathbb Z}[\sqrt{14}]\) et l'algorithme Euclidien,
Manuscripta math. 53 (1985), 199--216;
- E. Bedocchi,
On the second minimum of a quadratic form and its applications,
(Ital.), Riv. Mat. Univ. Parma (4) 15 (1989), 175--190;
- H. Behrbohm, L. Redei,
Der Euklidische Algorithmus in quadratischen Zahlkörpern,
J. Reine Angew. Math. 174 (1936), 192--205;
- E. Berg,
Über die Existenz eines Euklidischen Algorithmus in
quadratischen Zahlkörpern,
Kungl. Fysiogr. Saellsk. i Lund Förh. 5 (1935), 53--58;
- D. Berend, W. Moran,
The inhomogeneous minimum of binary quadratic forms,
Math. Proc. Camb. Phil. Soc. 112 (1992), 7--19;
- G. B. Birkhoff,
Note on certain quadratic number systems for which
factorization is unique,
Amer. Math. Monthly 13 (1906), 156--159
- J. Blöhmer,
Euklidische Ringe, Diplomarbeit TU Berlin, 1989
- B. Bougaut,
Anneaux quasi-euclidiens,
Thèse, Université de Poitiers 1976
- B. Bougaut,
Anneaux quasi-euclidiens,
C. R. Acad. Sci. Paris 284 (1977), 133--136;
- B. Bougaut,
Algorithme explicite pour la recherche du P.G.C.D. dans
certains anneaux principaux d'entiers de corps de nombres,
Theoret. Comput. Sci. 11 (1980), 207--220;
- G. Branchini,
Algoritmo del massimo comun divisore nel corpo delle
radici quinte dell'unita,
Atti della Reale Accademia dei Lincei, Roma (5)
32-1 (1923), 68--72
- A. Brauer,
On the non-existence of the Euclidean algorithm in certain
quadratic number fields,
Amer. J. Math. 62 (1940), 697--716;
- A. Brudnyi,
On Euclidean domains,
Commun. Algebra 21 (1993), 3327-3336;
- V. Brun,
Music and Euclidean algorithms (Norwegian),
Nordisk Mat. Tidskr. 9 (1961), 29--36;
- V. Brun,
Euclidean algorithms and musical theory,
Enseignement Math. (2) 10 (1964), 125--137;
- H. H. Brungs,
Left Euclidean rings,
Pacific J. Math. 45 (1973), 27--33
- E. Cahen,
Sur une note de M. Fontené relative aux entiers algebriques
de la forme \(x+y\sqrt{-5}\),
Nouv. ann. math. (4) 3 (1903), 444--447
- O. A. Campoli,
A principal ideal domain that is not a Euclidean domain,
American Math. Monthly 95 (1988), 868--871;
- D. A. Cardon,
A Euclidean ring containing \({\mathbb Z}[\sqrt{14}]\),
C. R. Math. Rep. Acad. Sci. Canada 19 (1997), 28--32
- J. W. S. Cassels,
The lattice properties of asymmetric hyperbolic regions I,
Proc. Cambridge Phil. Soc. 44 (1948), 1--7
- J. W. S. Cassels,
The lattice properties of asymmetric hyperbolic regions II,
Proc. Cambridge Phil. Soc. 44 (1948), 145--154
- J. W. S. Cassels,
The lattice properties of asymmetric hyperbolic regions III,
Proc. Cambridge Phil. Soc. 44 (1948), 457--462
- J. W. S. Cassels,
The inhomogeneous minima of binary quadratic, ternary cubic,
and quaternary quartic forms,
Proc. Cambridge Phil. Soc. 48 (1952), 72--86;
Addendum: ibid., 519--520;
Corr.: F.J. van der Linden 1983
- J. W. S. Cassels,
Yet another proof of Minkowski's theorem on the product of
two inhomogeneous linear forms,
Proc. Cambridge Phil. Soc. 49 (1953), 365--366;
- I. Castro Chadid,
Euclidean quadratic fields (Span.),
Bol. Mat. 18 (1984), 1--3, 7--21;
- M. A. Cauchy,
Memoire sur de nouvelles formules relatives a la théorie des
polynomes radicaux, et sur le dernier théorème de Fermat I,
Comptes rendus Paris 24 (1847), 469 ff;
see also \OE uvres X, extr. no. 358, 240--254;
- M. A. Cauchy,
Memoire sur de nouvelles formules relatives a la théorie des
polynomes radicaux, et sur le dernier théorème de Fermat II,
Comptes rendus Paris 24 (1847), 516 ff;
see also \OE uvres X, extr. no. 359, 254--268;
- S. Cavallar,
Alcuni esempi di campi di numeri cubici non euclidei
rispetto alla norma ma euclidei rispetto ad una
norma pesata, Tesi di Laurea, Univ. Trento, 1995
- S. Cavallar, F. Lemmermeyer,
The Euclidean Algorithm in Cubic Number Fields,
Proceedings Number Theory Eger 1996, (Györy, Pethö, Sos eds.),
Gruyter 1998, 123--146; ps file;
- S. Cavallar, F. Lemmermeyer,
Euclidean Windows, dvi file;
submitted
- J.-P. Cerri,
Letter from Nov. 21, 1997
- H. Chatland,
On the Euclidean algorithm in quadratic number fields,
Bull. Amer. Math. Soc. 55 (1949), 948--953;
- H. Chatland, H. Davenport,
Euclids algorithm in real quadratic fields,
Canad. J. Math. 2 (1950), 289--296;
- T. Chella,
Dimostrazione dell'essisenza di un algoritmo delle divisioni
successive per alcuni corpi circolari,
Annali di Matematica pura ed applicata (4) {\bf} 1 (1924), 199--218
- W. Y. Chen, M. G. Leu,
On Nagata's pairwise algorithm,
J. Algebra 165 (1994), no. 1, 194--203
- V. Cioffari,
The Euclidean condition in pure cubic and complex quartic fields,
Math. Comp. 33 (1979), 389--398;
- D. A. Clark,
The Euclidean algorithm for Galois extensions of the
rational numbers,
Ph. D. thesis, McGill University, Montreal (1992)
- D. A. Clark,
A quadratic field which is Euclidean but not norm-Euclidean,
Manuscripta math. 83 (1994), 327--330;
- D. A. Clark,
Non-Galois cubic fields which are Euclidean but not
norm-Euclidean, Math. Comp. 65 (1996), 1675--1679;
- D. A. Clark,
On k-stage Euclidean Algorithms for Galois extensions of Q,
Manuscripta Math. 90 (1996), 149--153;
- D. A. Clark, M. R. Murty,
The Euclidean Algorithm in Galois Extensions of Q,
J. Reine Angew. Math. 459 (1995), 151--162;
- L. E. Clarke,
On the product of three non-homogeneous linear forms,
Proc. Cambridge Phil. Soc. 47 (1951), 260--265;
- L. E. Clarke,
Non-homogeneous linear forms associated with algebraic fields,
Quart. J. Math. (2) 2 (1951), 308--315
- H. J. Claus,
Über die Partialbruchzerlegung in nicht notwendig
kommutativen euklidischen Ringen,
J. Reine Angew. Math. 194 (1955), 88--100
- H. Cohen,
Hermite and Smith normal form algorithms over Dedekind domains,
Math. Comp. 65 (1996), 1681--1699
- H. Cohn, J. Deutsch,
Use of a computer scan to prove that \({\mathbb Q}(\sqrt{2+\sqrt2})\)
and \({\mathbb Q}(\sqrt{3+\sqrt2})\) are Euclidean,
Math. Comp. 46 (1986), 295--299
- P. M. Cohn,
On a generalization of the Euclidean algorithm,
Proc. Cambridge Phil. Soc. 57 (1961), 18--30
- P. M. Cohn,
On the structure of the GL(2) of a ring,
I.H.E.S. Publ. Math. 30 (1966), 365--413;
- P. M. Cohn,
A presentation of SL(2) for Euclidean imaginary quadratic
fields,
Mathematika 15 (1968), 156--163
- P. M. Cohn,
Euclid's algorithm---since Euclid,
Math. Medley 19 (1991), no. 2, 65--72;
- A. Coja-Oghlan,
Berechnung kubischer euklidischer Zahlkörper,
Diplomarbeit FU Berlin, 1999
- A. J. Cole, J. T. Davie,
A game based on the Euclidean algorithm and a winning strategy for it,
Math. Gaz. 53 (1969), 354--357;
- V. Collazo, A. Correa, M. Pablo,
Revisiting Euclid's algorithm: a geometric point of view,
Proceedings of the Twenty-fifth Southeastern International
Conference on Combinatorics, Graph Theory and Computing
(Boca Raton, FL, 1994). Congr. Numer. 104 (1994), 7--17.
- M. J. Collison,
The unique factorization theorem: from Euclid to Gauss,
Math. Mag. 53 (1980), 96--100
- G. Cooke,
The weakening of the Euclidean property for integral
domains and application to algebraic number theory I,
J. Reine Angew. Math. 282 (1976), 133--156;
- G. Cooke,
The weakening of the Euclidean property for integral
domains and application to algebraic number theory II,
J. Reine Angew. Math. 283 (1977), 71--85;
- G. Cooke, P. J. Weinberger,
On the construction of division chains in algebraic number
fields with application to SL(2),
Comm. Algebra 2 (1975), 481--524;
- M. Cugiani,
Osservazioni relative alla questioni dell'esistenza di un
algoritmo euclidei nei campi quadratici,
Boll. della Unione Math. Italiana 3 (1948), 136--141
- M. Cugiani,
I campi quadratici e l'algoritmo Euclideo,
Periodico di Math. 28 (1950), 52--62, 114--129
- H. Davenport,
On the product of three homogeneous linear forms I,
J. London Math. Soc. 13 (1938), 139--145;
see also Coll. Works I, 7--13
- H. Davenport,
On the product of three homogeneous linear forms II,
Proc. London Math. Soc. (2) 44 (1938), 412--431;
see also Coll. Works I, 14--33
- H. Davenport,
On the product of three homogeneous linear forms III,
Proc. London Math. Soc. (2) 45 (1939), 98--125;
see also Coll. Works I, 34--61
- H. Davenport,
Note on the product of three homogeneous linear forms,
J. London Math. Soc. 16 (1941), 98--101;
see also Coll. Works I, 62--65
- H. Davenport,
On the product of three homogeneous linear forms IV,
Proc. Cambridge Phil. Soc. 39 (1943), 1--21;
see also Coll. Works I, 66-68
- H. Davenport,
Non-homogeneous binary quadratic forms I,
Proc. Ned. Akad. Wet. 49 (1946), 815--821;
see also Coll. Works I, 167--173
- H. Davenport,
Non-homogeneous binary quadratic forms II,
Proc. Ned. Akad. Wet. 50 (1947), 378--389;
see also Coll. Works I, 174--185
- H. Davenport,
Non-homogeneous binary quadratic forms III,
Proc. Ned. Akad. Wet. 50 (1947), 484--491;
see also Coll. Works I, 186--193
- H. Davenport,
Non-homogeneous binary quadratic forms IV,
Proc. Ned. Akad. Wet. 50 (1947), 741-749;
see also Coll. Works I, 194--211
- H. Davenport,
On the product of three non-homogeneous linear forms,
Proc. Cambridge Phil. Soc. 43 (1947), 137--152;
see also Coll. Works I, 212--227
- H. Davenport,
Indefinite binary quadratic forms,
Quart. J. Math. Oxford (2) 1 (1950), 54--62;
see also Coll. Works I, 395--403
- H. Davenport,
Euclid's algorithm in cubic fields of negative discriminant,
Acta Math. 84 (1950), 159--179;
see also Coll. Works I, 374--394
- H. Davenport,
Euclid's algorithm in certain quartic fields,
Trans. Amer. Math. Soc. 68 (1950), 508--532;
see also Coll. Works I, 404--428
- H. Davenport,
L'algorithme d'Euclide dans certains corps algebriques,
Coll. intern. du Centre de la recherche sci. XXIV;
Algebrè et theorie des nombres (1950), 41--43
- H. Davenport,
Indefinite binary quadratic forms and Euclid's algorithm in
real quadratic fields,
Proc. London Math. Soc. (2) 53 (1951), 65--82;
see also Coll. Works I, 344-361
- H. Davenport,
Linear forms associated with an algebraic number field,
Quart. J. Math. (2) 3 (1952), 32--41;
see also Coll. Works II, 552--561
- H. Davenport, H. P. F. Swinnerton-Dyer
Products of n inhomogeneous linear forms,
Proc. London Math. Soc. (3) 5 (1955), 474--499;
see also Coll. Works of H. Davenport II, 566--591
- H. Décoste,
Sur les anneaux euclidiens et principaux,
Diss. Univ. Montreal 1978
- H. Décoste,
Des anneaux principaux non euclidiens,
Ann. Sci. Math. Quebec 5 (1981), 103--114
- R. Dedekind,
Supplement to L. Dirichlet, ``Vorlesungen über Zahlentheorie'',
Braunschweig 1893
- K. Dennis, B. Magurn, L. Vaserstein,
Generalized Euclidean group rings,
J. Reine Angew. Math. 351 (1984), 113--128
- L. E. Dickson,
Algebren und ihre Zahlentheorie,
Zürich-Leipzig 1927
- A. Dietz,
Ein kubischer Zahlkörper, welcher euklidisch aber nicht
norm-euklidisch ist,
Staatsexamensarbeit, FU Berlin
- L. Dirichlet,
Recherches sur les forms quadratiques à coéfficients et
à indeterminées complexes,
J. Reine Angew. Math. 24 (1842), 291--371;
see also Werke I, 533--618
- L. Dirichlet,
Ueber die Reduktion der positiven quadratischen Formen mit
drei unbestimmten ganzen Zahlen,
J. Reine Angew. Math. 40 (1850), 209--277;
see also Werke II, 27-48
- D. W. Dubois, A. Steger,
A note on the division algorithms in imaginary quadratic
number fields,
Canad. J. Math. 19 (1958), 285-286
- F. J. Dyson,
On the product of four non-homogeneous linear forms,
Ann. Math. 49 (1948), 82--109
- S. Egami,
Euclid's algorithm in pure quartic fields,
Tokyo J. Math. 2 (1979), 379--385
- S. Egami,
On finiteness of numbers of Euclidean fields in some
classes of number fields,
Tokyo J. Math. 7 (1984), 183--198
- R. B. Eggleton, C. B. Lacampagne, J. L. Selfridge,
Euclidean quadratic fields,
Amer. Math. Monthly 99 (1992), 829--837
- G. F. Eisenstein,
Über einige allgemeine Eigenschaften der Gleichung, von
welcher die Teilung der ganzen Lemniskate abhängt, nebst
Anwendungen derselben auf die Zahlentheorie,
J. Reine Angew. Math. 39 (1850), 224--287;
see also Math. Werke II, 556--619
- V. Ennola,
On the first inhomogeneous minimum of indefinite binary
quadratic forms and Euclid's algorithm in real quadratic fields,
Ann. Univ. Turku. Ser. A I 28 (1958), 58pp;
- P. Erdös, Ch. Ko,
Note on the Euclidean algorithm,
J. London Math. Soc. 13 (1938), 3--8
- H.R.P. Ferguson, R.W. Forcade,
Mulidimensional Euclidean algorithms,
J. Reine Angew. Math. 334 (1982), 171--181
- A. K. Feyziglu,
A very simple proof that \({\mathbb Z}[\frac12(1+\sqrt{-19})]\)
is a principal ideal domain,
Doga Mat. 16 (1992), 62--68
- B. Fine,
The Euclidean Bianchi groups,
Comm. Algebra 18 (1990), no. 8, 2461--2484;
- C. R. Fletcher,
Euclidean Rings,
J. London Math. Soc. 4 (1971), 79--82
- G. Fontené,
Sur les entiers algébriques de la forme \(x+y\sqrt{-5}\),
Nouv. ann. math. (4) 3 (1903), 209--214
- A. Förster,
Zur Theorie einseitig euklidischer Ringe,
Wiss. Z. Pädagog. Hochsch.
"Karl Liebknecht" Potsdam 32 (1988), no. 1, 143--147
- A. Förster,
Zur Theorie einseitig euklidischer Ringe. II,
Wiss. Z. Pädagog. Hochsch.
"Karl Liebknecht" Potsdam 33 (1989), no. 1, 87--90
- A. Förster,
Zur Theorie einseitig euklidischer Ringe. III,
Wiss. Z. Pädagog. Hochsch.
"Karl Liebknecht" Potsdam 34 (1990), no. 1, 123--128;
- J. Fox,
Finiteness of the number of quadratic fields with even
discriminant and Euclidean algorithm,
Ph.D. Thesis, Yale University 1935;
see also Bull. Amer. Math. Soc. 41 (1935), p. 186
- C. F. Gauss,
Disquisitiones Arithmeticae, 1801
- C. F. Gauss,
Theoria residuorum biquadraticorum II,
Werke II (1876), 93--148
- C. F. Gauss,
Zur Theorie der komplexen Zahlen,
Werke II (1876), 387--398
- F. A. W. George,
Using the Euclidean algorithm to identify principal ideals
and their generators in imaginary quadratic fields,
manuscript 1994
- H. J. Godwin,
On the inhomogeneous minima of certain norm-forms,
J. London Math. Soc. 30 (1955), 114--119
- H. J. Godwin,
On a conjecture of Barnes and Swinnerton-Dyer,
Proc. Cambridge Phil. Soc. 59 (1963), 519--522
- H. J. Godwin,
On Euclid's algorithm in some quartic and quintic fields,
J. London Math. Soc. 40 (1965), 699--704
- H. J. Godwin,
On the inhomogeneous minima of totally real cubic norm-forms,
J. London Math. Soc. 40 (1965), 623--627
- H. J. Godwin,
On Euclid's algorithm in some cubic fields with signature one,
Quart. J. Math. Oxford 18 (1967), 333--338
- H. J. Godwin,
Computations relating to cubic fields,
Computers in number theory, London (1971), 225--229
- H. J. Godwin, J. R. Smith,
On the Euclidean nature of four cyclic cubic fields,
Math. Comp. 60 (1993), 421--423
- D. S. Gorskov,
On the Euclidean algorithm in real quadratic fields (Russ.),
Ucenye Zapisky Kazan. Univ. 101 (1941), 31--37
- D. S. Gorskov,
Real quadratic fields without an Euclidean algorithm (Russ.),
Ucenye Zapisky Kazan. Univ. 101 (1941), 37--42
- R. Gupta, M. Murty, V. Murty,
The Euclidean algorithm for S-integers,
Canad. Math. Soc. Conference Proc. 7 (1987), 189--201
- B. Hainke,
Reellquadratische Zahlkörper mit euklidischem Algorithmen,
diploma thesis Univ. Mainz, 1997
- M. Harper,
McGill Univ. thesis 1997
- M. Harper,
A proof that \({\mathbb Z}[\sqrt{14}]\) is a Euclidean Domain,
Ph. D. thesis McGill July 2000
- H. Hasse,
Über eindeutige Zerlegung in Primelemente oder in
Primhauptideale in Integri\-täts\-bereichen,
J. Reine Angew. Math. 159 (1928), 3--12
- H. Heilbronn,
On Euclid's algorithm in real quadratic fields,
Proc. Cambridge Phil. Soc. 34 (1938), 521--526
- H. Heilbronn,
On Euclid's algorithm in cubic self-conjugate fields,
Proc. Cambridge Phil. Soc. 46 (1950), 377--382
- H. Heilbronn,
On Euclid's algorithm in cyclic fields,
Canad. J. Math. 3 (1950), 257--286;
see also The collected papers of H. Heilbronn (1988)
- Heinhold,
Verallgemeinerung und Verschärfung eines Minkowskischen Satzes
Math. Z. 44 (1939), 659--688; ibid. 45 (1939), 176--184
- M. D. Hendy,
Euclid and the fundamental theorem of arithmetic,
Hist. Math. 2 (1975), 189--191
- D. Hensley,
The number of steps in the Euclidean algorithm,
J. Number Theory 49 (1994), no. 2, 142--182
- J. J. Hiblot,
Des anneaux euclidiens dont le plus petit algorithme n'est
pas à valeurs finies,
C.R. Acad. Sci. Paris, Sér A
281 (1975), 411--414
- N. Hofreiter,
Quadratische Zahlkörper ohne Euklidischen Algorithmus,
Math. Ann. 110 (1935), 194-196
- N. Hofreiter,
Quadratische Zahlkörper mit und ohne Euklidischen Algorithmus,
Monatsh. Math. Phys. 42 (1935), 397--400
- L. K. Hua,
On the distribution of quadratic non-residues and the
Euclidean algorithm in real quadratic fields I,
Trans. Amer. Math. Soc. 56 (1944), 537--546
- L. K. Hua, S.H. Min,
On the distribution of quadratic non-residues and the
Euclidean algorithm in real quadratic fields II,
Trans. Amer. Math. Soc. 56 (1944), 547--569
- L. K. Hua, W. T. Shih,
On the lack of the Euclidean algorithm in $R(\sqrt{61})$,
Amer. J. Math. 67 (1945), 209--211
- A. Hurwitz,
Über die Entwicklung komplexer Grössen in Kettenbrüche,
Acta Math. 11 (1887), 187--200
- A. Hurwitz,
Letter to L. Bianchi, 24.06.1895,
Opere di L. Bianchi XI, 103--105
- A. Hurwitz,
Zur Theorie der algebraischen Zahlen,
Nachrichten von der k. Gesellschaft der Wissenschaften zu
Göttingen, Math. -phys. Klasse, (1895), 324--331;
see also Math. Werke 2 (1932), 236--243
- A. Hurwitz,
Die unimodularen Substitutionen in einem algebraischen
Zahlenkörper,
Nachrichten von der k. Gesellschaft der Wissenschaften zu
Göttingen, Math. -phys. Klasse, (1895), 332-356;
see also Math. Werke 2 (1932), 244--268
- A. Hurwitz,
Der Euklidische Divisionssatz in einem endlichen
algebraischen Zahlkörper,
Math. Zeitschrift 3 (1919), 123--126;
see also Math. Werke 2 (1932), 471--474
- M. Ikeda,
On the Euclidean kernel,
Turk. J. Math. 17 (1993), 161--170;
- K. Inkeri,
Über den Euklidischen Algorithmus in quadratischen
Zahlkör\-pern,
Ann. Acad. Sci. Fenn. Ser. A 41 (1947), 1--35
- K. Inkeri,
Neue Beweise für einige Sätze zum Euklidischen
Algorithmus in quadratischen Zahlkör\-pern,
Ann. Univ. Turku. A IX (1948), 1--15
- K. Inkeri,
Non-homogeneous binary quadratic forms,
Den 11te Skandinaviske Matematiker Kongress Trondheim
(1949), 216--224
- K. Inkeri, V. Ennola,
The Minkowski constant for certain binary quadratic forms,
Ann. Univ. Turku. Ser A I 25 (1957), 3--18
- D. H. Johnson, C. S. Queens, A. N. Sevilla,
Euclidean real quadratic number fields,
Arch. Math. 44 (1985), 344--368
- J. Mandavid,
Zahlkörper höheren Grades mit Euklidischem Algorithmus,
diploma thesis Univ. Mainz, 1998
- R. G. McKenzie,
The ring of cyclotomic integers of modulus thirteen is
norm-euclidean,
Ph.D. thesis, Michigan State University 1988
- G. Kacerovsky,
Der euklidische Algorithmus in einigen biquadratischen
Zahlkörpern,
Diss. Wien 1977
- G. Kalajdzic,
On Euclidean algorithms with some particular properties,
Duro Kurepa memorial volume. Publ. Inst. Math. (Beograd) (N.S.) 57
(71) (1995), 124--134;
- E. Kaltofen, H. Rolletschek,
Computing greatest common divisors and factorizations
in quadratic number fields,
Math. Comp. 53 (1989), no. 188, 697--720
- A. Kanemitsu, K. Yoshiba,
Euclidean rings,
Bull. Fac. Sci. Ibaraki Univ. Math. 18 (1986), 1--5
- R. P. Kelisky,
Concerning the Euclidean algorithm,
Fibonacci Quart. 3 (1965), 219--223
- H. Kilian,
Zur mittleren Anzahl von Schritten beim euklidischen Algorithmus,
Elem. Math. 38 (1983), no. 1, 11--15
- B. Kiraly, G. Orosz,
On a Euclidean ring (Hungarian),
Acta Acad. Paedagog. Agriensis, Sect. Mat.
(N.S.) 25 (1998), 71-76
- A. Knopfmacher,
Elementary properties of the subtractive Euclidean algorithm,
Fibonacci Quart. 30 (1992), no. 1, 80--83.
- A. Knopfmacher, J. Knopfmacher,
The exact length of the Euclidean algorithm in
Fq[X],
Mathematika 35 (1988), no. 2, 297--304
- A. Knopfmacher, J. Knopfmacher,
Maximum length of the Euclidean algorithm and continued
fractions in F(x),
Applications of Fibonacci numbers, Vol. 3 (Pisa, 1988),
217--222, Kluwer Acad. Publ., Dordrecht, 1990
- A. Knopfmacher, J. Knopfmacher,
The number of steps in the Euclidean algorithm over
complex quadratic fields, BIT 31 (1991), no. 2, 286--292
- W. Knorr,
Problems in the interpretation of Greek number theory;
Euclid and the fundamental theorem of arithmetic,
Studies in Hist. and Phil. Sci. 7 (1976), 353--368
- Ch. Kolb,
Der euklidische Algorithmus in Körpern \({\mathbb Q}(\sqrt m\,)\),
Kap. 3 der Zulassungsarbeit, Univ. Heidelberg 1976
- G. Kumar,
Quadratic Euclidean domains,
Math. Ed. 26 (1992), 180--185
- E. E. Kummer,
Letters to L. Kronecker, 2.10.1844 and 16.10.1844,
Coll. Papers I (1975), 87--92
- R. B. Lakein,
Euclid's algorithm in complex quartic fields,
Acta Arithm. 20 (1972), 393--400
- E. Landau,
Vorlesungen über Zahlentheorie,
Leipzig 1927
- D. Lazard,
On the minimal algorithm in rings of imaginary quadratic integers,
J. Number Theory 15 (1982), no. 2, 143--148
- F. Lemmermeyer,
Euklidische Ringe,
Diplomarbeit, Heidelberg 1989
- F. Lemmermeyer,
The Euclidean algorithm in algebraic number fields,
Expo. Math. 13, No. 5 (1995), 385-416
- F. Lemmermeyer,
Gauss bounds of quadratic extensions,
Publ. Math. Debrecen 50 (1997), 365--368
- F. Lemmermeyer,
Euclid's algorithm in quartic CM-fields,
in preparation
- V. Lemmlein,
On Euclidean rings and rings of principal ideals,
Doklady kad. Nauk SSSR (NS) 97 (1954), 585--587
- H. W. Lenstra,
Lectures on Euclidean rings,
Bielefeld 1974
- H. W. Lenstra,
Euclid's algorithm in cyclotomic fields,
Report 74-01, Dept. Math. Univ. Amsterdam (1974), 13pp
- H. W. Lenstra,
Euclid's algorithm in cyclotomic fields,
J. London Math. Soc. 10 (1975), 457--465
- H. W. Lenstra,
Euclid's algorithm in cyclotomic fields,
Tagungsbericht 33/75, Math. Forschungs\-institut Oberwolfach
1975
- H. W. Lenstra,
Euclidean number fields of large degree,
Invent. Math. 38 (1977), 237--254
- H. W. Lenstra,
On Artin's conjecture and Euclid's algorithm in global fields,
Invent. Math. 42 (1977), 201--224
- H. W. Lenstra,
Quelques examples d'anneaux euclidiens,
C.R. Acad. Sci. Paris Ser. A 289 (1978), 683--685
- H. W. Lenstra,
Euclidean ideal classes, Journées Arithmetiques de Luminy,
Asterisque 61 (1979), 121--131
- H. W. Lenstra,
Euclidean number fields 1,
Math. Intell. 2 (1979), 6--15
- H. W. Lenstra,
Euclidean number fields 2,
Math. Intell. 2 (1980), 73-77
- H. W. Lenstra,
Euclidean number fields 3,
Math. Intell. 2 (1980), 99--103
- A. Lepschy, G. A. Mian, U. Viaro,
Euclid-type algorithm and its applications,
Internat. J. Systems Sci. 20 (1989), no. 6, 945--956
- M.-G- Leu,
The restricted Nagata's pairwise algorithm and
the Euclidean algorithm,
Osaka J. Math. 45 (2008), 807-818
- A. Leutbecher,
Euklidischer Algorithmus und die Gruppe GL(2),
Math. Ann. 231 (1977/78), 269--285
- A. Leutbecher,
Euclidean number fields having a large Lenstra constant,
Ann. Inst. Fourier 35 (1985), 83--106
- A. Leutbecher,
Ausnahmeeinheiten und euklidische Zahlkörper,
Tagungsbericht 35/86, Math. For\-schungs\-institut Oberwolfach
1986
- A. Leutbecher,
New Euclidean fields by Lenstra's method of exceptional units,
Proc. Conf. Number Theory and Arithm. Geometry Essen 1991;
preprint 18/1991, Universität Essen, 79--80
- A. Leutbecher, J. Martinet,
Constante de Lenstra et corps de nombres Euclidiens,
Sémin. Théorie des nombres Univ. Bordeaux 1981/82
exp. no 4
- A. Leutbecher, J. Martinet,
Lenstra's constant and Euclidean number fields,
Journées Arithmetiques Metz, Astérisque 94 1982
- A. Leutbecher, G. Niklasch,
On cliques of exceptional units and Lenstra's
construction of Euclidean number fields,
Number Theory Ulm 1987,
Lecture Notes Math. 1380 (1989), 150--178
- F. J. van der Linden,
Euclidean number rings with two infinite primes,
Tagungsbericht Math. Forschungsinstitut Oberwolfach 35/81 1981
- F. J. van der Linden,
Euclidean rings of integers of fourth degree fields,
Number theory Noordwijkerhout,
Lecture notes in Math. 1068 (1983), 139--148
- F. J. van der Linden,
Euclidean rings with two infinite primes,
Ph.D. thesis, Univ. Amsterdam 1984
- F. J. van der Linden,
Euclidean rings with two infinite primes,
CWI Tract 15
Centrum voor Wiskunde en Informatica 1985
- S. Lubelsky,
Algorytm Euklidesa,
Wiadom Mat. 42 (1937), 5--67
- S. Lubelsky,
Unpublished results on number theory. I.
Quadratic forms in a Euclidean ring,
Acta Arith. 6 (1960/61), 217--224
- F. Lucius,
Ringe mit einer Theorie des größten gemeinsamen Teilers,
Mathematica Gottingensis 7 (1996)
- M.L. Madan, C.S. Queen,
Euclidean function fields,
J. Reine Angew. Math. 262/263 (1973), 271--277
- R. Markanda,
Euclidean rings of algebraic numbers and functions,
J. Algebra 37 (1975), no. 3, 425--446
- R. Markanda, V. S. Albis Gonzales,
Euclidean algorithm in principal arithmetic algebras,
Tamkang J. Math. 15 (1984), no. 2, 193--196
- J. M. Masley,
On cyclotomic fields Euclidean for the norm map,
Notices Amer. Math. Soc. 19 (1972), A-813;
Abstr. \# 700 A-3
- J. M. Masley,
On Euclidean rings of integers in cyclotomic fields,
J. Reine Angew. Math. 272 (1975), 45--48
- J. F. Mestre,
Corps Euclidiens, unites exceptionelles et courbes
elliptiques,
J. Number Theory 13 (1981), 123--137
- W.F. Meyer,
Anwendung des erweiterten Euklid'schen Algorithmus
auf Resultantenbildungen,
Jahresber. DMV 16 (1907), 16--35
- S. H. Min,
On the Euclidean algorithm in real quadratic fields,
J. London Math. Soc. 22 (1947), 88--90
- S. H. Min,
Euclidean algorithm in real quadratic fields,
Sci. Rep. Nat. Tsing Hua Univ. Ser. A
5 (1948), 190--223
- T. E. Moore,
On the least absolute remainder Euclidean algorithm,
Fibonacci Quart. 30 (1992), no. 2, 161--165.
- T. Motzkin,
The Euclidean algorithm,
Bull. Am. Math. Soc. 55 (1949), 1142--1146
- M. Nagata,
On Euclid algorithm, C. P. Ramanujan, A tribute,
Tata Inst. Fund. Res. Stud. Math. 8 (1978), 175--186
- M. Nagata,
Some remarks on Euclid rings,
J. Math. Kyoto Univ. 25 (1985), no. 3, 421--422
- M. Nagata,
On the definition of a Euclid ring,
Adv. Stud. Pure Math. 11 (1987), 167--171
- M. Nagata,
A pairwise algorithm and its application to \({\mathbb Z}[\sqrt{14}]\),
Algebraic geometry Seminar, Singapore
(1987), 69--74
- M. Nagata,
Pairwise algorithms and Euclid algorithms,
Collection of papers dedicated to Prof. Jong Geun Park on his
sixtieth birthday (Korean), 1--9, Jeonbug, Seoul, 1989;
- M. Nagata,
Some questions on \({\mathbb Z}[\sqrt{14}]\),
Algebraic geometry and its applications (Ch. Bajaj ed.),
Conf. Purdue Univ. USA, June 1--4, 1990,
Springer Verlag (1994), 327--332
- W. Narkiewicz,
Book review ``Collected Papers of H. Heilbronn'',
DMV Jahresbericht 93 (1991), 4--5
- G. Niklasch,
Ausnahmeeinheiten und Euklidische Zahlkörper,
Diplomarbeit TU München 1986
- G. Niklasch,
On Clarks example of a Euclidean field which is not
norm-euclidean,
manuscripta math. 83 (1994), 443--446
- G. Niklasch,
Family Portraits of exceptional units,
to appear
- G. Niklasch, R. Qu\^{e}me,
An improvement of Lenstra's criterion for euclidean
number fields: The totally real case,
Acta Arith. 58 (1991), 157--168
- P. Noordzij,
Über das Produkt von vier reellen homogenen linearen Formen,
Monatsh. Math. 71 (1967), 436--445
- G. H. Norton,
On the asymptotic analysis of the Euclidean algorithm,
J. Symbolic Comput. 10 (1990), no. 1, 53--58
- T. Ojala,
Euclid's algorithm in the cyclotomic fields \({\mathbb Q}(\zeta_{16})\),
Math. Comp. 31 (1977), 268--273
- O. T. O'Meara,
On the finite generation of linear groups over Hasse domains,
J. Reine Angew. Math. 217 (1965), 79--108
- A. Oneto, V. Ramirez,
Non-Euclidean principal domains (Span.),
Divulg. Mat. 1 (1993), 55--65
- A. Oppenheim,
Quadratic fields with and without Euclid's algorithm,
Math. Ann. 109 (1934), 349--352
- H. Ostmann,
Euklidische Ringe mit eindeutiger Partialbruchzerlegung,
J. Reine Angew. Math. 188 (1950), 150--161
- J. Ouspensky,
Note sur les nombres entiers dependant d'une racine
cinquième de l'unité,
Math. Ann. 66 (1909), 109-112;
see also Moskau Math. Samml. 26, 1--17
- P. S. Papkov,
Der Euklidische Algorithmus im quadratischen Zahlkörper
mit beliebiger Klassenzahl, (Russ., German summary)
\OE uvres sci. Univ. Etat, Rostoff sur Don 1
(1934), 15--60
- P. S. Papkov,
Über eine Anwendung des Euklidischen Algorithmus im
quadratischen Zahlkörper mit beliebiger Klassenzahl
(Russ., German summary),
\OE uvres sci. Univ. Etat, Rost. s, Don
1 (1934), 61--78;
- F. Paulsen, B. Gordon,
On the parity of some quantities related to the Euclidean algorithm,
Amer. Math. Monthly 68 (1961), 900--901
- O. Perron,
Quadratische Zahlkörper mit Euklidischem Algorithmus,
Math. Ann. 107 (1932), 489--495
- G. Philibert,
L'algorithme d'Euclide dans les corps cyclotomiques,
Sé\-mi\-nai\-re d'Arith\-me\-tique,
Saint-Etienne 1990-91-92, exp. no. 5, 59--67
- G. Picavet,
Caracterisation de certains types d'anneaux euclidiens,
Enseignement Math. 18 (1972), 245--254
- G. Pollak,
On types of Euclidean norms (Russ.),
Acta Sci. Math. Szeged 20 (1959), 252--268
- A. Popescu,
On the Euclideanity in rings,
Rev. Roumaine Math. Pures Appl. 27 (1982), no. 2, 181--185
- A.V. Prasad,
A non-homogeneous inequality for integers in a special
cubic field I, II, Indag. Math. 11 (1949), 55--65, 112--124
- C. S. Queen,
Arithmetic Euclidean rings,
Acta Arith. 26 (1972), 105--113
- R. Qu\^eme,
A computer algorithm for finding new euclidean number fields,
J. Théor. Nombres Bordeaux 10 (1998), 33-48;
- A.M. Rahimi,
Rings with an almost division algorithm,
Libertas Math. 13 (1993), 41-46;
- L. Rédei,
Über den Euklidischen Algorithmus in reellquadratischen
Zahlkörpern,
J. Reine Angew. Math. 183 (1941), 183--192
- L. Rédei,
Zur Frage des Euklidischen Algorithmus in quadratischen Zahlkörpern,
Math. Ann. 118 (1942), 588--608
- R. Remak,
Verallgemeinerung eines Minkowskischen Satzes. I. II.,
Math. Zeitschrift 17, 1-34, 18, 173-200 (1923). ??
- R. Remak,
Über den Euklidischen Algorithmus in reell-quadratischen
Zahlkörpern,
Jahresber. DMV 44 (1934), 238--250
- G. Renault,
Anneaux principaux et anneaux euclidiens,
Gaz. Sci. Math. Quebec 1 (1977), 16--22
- F. Rivero,
Anillos con algoritmo débil (Span.),
Notas de Matem\'atica 49, Universidad de los Andes, 1982. ii+114 pp.
- K. A. Rodosskij,
On Euclidean rings,
Sov. Math. Dokl. 22 (1980), 186--189
- K. A. Rodosskij,
The Euclidean algorithm (Russ.), Moskow 1988, 240 pp.
ISBN: 5-02-013726-X
- H. Rolletschek,
The Euclidean algorithm for Gaussian integers,
EUROCAL'83, Lecture Notes Comp. Sci. 162 (1983), 12--23
- H. Rolletschek,
On the number of divisions of the Euclidean algorithm
applied to Gaussian integers,
J. Symbolic Comput. 2 (1986), no. 3, 261--291
- H. Rolletschek,
Shortest division chains in imaginary quadratic number fields,
Symbolic and algebraic computation (Rome, 1988), 231--243,
Lecture Notes in Comput. Sci., 358, Springer, Berlin, 1989
- H. Rolletschek,
Shortest division chains in imaginary quadratic number fields,
J. Symbolic Comp. 9 (1990), 321--354;
- B. Rosser,
A generalization of the Euclidean algorithm to
several dimensions, Proc. Nat. Acad. Sci. U. S. A. 27
(1941), 309--311
- B. Rosser,
A generalization of the Euclidean algorithm to
several dimensions, Duke Math. J. 9 (1942), 59--95
- P. A. Samet,
The product of non-homogeneous linear forms I,
Proc. Cambridge Phil. Soc. 50 (1954), 372--379
- P. A. Samet,
The product of non-homogeneous linear forms II,
Proc. Cambridge Phil. Soc. 50 (1954), 380--390
- P. Samuel,
About Euclidean rings,
J. Algebra 19 (1971), 282--301
- J. Sauvageot,
Algorithmes d'Euclide dans certains corps biquadratiques,
Sém. Delange-Pisot-Poitou, exp. no 15, 1972/73, 3pp
- J. Schatunowsky,
Der grösste gemeinschaftliche Teiler von algebraischen
Zahlen zweiter Ordnung mit negativer Diskriminante und die
Zerlegung dieser Zahlen in Primfaktoren,
Diss. Strassburg (1911), Leipzig 1912
- P. Schreiber,
A supplement to J. Shallit's paper: "Origins of the analysis
of the Euclidean algorithm", Historia Math. 22 (1995),
no. 4, 422--424
- R. Schroeppel,
$Q(\root 5 \of 2)$ is norm-Euclidean,
unpublished, 1993
- V. Schulze,
Verallgemeinerte euklidische Algorithmen,
Arch. Math. 64 (1995), 313--315
- L. Schuster,
Reellquadratische Zahlkörper ohne Euklidischen Algorithmus,
Monatsh. Math. Phys. 47 (1938), 117--127
- J. Shallit,
Origins of the analysis of the Euclidean algorithm,
Historia Math. 21 (1994), no. 4, 401--419;
- D. B. Shapiro, R. K. Markanda, E. Brown,
Some Euclidean properties for real quadratic fields,
Acta Arith. 47 (1986), 143--152
- J. R. Smith,
On Euclid's algorithm in some cyclic cubic fields,
J. London Math. Soc. 44 (1969), 577--582
- J. R. Smith,
The inhomogeneous minima of some totally real cubic fields,
Computers in number theory, London (1971), 223--224
- H. M. Stark,
The papers on Euclid's algorithm,
The Collected papers of H. Heilbronn (1990), 586--587
- H. P. F. Swinnerton-Dyer,
The inhomogeneous minima of complex cubic norm forms,
Proc. Cambridge Phil. Soc. 50 (1954), 209--219
- Y. Tanimura,
Euclidean algorithm in quadratic fields II,
Sci. Rep. Lib. Arts Ed. Gifu Univ. Natur. Sci. 3
(1964/65), 339-345
- Y. Tanimura,
Euclidean algorithm in quadratic fields III,
Sci. Rep. Lib. Arts Ed. Gifu Univ. Natur. Sci. 4
(1967), 13--18
- Y. Tanimura,
Euclidean algorithm in cubic fields I,
Sci. Rep. Lib. Arts Ed. Gifu Univ. Natur. Sci. 4
(1969), 135--137
- Y. Tanimura,
Non Euclidean point in field \({\mathbb Q}(\sqrt{97})\),
Bull. Tokai Women's College 2 (1982), 39--44
- H. Tapia-Recillos, J. Valle Can,
Non-Euclidean principal ideal domains of algebraic
integers (Span.),
Proceedings of the XIX-th National Congress
of the Mexican Math. Soc. 1 (1986), 231--252
- E. M. Taylor,
Euclid's algorithm in cubic fields with complex conjugates,
Ph.D. thesis London (1975)
- E. M. Taylor,
Euclid's algorithm in cubic fields with complex conjugates,
J. London Math. Soc. 14 (1976), 49--54
- J. G. Tena Ayuso,
Subannillos Euclideos de cuerpos quadraticos reales,
Rev. Math. Hisp.-Amer. 37 (1977), 43--50
- C. Traub,
Theorie der sechs einfachsten Systeme complexer Zahlen, I, II,
Beilage zum Programm des Grossh. Lyceums,
Mannheim 1867/1868
- S. Treatman,
Euclidean Systems, Diss. Michigan, 1996
- P. Varnavides,
Note on non-homogeneous quadratic forms,
Quart. J. Math. Oxford 19 (1948), 54--58
- P. Varnavides,
Non-homogeneous quadratic forms,
Proc. Ned. Acad. Wet. 51 (1948), 396--404
- P. Varnavides,
Euclid's algorithm in real quadratic fields,
Prakt. Math. Athenon 24 (1949), 117--123
- P. Varnavides,
On the quadratic form x2-7y2,
Quart. J. Math. Oxford 20 (1949), 124--128
- P. Varnavides,
The Euclidean real quadratic number fields,
Indag. Math. 14 (1952), 111--122
- P. Varnavides,
The nonhomogeneous minima of a class of binary
quadratic forms,
J. Number Theory 2 (1970), 333--341
- L. N. Vaserstein,
On the group SL(2) for Dedekind domains of arithmetic type,
Mat. Sb. 89 (131) (1972), 313--322
- E. M. Vechtomov,
On the general theory of Euclidean rings (Russian),
Abelian groups and modules, No. 9 (Russian), 3--7, 155,
Tomsk. Gos. Univ., Tomsk, 1990;
- G. R. Veldkamp,
Remark on Euclidean rings (Dutch),
Nieuw Tijdschr. Wisk. 48 (1960/61), 268--270
- P. L. Wantzel,
Notes sur la théorie des nombres complexes,
Compt. Rendus de l'Academie des Sciences 24 (1847)
- P. L. Wantzel,
Extraits des Proces-Verbaux des Seances, Soc. Philomatique de Paris
(1848), 19--22
- J. H. M. Wedderburn,
Non-commutative domains of integrity,
J. Reine Angew. Math. 167 (1932), 129--141;
Fd M 58.0148.01,
- P. J. Weinberger,
On Euclidean rings of algebraic integers,
Proc. Symp. Pure Math. 24 Analytic number theory, AMS,
(1973), 321--332
- J. C. Wilson,
A principal ideal ring that is not a Euclidean ring,
Math. Mag. 46 (1973), 34--38;
Selected Papers on Algebra (R. Brink, ed.), 1977, p. 79--82
- K. C. Yang,
Quadratic fields without Euclid's algorithm,
Sci. Rep. Nat. Tsing-Hua Univ. A 3 (1935), 261--264
- H. You,
Some notes on rings with Euclidean algorithms (Chin.),
Dongbei Shida Xuebao 1984, no. 2, 17--19;
- T. Zaupper,
A quasi-Euclidean algorithm (Hungar.),
Bull. Appl. Math. 31, no. 210 (1983), 127--145
- Y. M. Zheng,
The structure of Euclidean rings with unique division
(Chin.), J. Math. (Wuhan) 1 (1981), no. 2, 185--188