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1 Introduction

A fundamental problem in science is the description and quantification of
topological entanglement complexity of filaments — embedded arcs, circles
and graphs in 3-space. This problem is the province of the mathematical sub-
ject of knot theory, and it has a fascinating history going back to the work of
Gauss and Maxwell [Sv]. In more recent times, physicists and mathematicians
(stimulated by the behavior of real filament systems), have become interested
in measuring entanglement of random systems and entanglement changes with
length and/or density (length per unit volume), and in understanding the
physical ramifications of entanglement. Random entanglement increases with
filament length and/or density; physical intuition is absolutely clear on this
point. As (almost) everyone has experienced, a 100 foot electrical extension
cord (when carelessly bunched up and put in a corner of the garage by your
teenager) is difficult to untangle when you get ready to use it — when you
find the ends of the cord and pull them apart, the cord is invariably highly
entangled, and has at least one knot in it. In order to use the extension cord,
you must snake a cord end through the tangle to resolve it. By comparison,
a 25 foot extension cord (stored in the same careless fashion) untangles much
more easily — you need only to find the ends and pull them apart, often
outstretching the cord with little or no entanglement. Can one quantify ob-
servations like this, and/or prove theorems about entanglement? The answer
is YES, and this article will describe some of the theoretical and simulation
results on random entanglement, and give a few scientific applications. This
article is by no means exhaustive; I will only describe some of the work I
am most familiar with. I will, for example, prove that, on the simple cubic
lattice Z3, the probability that a randomly chosen n-edge polygon in Z3 is
knotted goes to one exponentially rapidly with length n; in other words, all
but exponentially few polygons of length n in Z3 are knotted. I once had
the experience of presenting this proof (Murphy’s Law of entanglement) at a
research conference; one of the questions I was asked after my talk (by a non-
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mathematician!) was “Why does one need to prove that the longer a random
polygon, the more likely it is to be knotted? This phenomenon is obvious, and
needs no proof!” Applying that same line of reasoning, the Jordan-Schoenflies
Curve Theorem (which says that every circle in the XY -plane bounds a com-
pact region (the inside) homeomorphic to the 2-disk) is also obvious and needs
no proof. As every mathematician knows, not every “obvious” statement is
true, and a proof is the intellectual laboratory where mathematical truth can
be verified. An interesting example of something which is “obvious” but in
fact false is the 3-dimensional analogue of the Jordan-Schoenflies Theorem —
that every 2-sphere in 3-space bounds a 3-disk. This was thought to be true
by mathematicians, and Alexander even claimed a proof, but took it back
when he found a mistake in his proof, and later a counterexample — the
infamous Alexander Horned Sphere [Ax1]. The horned sphere is very badly
embedded in 3-space — it has a Cantor set of points where the embedding is
“wild”. By restricting to finite polyhedral 2-spheres (which cannot have any
“wild” points), Alexander was able to prove the 3-dimensional version of the
Jordan-Schonflies Theorem [Ax2].

What are the effects of entanglement in real physical systems? Leaving
aside your frustration at resolving the entanglement in the spaghetti-like mass
of computer wires under your desk, unresolved entanglement of DNA in cells
is a death sentence for that cell [BZ, LZC]. Most drugs for the treatment
of bacterial infections or cancer work by inhibiting cellular enzymes, which
resolve molecular entanglement in the cell, and the target cell (a pathogen
or cancer cell) dies as a result. In polymer science, macroscopic properties
of polymer systems often depend on microscopic intermolecular entanglement
[RBHS]; entanglement determines whether or not the polymer system is a
gel or a polymer fluid, and if a solid, the entanglement has consequences
in the strength of the material. In fluid dynamics, plasma and superfliud
physics [Mof,Ric1,Ric2], entanglement of magnetic and vortex filaments have
important consequences for the energy of the system.

2 The Frisch-Wasserman-Delbruck Conjecture

The specific problem of occurrence of knots in a long linear polymer chain was
first addressed independently by Frisch and Wasserman in 1961 [FW,Was],
and by Delbruck in 1962 [Del]. Both groups formulated questions about the
probability that a closed circular polymer chain with degree of polymeriza-
tion n (n monomers) would contain a knot. More specifically, if one performs
a cyclization reaction (random closure) on a dilute solution containing lin-
ear polymers with polymerization degree n, what would be the yield of this
reaction? Neglecting dimers, trimers, etc., and focusing only on the circular
reaction products with n monomers, what is the product spectrum (histogram
of knot types)? Frisch and Wasserman and Delbruck conjectured (no surprise
here!):
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Conjecture 1 (Frisch-Wasserman Delbruck (FWD) Conjecture). The proba-
bility that a randomly embedded circle of length n in R3 is knotted tends to
one as n tends to infinity.

Numerical evidence pointing to the truth of the FWD conjecture abounds:
The first Monte Carlo simulation of knotting in random polygons was done
by Vologodskii et al [VLF]. They generated a random sample of polygons of
length n, and used ∆(−1), the order of the knot (the Alexander polynomial
evaluated at t = −1) to detect knotting. One of the models they investigated
was a random walk model on the simple cubic lattice Z3. One starts at the
origin, and performs a random walk; when a self-intersection of the walk is
encountered, perturb the entire lattice a small amount in a random direction
to remove the intersection and keep walking. As one continues on the walk,
bias the walk to return to the origin after n steps. The found that the knot
probability rose with increasing length n, and obtained quite high knot proba-
bilities (60% for n = 300). Other groups [CM,MW] performed similar studies
20-30 years ago, with similar results — the knot probability grows with n,
tending toward unity as n tends to infinity.

In 1986 I gave a talk at a Canadian Chemical Society meeting in Saskatoon
where I presented the FWD conjecture. Stu Whittingon was in the audience,
and after my talk came up and asked “Have you heard of the Kesten Pattern
Theorem?” At that point Stu and I began to work on the FWD conjecture.
The model we chose to use was self-avoiding walks (SAW) and self-avoiding
polygons (SAP) on Z3. The simple cubic lattice is useful for describing ex-
cluded volume effects in polymers in dilute solution, and allows one to do both
rigorous asymptotic proofs as n goes to infinity, and numerical simulations for
small values of n, allowing us to complete a proof of the FWD conjecture
[SW].

On the simple cubic lattice Z3, a step is a directed edge joining two adja-
cent lattice points. An n-step self-avoiding walk (n-SAW) beginning at lattice
point x0 is an (n+1)-tuple of distinct lattice points {x1, . . . , xn} where xi and
xi+1 are adjacent in the lattice for 0 ≤ i < n. An n-step self-avoiding polygon
(n-SAP) is an n-SAW whose first and last vertices are adjacent in the lattice.
An n-SAW (n-SAP) is rooted if x0 = 0. Since there are finitely many rooted
n-SAWs (n-SAPs) for each n, then the probability that a randomly chosen
n-SAP is knotted is simply the ratio of the number of rooted, knotted n-SAP
divided by the number of rooted n-SAP.

The key idea in the proof of the FWD conjecture is the Kesten Pattern
Theorem [Kes]. A Kesten pattern X is a SAW which has a way in and a way
out, a walk that can be concatenated so that it can appear many times in a
long SAW. For an example of a SAW in Z3 which is not a Kesten pattern,
consider a “crab trap”, a lattice cube in which the boundary sphere of the cube
is saturated by the walk, which then enters the interior of the cube. Once inside
the cube, the walk cannot exit the cube because all the boundary vertices are
already occupied, and the walk must terminate inside the cube. Kesten proved
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that given any Kesten Pattern X there is a positive density DX > 0 associated
to this pattern such that, for sufficiently large n, X appears (up to translation)
at least bDXnc times in all but exponentially few self-avoiding walks of length
n. The first step was to extended Kestens result to cover patterns in SAP as
well as SAW on Z3 [SW].

So a Kesten pattern appears at least once in all but exponentially few
sufficiently long SAW and SAP. In order to prove the FWD on Z3, one needs
to produce a Kesten pattern T such that if T appears in a given SAP, then
that SAP is guaranteed to be knotted. A tight knot is such a pattern, for
example the one specified by the SAW T given below. Suppose that we have
a right-handed coordinate system in Z3, and let i, j, k be the unit vectors in
the X, Y, Z directions, respectively. Beginning at the origin in Z3, take the
following 18-step walk:

T : {j, j,−i, k, k, i, i,−k,−j,−k,−k,−i,−i, k, k, i, j, j}.

How can we be guaranteed that if the SAW T appears in a SAP, then that
SAP is knotted? Ordinarily local patterns such as T in a long circle to not
guarantee that the circle is knotted, because the circle can snake back through
the local entanglement T and undo the local knot (just as one resolves the
entanglement in a long extension cord). However, the self-avoiding condition
prevents any such snaking back through the entanglement, and any SAP that
contains the pattern T must be knotted. More precisely, each occupied vertex
in a SAW (SAP) sits in the middle (barycenter) of a dual 3-cube, and one can
think of this dual 3-cube as the excluded volume generated by that occupied
lattice site. Let T be the 16-step sub walk of T obtained by deleting the
first and last steps. Let N(T ′) denote the lattice neighborhood of T ′ — the
union of the 16 dual 3-cubes which surround the vertices of T ′. N(T ′) is a
3-ball, and T enters and exits N(T ′) transversely in its first and last steps.
Suppose now that K is any SAP that contains T . The 2-sphere boundary of
N(T ′) separates K into the connected sum of two knots, one of which is the
trefoil formed by the intersection of K and N(T ′). In order to prove that K
is knotted, we compute the genus of K. Every knot K is spanned by many
orientable surfaces (called Seifert surfaces). If one takes the minimum genus
over all the Seifert surfaces spanning the knot, one obtains the genus of the
knot g(K). K is unknotted if and only if K spans a 2-disk, so K is unknotted
if and only if g(K) = 0, and K is knotted if and only if g(K) ≥ 1. Since the
knot genus is additive on connected sums [Adm], and the trefoil is a summand
of K of genus one, then the genus of K is at least one, hence K is knotted. A
similar proof of the FWD conjecture (also based on Kesten’s pattern theorem)
was found independently by Nick Pippenger [Pip].

The number pn of rooted SAP of length n in Z3 behaves as [RSW]

pn = eκn+o(n)

and the number of unknotted polygons p0
n behaves as
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p0
n = eλn+o(n)

with 0 < λ < κ so that the knot probability P (n) behaves as

P (n) = 1− e−αn+o(n)

for some positive constant α.

Theorem 1 (SW,Pip). The probability that an n-SAP in Z3 is knotted goes
to one exponentially rapidly as n tends to infinity.

Although we have proved that there exists a positive constant that de-
scribes the knotting probability P (n), no rigorous analytic method for com-
puting is known, and the value of must be determined by simulation. For
n < 24, there are no knotted SAPs, and for n = 24, there are exactly 3496
knotted 24-SAPs (all trefoils) [Do1], out of a total of something of the order
of 1013 24-SAPs, so P (n) = 0 for n < 24 and P (24) is positive but vanish-
ingly small. Simulation results on Z3 produce something on the order of 1%
knots for n = 1000 [RW]. Knot-type specific estimates of knot probability
parameters have also been made [DT1].

We have now proved that all but exponentially few sufficiently long SAP
contain a tight trefoil. What about other knots? In fact, the above argument
can be used to show that, as n tends to infinity, every knot eventually appears
as a summand — that is, if K∗ is a fixed knot type, then all but exponentially
few sufficiently long SAP contain a copy of K∗ as a summand [SSW]. Let K∗

denote a knot type in S3, and let K∗ be a polygonal representative of K∗

in S3. Insert a new vertex in the interior of an edge of K∗, and regard this
new vertex as the point at infinity in S3. By removing this point, we get a
knotted polygonal arc in R3 with the property that the ends of the knotted
arc go off to infinity along the X-axis. Take a regular projection of this arc
on the XY (z = 0) plane; by forgetting the crossover information (over-under
at each crossing), and using isotopy in the XY plane and subdivision when
necessary, we obtain an immersion of the arc in the square lattice XY plane,
and the ends go off to infinity along the X axis. The non-trivial part of the
immersed arc (all of the immersion except for parts of the ends which go off
to infinity) is contained in a square in the XY plane with vertices (±d,±d, 0)
for some even integer d. This square intersects the immersion in two points
where the straight ends of the immersed arc go off to infinity. We can now
recover the knotted arc by remembering the crossing information. Replace
each two lattice steps which represent an underpass by a path which detours
one step into the z = −1 plane, continues two steps as the underpass in the
z = −1 plane, and then returns in one step to the z = 0 plane. We now have
an infinite SAW contained in two parallel planes, z = 0 and z = −1. This arc
exits the square with vertices (±d,±d) at two points: (−d, 0, 0) and (d, 0, 0).
By removing the infinite ends (remove all vertices (x, 0, 0) with x ≤ −d and
x ≥ d), one obtains the finite SAW α where α has captured the knot type
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K∗. The lattice neighborhood N(α) is homeomorphic to a punctured 2-disk
cross an interval — a piece of Swiss cheese. We need to fill in the holes by
extending α to α∗ such that α∗ still represents the knot K∗ and N(α∗) is a
3-ball. We do this by draping the ends of α over the entire disk, analogous to
pouring syrup on a pancake, filling up all the holes. Start at the vertex (d, 0, 0),
the right-hand endpoint of α. Add the vertex (d, 0, 1), then traverse upward
through (d, 2, 1), (d, 3, 1), . . . , (d, d, 1). Proceed left to vertex (d−1, d, 1), then
traverse down through (d − 1, d − 1, 1), . . . , (d − 1,−d, 1); then left to vertex
(d−2,−d, 1), then up through (d−2,−d+1, 1), etc. Proceed to zigzag up and
down until vertex (1, d, 1) is reached (on an upward traversal), then add an
endpoint vertex (1, d + 1, 1). These steps which have been added to α drape
the SAW over the right-hand half of the enclosing square, and the knot type
has been preserved because the added steps can be vertically pulled up and off
of the “knotted” part of the arc. Perform the analogous procedure on the left-
hand half of the square, starting with the vertex (−d, 0, 0), moving one step
up to the z = 1 plane, then proceeding up the left-hand edge of the square
until the top is reached, then moving one step to the right, going straight
down until the bottom of the square is reached, then up, etc. On the last
downward traversal, the vertex (0,−d, 1) is reached, and one then adds an
endpoint (0, d,−1). The SAW α∗ so produced is the desired Kesten pattern
representing the knot type K∗.

We have shown the following:

Theorem 2 (SSW). Let K denote a given knot type; then there exists a
positive density DK such that, for sufficiently large n, the knot K appears at
least bnDKc times as a summand of all but exponentially few SAPs of length
n on Z3.

There are two other models in which the FWD conjecture has been proven.
One model is the Gaussian Random Polygon (GRP) model. An n-GRP is a
piecewise linear circle in R3 with n edges in which the edge lengths form a
Gaussian distribution. In [DPS] a continuum version of the Kesten pattern
theorem was proved, and then used to prove that the probability that a ran-
domly chosen n-GRP is knotted tends to one exponentially rapidly as n tends
to infinity. The other is the Equilateral Polygon (EP) model. An n-EP is an
equilateral polygon in R3 with n edges. In [Do2] Diao proved the FWD con-
jecture for equilateral polygons. All of the proofs of the FWD discussed to this
point have relied on local (tight) knots to force knotting of sufficiently long
polygons. Can it be shown that almost all sufficiently long random polygons
have global (non-local) knots in them? The answer is YES. Jungreis [Jun]
proved global knotting in the GRP model; with high probability a long ran-
domly chosen polygon is a satellite knot (it is an essential loop in a knotted
solid torus), so the knot cannot be unknotted by small perturbations which
could kill local knots). Diao et al. [DNS] also proved global knotting in the EP
model. As far as I know, global knotting for SAP on Z3 is almost certainly
true but has not yet been proved.



Random Knotting: Theorems, Simulations and Applications 7

The codimension two phenomenon of knotting occurs in all dimensions;
p-spheres can be knotted in (p+2) space [Rol] for all p ≥ 1. Consider rooted p-
spheres in Zp+2. Consider p-spheres in Zp+2 that are the union of unit p-cells,
where a unit p-cell in Zp+2 is one spanned by 2p vertices that are adjacent in
Zp+2. Let n − Sp denote a p-sphere with n unit p-cells. The integer n is the
n-dimensional area measure of the p-sphere. There are finitely many rooted
n−Sp for each n. The generalization of the FWD to higher-dimensional knots
is:

Conjecture 2 (Generalized FWD Conjecture). The probability that a ran-
domly chosen n − Sp in Zp+2 (p ≥ 2) is knotted tends to one as n tends
to infinity.

In the above conjecture, the number n represents the p-dimensional volume
measure (the size) of the p-sphere in Euclidean (p + 2)-space. The above
conjecture of the inevitability of knotting of randomly embedded spheres as
the volume of the sphere tends to infinity can be made in any codimension
2 context in Euclidean space; smooth codimension 2 spheres, piecewise linear
codimension 2 spheres, locally flat codimension 2 spheres, etc. Efforts to prove
this conjecture for p = 2 (2-spheres in 4-space) have been made, without
success. One problem is that there is no known analogue of a Kesten Pattern
Theorem for 2-disks in Z4, so a new idea may be required in order to prove this
conjecture. To my knowledge, although almost certainly true, no numerical
simulation evidence for this conjecture exists.

3 Entanglement Complexity of Random Knots and
Random Arcs

Intuition tells us that the entanglement of random knots grows with length —
the longer it is, the more entangled. We are now positioned to measure entan-
glement complexity, and prove that the complexity grows at least linearly with
the length. The reason for this growth in complexity with length is that long
random knots are highly composite (have many summands), and most mea-
sures of knot complexity are additive under connected sum. It is instructive at
this point to recall the work of Kendall [Ken] on the complexity of Brownian
motion. Kendall proved that given any (smooth or finite polygonal) arc in
R3, and given any closed tube neighborhood of this arc, the Brownian motion
eventually enters one end of the tube for the last time, traverses around the
interior of the tube, then exits the other end of the tube. This happens no
matter how complicated the arc and how small the tube diameter. So, Kendall
has shown that Brownian motion exhibits all knots at all scales.

LetK denote the set of knot types in R3. A good measure of knot complexity
is a function F : K → [0,∞) that satisfies the following:

(a) F (unknot) = 0
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(b) There exists a knot type K ∈ K such that F (nK]L) ≥ nF (K) > 0 for all
L ∈ K, where ] denotes connected sum of knots.

Good measures of knot complexity are designed so that the complexity
of any knot that contains pK as a summand is bounded below by p times
the complexity of K; hence any good measure of knot complexity diverges
to infinity at least linearly with length. More precisely, we have the following
lemma:

Lemma 1 (SSW). For any F (a good measure of knot complexity), let K be a
knot that satisfies part (b) of the definition above. Then, there exists a positive
integer nK such that for sufficiently large n > nK , all but exponentially few
n-SAPs have F -complexity which exceeds F (K) ((n/nK)− 1).

Proof. Choose DK as in Theorem 2 above and choose nK such that b(nK −
1)DKc = 0 and bnKDKc = 1. For sufficiently large n > nK , all but expo-
nentially few n-SAPs K ′ are of the form K ′ = bnKDKcK]L for some L ∈ K.
This means that F (K ′) ≥ bnKDKcF (K) > F (K)((n/nK)− 1). ut

Theorem 3 (SSW). The following are good measures of knot complexity:

(a) number of prime factors
(b) genus
(c) bridge number −1
(d) span of any non-trivial knot polynomial
(e) log(order)
(f) crossing number
(g) unknotting number
(h)minor index
(i) braid index −1

Proof. All of the above are non-trivial non-negative integer knot invariants,
and some are known to be additive on connected sum. In any event, each of
them is additive on trefoil summands of a given knot, so the fact that random
knots tend to have many trefoil summands means that their complexity must
grow at least linearly with length. I will give the argument for one of the more
interesting entanglement invariants, the unknotting number. For a knot K,
the unknotting number µ(K) is the minimum number of times that the knot
must be passed through itself in order to unknot it. Unknotting number is
believed to be additive on connected sums:

Conjecture 3 ((Additivity of Unknotting Numbers)). µ(K1]K2) = µ(K1) +
µ(K2).

For any knot K, let X denote the bounded knot complement in S3, and
X∗ denote the infinite cyclic covering space of X. H1(X∗;Z) is presented
as a module over the ring Λ = Z[t, t−1] (the integral group ring of the infi-
nite cyclic multiplicative group) by a square matrix with entries in Λ, called
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the Alexander matrix. Let m(K) denote the minor index of K, that is, the
minimum size for any square Alexander matrix that presents the Λ-module
H1(X∗;Z). ut

We now use the following theorem of Nakanishi:

Theorem 4 (Nak). For any K ∈ K, 0 ≤ m(K) ≤ µ(K).

Hence, if K = 31 (the trefoil knot), then 0 ≤ n ≤ m(nK]L) ≤ µ(nK]L)
for any L ∈ K, so the minor index and the unknotting number are good
measures of knot complexity. ut

Scientists continue to be interested in measuring entanglement of arcs in 3-
space — they would like to be able to measure exactly where an arc is knotted,
for example. In all of 3-space, every arc is unknotted — one can thread an
end through any entanglement in order to resolve it. However, if the ends are
constrained (to lie in a 2-sphere for example), the arc can be knotted. In the
proof of the FWD conjecture above, the pair (N(T ′), N(T ′)∩ T ) is a knotted
ball pair — a knotted arc in an enclosing 3-ball. On the other hand, if one
were to take a closed tube neighborhood B of the SAW T (with the ends of
T in the ends of B), then the pair (B, T ) would be an unknotted ball pair —
whether or not the arc T is unknotted depends on the surrounding 3-ball one
chooses [SW, Fig. 1].

Given any (smooth, finite polygonal) arc (circle) in 3-space, it is possible
to measure the (geometric) complexity of the embedding as follows: given any
regular projection of the arc (circle), compute the crossing number, and then
average this quantity over all projections, to get the average crossing number
of the arc (circle). It is possible to alter the trefoil pattern T by adding edges to
obtain a slightly longer trefoil pattern S such that one sees at least 3 crossings
in every regular projection of S. The Kesten pattern theorem guarantees that
all but exponentially few sufficiently long n-SAWs (n-SAPs) contains at least
bnDSc copies of the trefoil pattern S, so the average crossing number of any
such n-SAW (n-SAP) is bounded below by 3bnDSc. This means that if Xn

denotes the expected value of average crossing number over all n-SAWs (n-
SAPs), we have the following result:

Theorem 5 (RSW). Xn →∞ with n, and the divergence is at least linear.

In order to detect true topological entanglement in an arc in 3-space, one
needs to join the ends up to form a circle, and then use topological measures
of entanglement for circles. In [RSW] this closing operation was performed
on n-SAWs in Z3 using two methods: (a) Choose a direction at random, and
construct two parallel rays from the endpoints of the SAW to infinity. One
can assume that the rays meet at the point infinity in S3, so this operation
produces a circle. (b) Choose a direction at random, and add two short (length
less than one) parallel line segments to the ends of the n-SAW, then close up by
adding a straight line segment connecting the ends of the added segments. This
almost always produces an embedded circle. It can be shown [RSW] that either
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of these closure methods produces circles whose (topological) entanglement
complexity (as in Theorem 4) diverges to infinity at least linearly with n. In
[RSW] the results of Monte Carlo simulations are discussed which show that
for n ≤ 2000, the entanglement measure expected log(order) gives almost
identical results for both methods of n-SAW closure, and that this measure
grows with increasing n.

4 Writhe, Signature and Chirality of Random Knots

There are other interesting measures of geometric and topological entangle-
ment complexity which are additive when applied to connected sums of knots,
but can take on negative as well as positive values, so it is possible for the
measure to yield zero when evaluated on a nontrivial connected sum. For
measures such as this, we will show that a lower bound for the growth of the
absolute value of one of these measures is

√
n (instead of n itself).

Given a regular planar projection in the direction ξ of the (smooth, finite
polygonal) oriented circle K in R3, assign the integer ±1 to each crossing
as determined by the right-hand rule (oriented skew lines sign convention)
in Figure 1. Note that the sign of a given crossing in the projection is in-

Fig. 1. Oriented skew lines sign convention

dependent of orientation of the circle; reversing the orientation of the circle
in turn reverses the orientation of each arrow in a crossing, leaving the sign
of the crossing invariant. Adding up the signs for each crossing in the regu-
lar projection, one obtains the projected writhe ωξ(K); by averaging over all
directions ξ ∈ S2, we obtain the writhe ω(K). The writhe is a real-valued
geometric measure of non-planarity of K; if K is a subset of a plane in R3,
then ω(K) = 0 [Ful]. Note that ω(K) is not a topological invariant — the
writhe changes when one twists or bends a knot.

In order to approximate the writhe for a given knot K, one needs to
choose a finite (but usually large) set of directions, compute the projected
writhe for each direction, then average the results. For SAPs on Z3, however,
one can compute the writhe exactly using only 4 directions because of the
symmetry of Z3 [LS,Cim,LaS]. Moreover, the (first) proof of this fact [LS]
used linking numbers to characterize the writhe; the topological invariance
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of linking numbers and the fact that one need use only 4 directions is useful
both in proving rigorous results about the writhe of random n-SAPs and in
doing Monte Carlo simulations to compute average properties of the writhe
for n-SAPs [ROS].

Suppose that we are using the projection direction ξ (ξ is a unit vector);
let Kξ denote the pushoff of K in the direction ξ;Kξ = K + sξ, where s is
a small positive number. The pushoff Kξ inherits its orientation from K. Let
Lk(K, Kξ) denote the linking number of K with Kξ.

Lemma 2 (LS). ωξ(K) = Lk(K, Kξ).

Proof. The linking number Lk(K, Kξ) is computed from any regular projec-
tion of the pair of oriented curves (K, Kξ). Given any regular planar projec-
tion, ignore self-crossings of each curve, and assign the integer ±1 to each
crossing involving the top strand from K and the bottom strand from Kξ.
The sum of these signed crossings is the linking number. We would like to use
the projection in direction of unit vector ξ to determine the linking number; of
course, since Kξ is the pushoff of K in direction ξ, Kξ lies in the shadow of K
and we cannot see it at all in the projection. However, in the plane of the pro-
jection, as one walks around the knot diagram in the orientation direction, one
can construct the planar pushoff of the projection of K; push K to the right
to obtain a parallel copy K∗ of K. K and K∗ form a pair of railroad tracks;
each original crossing of K becomes 4 crossings where the railroad crosses
itself. By putting a small upward bump in the overcrossing track, we see that
there is a small embedded annulus (horizontal curtain) connecting K to K∗.
Moreover, each original overcrossing of K gives rise to a single overcrossing of
K over its planar pushoff K∗. Since K∗ is oriented in parallel to K, the sign
of the overcrossing of K over K∗ is identical to the sign of K overcrossing
itself. We conclude that ωξ(K) = Lk(K, K∗). Now allow the force of gravity
to pull the horizontal annulus curtain to vertical position. This downward
rotation of the annulus is an isotopy in the complement of K which takes the
planar pushoff K∗ to the pushoff Kξ. Hence, Lk(K, K∗) = Lk(K, Kξ), and
we conclude that ωξ(K) = Lk(K, Kξ). ut

Consider now the 2-sphere S of projection (pushoff) directions in R3, and
take S to have radius 1/2, centered at the origin. The 3 coordinate planes
in R3 separate S into 8 connected regions (octants) specified by constancy of
sign in each coordinate. The interior of an octant consists of points with no
coordinate = 0. Let K be a rooted SAP in Z3. For the vector direction ξ ∈ S,
we let Kξ = K + ξ denote the pushoff of K in direction ξ.

Claim (1). If ξ lies in the interior of any octant, then K and Kξ are disjoint.
Without loss of generality, assume that ξ lies in the interior of the octant
where all 3 coordinates are positive. Then ξ = (ξ1, ξ2, ξ3) where 0 < ξi < 1/2
for 1 ≤ i ≤ 3. Points in the SAW K have the property that at least two
of the coordinates are integers. The points in the pushoff Kξ are obtained by
adding the vector ξ = (ξ1, ξ2, ξ3) to each of the points of K. Suppose now that
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(x, y, z) ∈ K, and that (x + ξ1, y + ξ2, z + ξ3) ∈ K ∩ Kξ. By the pigeonhole
principle, at least one of the following is true: both x and x + ξ1 are integers;
both y and y + ξ2 are integers; both z and z + ξ3 are integers. This means
that at least one of {ξ1, ξ2, ξ3} is a non-zero integer, which is impossible. The
validity of claim 1 means that Lk(K, Kξ) is defined for any pushoff in the
interior of any of the 8 octants of S.

Claim (2). If ξ and ζ lie in the interior of the same octant, then Lk(K, Kξ) =
Lk(K, Kξ). Consider the great circle on S that goes through both ξ and ζ.
The points ξ and ζ separate the great circle into two arcs; the shorter of these
arcs is contained in the interior of the octant containing both ξ and ζ. The
points along this shorter arc define a 1-parameter family of pushoffs, starting
with ξ and ending with ζ. Thus the curve Kξ can be isotoped to Kξ in the
complement of the curve K, so we conclude that Lk(K, Kξ) = Lk(K, Kζ).
Since the area on S of each of the octants is π/8, we conclude that ω(K) can
be computed as the average of 8 directional writhes, one direction chosen from
the interior of each of the 8 octants. We can however do better than this —
we only need to average 4 directional writhes, since the directional writhe on
any octant is the same as the directional writhe on its antipodal octant, as
shown in the next claim.

Claim (3). If ξ is in the interior of an octant, then Lk(K, Kξ) = Lk(K, K−ξ).
For the parameter t with −1 ≤ t ≤ 0, let Ktξ be obtained by adding the
vector tξ to each point of K. As in claim 1, for each value of t, the curves
Ktξ and Kξ are disjoint. To see this, suppose that (x + ξ1, y + ξ2, z + ξ3) =
(x′+ξ1, y

′+ξ2, z
′+ξ3) for (x, y, z) and (x′, y′, z′) ∈ K. Suppose also that both

x and x′ are integers. Then (x′ − x) = (1 − t)ξ1. But (1 − t)ξ1 cannot be an
integer because 1 ≤ (1−t) ≤ 2 and 0 < ξ1 < 1/2. Therefore we can isotop K to
K−ξ in the complement of Kξ, so Lk(Kξ,K) = Lk(Kξ,K−ξ). Likewise, we can
isotop Kξ to K in the complement of K−ξ, so Lk(K−ξ,Kξ) = Lk(K−ξ,K).
By symmetry of linking numbers in R, we conclude Lk(K, Kξ) = Lk(K, K−ξ).
ut

Theorem 6 (LS,Cim,LaS). For any SAP K, the writhe ω(K) is the av-
erage of 4 directional writhes, with the directions chosen in any 4 mutually
nonantipodal octants of S, and 4ω(K) is an integer.

Now we would like to investigate the properties of the ensemble of rooted
n-SAPs. If K is an n-SAP, let K∗ denote the mirror image of K. Writhe has
the property that ω(K) = −ω(K∗); so if we were average the writhe over all n-
SAPs, the expected value of the writhe 〈ω〉n = 0 by symmetry. Consequently,
we are interested in the expected value of the absolute value of the writhe
〈|ω|〉n, or the square of the writhe 〈ω2〉n. More generally, we are interested in
the distribution of 〈|ω|〉n over the set of n-SAPs.

Let P = (0, 0, 0) and Q = (0, 1, 0) in Z3. Both P and Q are on the
boundary of a solid cube C of size 2× 2× 2 whose corners are:
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{(0,−1, 0), (0, 1,−1), (0,−1,−1), (0, 1, 1),
(2,−1, 0), (2, 1,−1), (2,−1,−1), (2, 1, 1)}

The cube C is symmetric about the plane z = 0. Let {i, j, k} denote unit
vectors in a right-handed coordinate system for Z3 . Consider the 10-SAP B
contained in C and described as follows: begin at P , and follow the sequence
of steps {i, i,−k,−j,−i, j, j, k,−i,−j}. Let ω(B) denote the writhe of B. In
order to use Theorem 8 above, we choose pushoff directions as follows: v1 =
(1, 1, 1), v2 = (−1, 1, 1), v3 = (−1,−1, 1), v4 = (1,−1, 1). Let {B1, B2, B3, B4}
denote pushoffs of B in the 4 pushoff directions {v1, v2, v3, v4}. For each
pushoff direction we choose a small enough scalar to ensure that adding
that scalar multiple of the pushoff direction to B to create the pushoff cre-
ates no intersections between B and its pushoff. By inspection, we have that
Lk(B,B1) = Lk(B,B3) = Lk(B,B4) = +1 and Lk(B,B2) = −1. Hence
ω(B) = +1/2. If B∗ denotes the mirror image of B (reflected in the plane
z = 0), then ω(B∗) = −1/2.

Suppose now that A is a SAP which (given one of its two orientations)
intersects the cube C only in the SAW B′ which begins at P and ends at
Q and traverses all the steps of B except the last one: that is, B′ starts at
P and consists of the 9 steps {i, i,−k,−j. − i, j, j, k,−i}. We can truncate
the polygon A by deleting the 9 steps of B′ and adding in the step i which
connects P to Q in the boundary of C, generating the new polygon A′. The
polygon A is obtained by concatenating A′ and B.

Lemma 3 (ROS). ω〈A〉 = ω(A′) + ω(B).

Fig. 2. [ROS]: Additivity of writhe

Proof. Consider the following pushoffs A1 of A and A′
1 of A′ in direction v1.

Fig. 2 shows the projection down the Z-axis of these curves near the cube C;
the remainder of the projection of the polygon has been suppressed. In Fig.
2, the (+) crossing in the circle is where A1 crosses over A in the interior of
cube C. By a small move (isototpy in the interior of C), one can move curve
A straight up, crossing through curve A1 until A now goes over A1 in the
circle, and no other crossings have been changed. This gives a pair of curves
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which are isotopic (by an isotopy in the interior of C) to the pair {A′, A′
1}.

This proves that

Lk(A,A1) = Lk(A′, A′
1) + 1 = Lk(A′, A′

1) + Lk(B,B1).

A similar calculation for each of the other 3 pushoff directions gives:

Lk(A,Ai) = Lk(A′, A′
i) + 1 = Lk(A′, A′

i) + Lk(B,Bi) i = 3, 4

and

Lk(A,A1) = Lk(A′, A′
1) + 1 = Lk(A′, A′

1) + Lk(B,B1) i = 2.

Averaging these 4 equations completes the proof of Lemma 9. ut

Theorem 7 (ROS). For every function f(n) = o(
√

n), the probability that
〈|ω|〉n < f(n) goes to zero as n goes to infinity.

Proof. We use the Kesten Pattern Theorem [Kes] and a coin-tossing argument
[DPS,ROS]. We call the (3, 1) ball pair consisting of any translate of the SAW
B′ and the surrounding cube C a pattern P = {C,B′}. Let the pattern P ∗

be the ball pair {C,B′∗} where B′∗ is the mirror image of B′ (reflected in the
plane z = 0). Kesten’s pattern theorem implies that there is a positive number
ε such that for all except exponentially few sufficiently long n-SAPs, there are
at least bεnc pairwise disjoint translates of C, each of which intersects the
SAW in a translate of B′ or B′∗. The distribution of patterns among the
copies of C is analogous to tossing a coin, since each of the patterns B′ and
B′∗ occur independently with probability 1/2 in each of the bεnc translations
of the cube C. Consequently the probability that B′ occurs exactly k times
among the bεnc occurrences of either B′ or B′∗ is less than (1/

√
bεnc) for

every k ≤ bεnc. (This can be seen by using Stirling’s approximation to the
binomial distribution.) The fraction of polygons with at least bεnc occurrences
of either P or P ∗ is at least (1− e−γn) for some positive γ. For each of these
SAPs, the writhe is the sum of two terms (Lemma 9). The first term is from
the polygon formed by truncating bεnc times, and the second term is from
the bεnc copies of B or B∗ formed in these truncations. If the total writhe
of that SAP is less than f(n), then the contribution to the writhe from the
bεnc occurrences of the patterns must be one of at most d2f(n) + 1e different
values. Hence

Prob(〈|ω|〉n < f(n)) ≤ (1− e−γn)d2f(n) + 1e
√

εn

which goes to zero as n goes to infinity if f(n) = o(
√

n). ut
Theorem 10 strongly suggests that 〈|ω|〉 ∼ nα. Monte Carlo simulation

[ROS] for values of n between 400 and 1100 give a writhe distribution that is
symmetric about the origin and sharply peaked at the origin (n = 400), and
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less sharply peaked at the origin as n increases. When values of log(〈|ω|〉) are
plotted against logn, the evidence [ROS,Fig. 4] for linear behavior is excellent,
and produces the following estimate: α = 0.522± 0.004.

Are almost all long randomly chosen SAP’s chiral? The answer is yes.
One invariant that detects chirality (inequivalence of an unoriented knot
and its mirror image) is the signature σ(K) of the knot K [BZ]. If K∗

denotes the mirror image of K, then σ(K∗) = −σ(K), so if K is achiral
(K = K∗), then σ(K) = 0. The signature is additive on connected sums, so
σ(K]L) = σ(K) + σ(L). One can adapt the writhe argument above with the
trefoil pattern T replacing the curl pattern B, and a suitable rectangular par-
allelepiped replacing the cube C. Let 〈|σ|〉n denote the average of the absolute
value of the signature, averaged over all n-SAPs.

Corollary 1 (DPS). For every function f(n) = o(
√

n), the probability that
〈|σ|〉n < f(n) goes to zero as n goes to infinity.

Hence, we conclude that the average of the absolute value of the signature
of random n-SAPs grows at least as fast as

√
n, and that most long random

knots are chiral. This result was first proved for Gaussian random polygons
[DPS] by the same method.

5 Application of Random Knotting to Viral DNA
Packing

Knots and links are of biological interest because they can detect and preserve
topological information, especially information about DNA and the enzymes
that act on DNA. Knotted DNA molecules can be well characterized exper-
imentally by gel electrophoresis and microscopy (both transmission electron
and atomic force microscopy), and therefore used as assays for different bio-
chemical reactions. Characterization of knotted products formed by random
cyclization of linear molecules has been used to quantify important biochem-
ical properties of DNA such as its effective diameter [RCV,ShW]. DNA knots
and catenanes obtained as the product of site-specific recombination have also
been a key to unveiling the mechanism of enzymatic action [WC,SBS]. In both
cases, the development of mathematical and computational tools has greatly
enhanced analysis of the experimental results [FLA,ES]

Significant numbers of DNA knots are found also in biological systems:
in Escherichia coli cells harboring mutations in the GyrB or GyrA genes
[SKI], bacteriophages P2 and P4 [LDC,LPC], and cauliflower mosaic viruses
[MML]. However, very little biological information about these systems has
been inferred from the observed knots. In particular, interpretation of the ex-
perimental results for bacteriophages has been limited by the experimental
difficulty in quantifying the complex spectrum of knotted products. These
difficulties have paralleled those encountered in developing a theory for ran-
dom knotting of ideal polymeric chains in cases where interactions with other
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macromolecules and/or confinement in small volumes have a significant func-
tion [Man,TRO,MMO].

Bacteriophages are viruses that infect bacteria. They pack their double-
stranded DNA genomes to near-crystalline density in viral capsids and achieve
one of the highest levels of DNA condensation found in nature. When I was on
sabbatical in Berkeley in 1989, Jim Wang described to me the problem of DNA
packing in icosehedral viral capsids, and the high degree of knotting produced
when the viral DNA is released from the capsids. Despite numerous studies
some essential properties of the packaging geometry of the DNA inside the
phage capsid are still unknown. Although viral DNA is linear double-stranded
with sticky (cohesive) ends, the linear viral DNA quickly becomes cyclic when
removed from the capsid, and for some viral DNA the observed knot proba-
bility is an astounding 95%. In the summer of 1998, my PhD students Javier
Arsuaga and Mariel Vazquez spent 2 months in the laboratory of Joaquim
Roca in Barcelona, supported by the Burroughs Wellcome Interfaces grant to
the Program in Mathematics and Molecular Biology. In the Roca laboratory,
they infected bacterial stock, harvested viral capsids and extracted and ana-
lyzed the viral DNA. They quantified the DNA knot spectrum produced in
the experiment, and used Monte Carlo generation of knots in confined vol-
umes to compare a random knot spectrum to the observed viral DNA knot
spectrum. A series of papers were produced as a result of this collaboration
[TAV,AVT,ArT,AVM], and I will describe some of the results from these pa-
pers, focusing on (and reproducing here) most of the discussion and analysis
from the most recent PNAS paper [AVM].

All icosahedral bacteriophages with double-stranded DNA genomes are
believed to pack their chromosomes in a similar manner [EC]. During phage
morphogenesis, a procapsid is first assembled, and a linear DNA molecule is ac-
tively introduced inside it by the connector complex [RHA,STS]. At the end of
this process, the DNA and its associated water molecules fill the entire capsid
volume, where DNA reaches concentrations of 800 mg/ml [KCS]. Some animal
viruses [SB] and lipoDNA complexes used in gene therapy [SDD] are postu-
lated to hold similar DNA arrangements as those found in bacteriophages. Al-
though numerous studies have investigated the DNA packing geometry inside
phage capsids, some of its properties remain unknown. Biochemical and struc-
tural analyses have revealed that DNA is kept in its B form [ACT,EH,LDB]
and that there are no specific DNAprotein interactions [HMC,Ser] or correla-
tion between DNA sequences and their spatial location inside the capsid, with
the exception of the cos ends in some viruses. Many studies have found that
regions of the packed DNA form domains of parallel fibers, which in some
cases have different orientations, suggesting a certain degree of randomness
[EH,LDB]. The above observations have led to the proposal of several long-
range organization models for DNA inside phage capsids: the ball of string
model [RWC], the coaxial spooling model [EH,CCR,RWC,CCR], the spiral-
fold model [BNB], and the folded toroidal model [Hud]. Liquid crystalline
models, which take into account properties of DNA at high concentrations
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and imply less global organization, have also been proposed [LDB]. Cryo EM
and spatial symmetry averaging has recently been used to investigate the sur-
face layers of DNA packing [JCJ]. In [AVM], the viral DNA knot spectrum is
used to investigate the packing geometry of DNA inside phage capsids.

The bacteriophage P4 has a linear, double-stranded DNA genome that
is 10–11.5 kb in length and flanked by 16-bp cohesive cos ends [WMC]. It
has long been known that extraction of DNA from P4 phage heads results in
a large proportion of highly knotted, nicked DNA circles [LDC,LPC]. DNA
knotting probability is enhanced in P4 derivatives containing genome deletions
[WMH] and in tailless mutants [IJC]. Most DNA molecules extracted from P4
phages are circles that result from the cohesive-end joining of the viral genome.
Previous studies have shown that such circles have a knotting probability of
about 20% when DNA is extracted from mature P4 phages [LDC]]. This high
value is increased more than 4-fold when DNA is extracted from incomplete
P4 phage particles (which we refer to as capsids) or from noninfective P4
mutants that lack the phage tail (which we refer to as tailless mutants [LDC]).
Knotting of DNA in P4 deletion mutants is even greater. The larger the P4
genome deletion, the higher the knotting probability [WMH]. For P4 vir1
del22, containing P4s largest known deletion (1.6 kb deleted [RDM]), knotting
probability is more than 80% [IJC]. These values contrast with the knotting
probability of 3% (all trefoil knots) observed when identical P4 DNA molecules
undergo cyclization in dilute free solution [RCV,RUV]. These differences are
still more striking when the variance in distribution of knot complexity is
included. Although knots formed by random cyclization of 10-kb linear DNA
in free solution have an average crossing number of three [RCV,RUV], knots
from phage particles have a knotting probability of 95% and appear to have
very large crossing numbers, averaging about 26. [LDC,WMH,IJC].

The reasons for the high knotting probability and knot complexity of bac-
teriophage DNA have been investigated. Experimental measurements of the
knotting probability and distribution of knotted molecules for P4 vir1 del22
mature phages, capsids, and tailless mutants was performed by 1- and 2-
dimensional gel electrophoresis, followed by densitometer analysis. We will
describe the Monte Carlo simulations to determine the effects that the con-
finement of DNA molecules inside small volumes have on knotting probability
and complexity. We conclude from our results that for tailless mutants a sig-
nificant amount of DNA knots must be formed before the disruption of the
phage particle, with both increased knotting probability and knot complexity
driven by confinement of the DNA inside the capsid.

In [AVM] it is shown that the DNA knots provide information about the
global arrangement of the viral DNA inside the capsid. The distribution of
the viral DNA knots is analyzed by high-resolution gel electrophoresis. Monte
Carlo computer simulations of random knotting for freely jointed polygons
confined to spherical volumes is performed. The knot distribution produced
by simulation is compared to the observed experimental DNA knot spectrum.
The simulations indicate that the experimentally observed scarcity of the achi-
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ral knot 41 and the predominance of the torus knot 51 over the twist knot
52 are not caused by confinement alone but must include writhe bias in the
packing geometry. Our results indicate that the packaging geometry of the
DNA inside the viral capsid is non-random and writhe-directed.

5.1 Knot Type Probabilities for P4 DNA in Free Solution

The probability that a DNA knot K of n statistical lengths and diame-
ter d is formed by random closure in free solution is given by PK(n, d) =
PK(n, 0)e−rd/n, where r depends on the knot type and equals 22 for the
trefoil knot 31 and 31 for the figure 8 knot 41 [RCV,ShW]. The knotting
probability of a 10-kb DNA molecule cyclized in free solution is 0.03, which
implies an effective DNA diameter near 35 Å. Because P31(34, 0) = 0.06 and
P41(34, 0) = 0.009, then P31(34, 35) = 0.027 (1/36 times that of the unknot)
and P41(34, 35) = 0.003 (1/323 times that of the unknot). These values were
used to estimate the fractions of the knot 31 and the knot 41 generated for
P4 DNA in free solution.

5.2 Monte Carlo Simulation

Knotting probabilities of equilateral polygons confined into spherical volumes
were calculated by means of Markov-chain Monte Carlo simulations followed
by rejection criteria. Freely jointed closed chains, composed of n equilateral
segments, were confined inside spheres of fixed radius, r, and sampled: values
of n ranged from 14 to 200 segments; r values, measured as multiples of the
polygonal edge length, ranged from 2 to infinity. Excluded volume effects were
not taken into account. Markov chains were generated by using the Metropolis
algorithm [MRR]. The temperature, a computational parameter, was held at
T = 300 K to improve the efficiency of the sampling algorithm. Other values
of T produced similar results, thus indicating that the computation is robust
with respect to this parameter. Chains contained inside the sphere were as-
signed zero energy. Chains lying partly or totally outside the confining sphere
were assigned an energy given by the maximum of the distances of the ver-
tices of the chain to the origin. Only chains with zero energy were sampled.
A random ensemble of polygons was generated by the crankshaft algorithm
as follows: (i) two vertices of the chain were selected at random, dividing the
polygon into two subchains, and (ii) one of the two subchains was selected
at random (with equal probabilities for each subchain), and the selected sub-
chain rotated through a random angle around the axis connecting the two
vertices. This algorithm is known to generate an ergodic Markov chain in
the set of polygons of fixed length [Mil]. Correlation along the subchains was
computed by using time-series analysis methods as described by Madras and
Slade [MS]. Identification of the knotted polygons was achieved by comput-
ing the Alexander polynomial ∆ (t) [BZ,Rol,Adm] evaluated at t = −1. It is
known that ∆(−1) does not identify all knotted chains; however, for polygonal
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chains not confined to a spherical volume, nontrivial knots with trivial ∆(−1)
values rarely occur. This circumstance has been observed by using knot in-
variants, such as the HOMFLY polynomial, that distinguish between knotted
and unknotted chains with higher accuracy than the Alexander polynomial.
Computer simulations for small polygons ( < 55 segments) show that the
knotting probabilities obtained by using ∆(−1) agree with those obtained by
using the HOMFLY polynomial. Furthermore, Deguchi and Tsurusaki have
reported that the value of ∆(−1) can almost always determine whether a given
Gaussian polygon is unknotted for lengths ranging from 30 to 2,400 segments
[DT2]. Each selected knotted polygon was further identified by evaluating its
Alexander polynomial at t = −2 and t = −3. Although the Alexander poly-
nomial is an excellent discriminator among knots of low crossing number and
its computation is fast, it does not distinguish completely among some knot-
ted chains [for example, composite knots 31]31 and 31]41 have polynomials
identical to those of prime knots 820 and 821, respectively [RW]. Evaluation of
the polynomial at t = −2 and t = -3 is also ambiguous because the Alexander
polynomial is defined up to units (power or t) in Z[t−1, t]. To deal with this
uncertainty, we followed van Rensburg and Whittington [RW] and chose the
largest exponent k such that the product n±k∆(−n) is an odd integer with
n = 2 or 3. This value was taken as the knot invariant. To compute the writhe,
we generated > 300 regular projections and resulting knot diagrams for each
selected polygon. To each of the projected crossings a sign was assigned by
the skew lines convention (Fig. 1). The directional writhe for each diagram
was computed by summing these values. The writhe was then determined
by averaging the directional writhe over a large number of randomly chosen
projections. To generate writhe-directed random distributions of polygons, we
used a rejection method in which polygons whose writhe was below a positive
value were not sampled.

5.3 Results and Discussion Knot Complexity of DNA Molecules
Extracted from Phage P4

We extracted the 10-kb DNA from the tailless mutant of phage P4 vir1 del22,
which produces 95% knotted molecules [AVT], and analyzed it by a high-
resolution two-dimensional gel electrophoresis [TAV] (Fig. 3A). This technique
allowed us to separate DNA knot populations according to their crossing num-
ber (i.e., the minimal number of crossings over all projections of a knot),
as well as to separate some knot populations of the same crossing number
[SKB,VCL]. In the first dimension (at low voltage), individual gel bands cor-
responding to knot populations having crossing numbers between three and
nine were discernible; knots with higher crossing numbers were embedded in a
long tail (denoted as K in Fig. 3 A). The second dimension (at high voltage)
further resolved individual gel bands corresponding to knot populations with
crossing numbers between six and nine. Although knot populations containing
three, four, and five crossings (denoted as 3–5 in Fig. 3B) migrated as sin-
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gle bands in a main arch of low gel velocity, knot populations containing six
and more crossings split into two subpopulations (denoted as 6–9 and 6′–9′

in Fig. 3B), creating a second arch of greater gel velocity. Fig. 3(A) shows

Fig. 3. [AVM]: Analysis of knotted DNA by gel electrophoresis.

DNA was extracted from tailless mutants of phage P4 vir1 del22 and ana-
lyzed by two-dimensional agarose gel electrophoresis. The first dimension at
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low voltage (top to bottom) separated DNA knot populations according to
their crossing number. The unknotted DNA circle or trivial knot (0) has the
slowest gel velocity, whereas knotted DNA populations (K) have gel velocity
proportional to their crossing number. The second dimension at high volt-
age (left to right) segregated the linear DNA molecules (L) from the arched
distribution of knotted molecules and further resolved some gel bands corre-
sponding to knot subpopulations. (B) Upper area of the gel picture showing
knot populations of low crossing number. Individual gel bands corresponding
to knot populations containing three to nine crossings are indicated (labeled
3–9) in the main arch of the gel. A second arch of higher gel speed contain-
ing knot subpopulations of six and more crossings is generated by the second
dimension of the electrophoresis. Individual gel bands of knot subpopulations
of six to nine crossings (labeled 6′–9′) are indicated. (C) Quantification of the
individual knot populations of six to nine crossings (3–9 and 6′–9′). Both den-
sitometric and phosphorimaging reading of three independent samples of DNA
extracted from tailless mutants of phage P4 vir1 del22 produced nearly iden-
tical results. The indicated percentage values are relative to the total amount
of knotted molecules. Fig. 4 shows the gel velocity at low voltage of individual

Fig. 4. [AVM]: Identification of specific knot types by their position in the gel.

knot populations resolved by two-dimensional electrophoresis (Right) is com-
pared with the gel velocity at low voltage of twist knots (31, 41, 52, 61, and
72) of a 10-kb nicked plasmid (Center) and with known relative migration dis-
tances of some knot types [SKB,VCL] (Left). Geometrical representations of
the prime knots 31, 41, 51, 52, 61, 71 and 72 and of the composite knot 31]31

are shown. The unknotted DNA circle or trivial knot (0) is also indicated.
Note that in the main arch of the two-dimensional gel and below the knots
31 and 41, the knot population of five crossings matches the migration of the
torus knot 51, which migrates closer to the knot 41 than to the knots of six
crossings. The other possible five-crossing knot, the twist knot 52, appears to



22 De Witt Sumners

be negligible or absent in the viral distribution. Note also that the knot pop-
ulation of seven crossings matches the migration of the torus knot 71 rather
than the twist knot 72. In the secondary arch of the two-dimensional gel, the
first knot population of six crossings has low-voltage migration similar to that
of the composite knot 31]31.

We quantified the individual knot populations of three to nine crossings,
which represented 2.2% of the total amount of knotted molecules (Fig. 4C).
Densitometer readings confirmed the apparent scarcity of the figure 8 knot 41

relative to the other knot populations in the main arch of the gel (denoted by
4 in Fig. 4B). It also made evident the shortage of the knot subpopulation of
seven crossings in the second arch of the gel (denoted by 7′ in Fig. 3B). The
scarcity of the knot 41 relative to the knot 31 and to other knot populations
is enhanced if we make the correction for DNA molecules plausibly knotted
outside the viral capsid. Namely, if a fraction of the observed knots were
formed by random cyclization of DNA outside the capsid, then, in the worst-
case scenario, all observed unknotted molecules (no more than 5% of the total
molecules extracted) would be formed in free solution. In such a case, one can
predict that 38% of the total number of observed 31 knots and 75% of the
observed 41 knots are formed by random knotting in free solution [RCV,SW].
If all of the knots plausibly formed outside the capsid were removed from the
observed knot distribution, the experimental values for knots 41 and 31 (1:18
ratio) would be corrected, resulting in a 1:44 ratio.

5.4 Identification of Specific Knot Types by Their Location on the
Gel

Gel electrophoresis can distinguish some knot types with the same crossing
number. For example, at low voltage, torus knots (such as 51 and 71) migrate
slightly slower than their corresponding twist knots (52 and 72) [SKB,VCL].
We used this knowledge in conjunction with a marker ladder for twist knots
(31, 41, 52, 61, and 72) to identify several gel bands of the phage DNA matching
the migration of known knot types (Fig. 4). In the main arch of the gel, in
addition to the unambiguous knots 31 and 41, the knot population of five
crossings matched the migration of the torus knot 51. The other possible five-
crossing knot, the twist knot 52 that migrates between and equidistant to the
four-and six-crossing knot populations, appeared to be negligible or absent.
The knot population of seven crossings matched the migration of the torus
knot 71 rather than the twist knot 72, which has slightly higher gel velocity.
Yet, we cannot identify this gel band as the knot 71, because other possible
knot types of seven crossings cannot be excluded.

Several indicators led us to believe that the second arch of the gel consists
of mainly composite knots. First, the arch starts at knot populations contain-
ing six crossings, and no composite knots of fewer than six crossings exist.
Second, the population of six crossings matched the migration at low voltage
of the granny knot 31]31 [KKS], although the square knot 31]− 31 cannot be
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excluded. Third, consistent with the low amount of 41 knots, the size of the
seven-crossing subpopulation is also reduced: any composite seven-crossing
knot is either 31]41 or −31]41. The increased gel velocity at high voltage (sec-
ond gel dimension) of composite knots relative to prime knots of the same
crossing number likely reflects distinct flexibility properties of the composites
during electrophoresis [WSR].

5.5 Monte Carlo Simulations of Random Knot Distributions in
Confined Volumes

Next, we asked whether the observed distribution of DNA knots could be
compatible with a random embedding of the DNA inside the phage capsid.
We used Monte Carlo simulations to model knotting of randomly embedded,
freely jointed polygons confined to spherical volumes. Because the persistence
length of the duplex DNA is not applicable in confined volumes (it is ap-
plicable in unbounded three-dimensional space), we considered freely jointed
polygons as the zeroth approximation of the packed DNA molecule. Then,
the flexibility of the chain is given by the ratio R/N , where N is the num-
ber of edges in the polygon and R is the sphere radius in edge-length units.
When we computed random knot distributions for a range of chain lengths
confined to spheres with a fixed radius, the probabilities of the knots 31, 41,
51, and 52 produced nonintersecting distributions, with simpler knots being
more probable (Fig. 5A). That is, the knot 31 is more probable than the knot
41, and both are more probable than any five-crossing knot. In addition, the
probability of the twist knot 52 is higher than that of the torus knot 51. Simi-
lar results had been observed for other random polymer models with/without
volume exclusion and with/without confinement [DT2,Man], indicating that
this phenomenon is model-independent. All of the simulated distributions,
showing the monotonically decreasing amounts of knotted products with in-
creasing crossing number, highly contrasted with our experimental distribu-
tion, in which the probability of the knot 41 is markedly reduced and in which
the knot probability of the knot 51 prevails over that of the knot 52 (Fig. 5B).
These differences provide a compelling proof that the embedding of the DNA
molecule inside the phage capsid is not random. Fig. 5(A) shows the distri-
bution probabilities P (k) obtained by Monte Carlo simulations of the prime
knots 31, 41, 51, and 52 for closed ideal polymers of variable chain lengths
(n = number of edges) confined to a spherical volume of fixed radius (R = 4
edge lengths). Error bars represent standard deviations. (B) Comparison of
the computed probabilities of the knots 31, 41, 51, and 52 (for polymers of
length n = 90 randomly embedded into a sphere of radius R = 4) with the
experimental distribution of knots. The relative amount of each knot type is
plotted. Note that fractions of knots 31 and 41 plausibly formed in free solution
are not subtracted from the experimental distribution. If these corrections are
considered, the relative amount of knot 41 is further reduced. Fig. 6 shows
the writhe of polygons of length n = 90 randomly embedded into a sphere
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Fig. 5. [AVM]: Comparison of experimental and computer-simulated distributions
of knots.

of radius R = 4 were computed, and only conformations whose writhe values
were higher than a fixed value (Wr = 4, 6, or8) were sampled. The computed
mean writhe value (〈Wr〉) of each sampled population is indicated. The ratios
of the probabilities of the knots 41, 51, and 52 relative to that of the knot 31

for each writhe-biased sampling are plotted (P).
How can we explain the scarcity of 41 in the spectrum of viral knots? The

knot 41 is achiral (equivalent to its mirror image). Random polygonal realiza-
tions of the 41 knot in free space and in confined volumes produce a family
of polygons whose writhe distribution for any polygonal length is a Gaussian
curve with zero mean (the writhe is a geometrical quantity measuring the
signed spatial deviation from planarity of a closed curve) and whose variance
grows as the square root of the length (Theorem 7). Therefore, we argue that
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Fig. 6. [AVM]: Effect of a writhe-biased sampling on the probability of knots 41,
51, and 52.

the main reason for the scarcity of the knot 41 is a writhe bias imposed on
the DNA inside the phage capsid. To test this hypothesis, we simulated poly-
gons randomly embedded in spheres whose mean writhe value was gradually
increased. To induce writhe in the sampling, we used a rejection method in
which polygons of writhe below a cutoff value were not sampled. Then, we
calculated the probabilities of the prime knots 41, 51, and 51 for each writhe-
biased sampling. The results shown in Fig. 6 were computed with a freely
jointed chain of 90 edges confined in a sphere of radius of 4 edge-length units.
A drop of the probability of the knot 41, as well as an exponential increase
of the probability of the torus knot 51 but not of the twist knot 52, readily
emerged by increasing the writhe rejection value. The same results, but with
knots of opposite sign, were obtained for knot distributions with the corre-
sponding negative writhe values. These writhe-induced changes in the knot
probability distribution are independent of the number of edges in the equilat-
eral polygon and the sphere radius length. Accordingly, previous studies had
shown that the mean writhe value of random conformations of a given knot
does not depend on the length of the chain but only on the knot type and that
these values are model-independent [RSW]. Because the writhe-directed sim-
ulated distributions approach the observed experimental spectrum of knots,
we conclude that a high writhe of the DNA inside the phage is the most likely
factor responsible for the observed experimental knot spectrum.

Consistent with the involvement of writhe in the DNA packing geometry,
it is also the reduced amount of prime knots of six crossings visible in the
main arch of the gels (Fig. 3C). All prime knots of six crossings have a lower
〈Wr〉 (〈Wr〉 of 61 = 1.23, 〈Wr〉 of 62 = 2.70, and 〈Wr〉 of 63 = 0.16) than
the torus knots of five and seven crossings (〈Wr〉 of 51 = 6.26 and (〈Wr〉
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of 71 = 9.15). In contrast, the negligible amount of the twist knot of five
crossings (〈Wr〉 of 52 = 4.54) in the experimental distributions is striking.
The apparent predominance of torus knots (51 and 72) over twist knots (52

and 72) in the experimental distribution suggests that writhe emerges from
a toroidal or spool-like conformation of the packed DNA. Consistent with
our findings, theoretical calculations of long-range organization of DNA by
Monte Carlo [MM] and molecular dynamics methods [MMT,ArT,TK,LL fa-
vor toroidal and spool-like arrangements for DNA packed inside the phage
capsids. Calculations of optimal spool-like conformations of DNA in phage
P4 already predicted a large nonzero writhe [ArT]. These studies gave an es-
timated writhe of 45 for the 10-kb DNA, which closely corresponds with the
level of supercoiling density typically found in bacterial chromosomes [ArT].

The actual writhe value of the DNA packaged in the phage P4 capsid
cannot be estimated in the present study. The phage P4 capsid has a diameter
of 38 nm. If the parameters used to compute writhe-biased ensembles as in
Fig. 6 (n = 90 and R = 4) were applied to a 10-kb DNA molecule, they
would translate into 90 segments of 35 nm confined in a model capsid of
radius 140 nm. Likewise, our study cannot argue for or against recent models
that suggest that to minimize DNA bending energy, a spool conformation
might be concentric rather than coaxial [LL]. Therefore, beyond the main
conclusion of this work that the distribution of viral knots requires the mean
writhe of the confined DNA be nonzero, the applicability of our simulations
to other aspects of the DNA packaging in phage P4 is limited. We argue
that further identification of the knotted DNA populations will provide more
critical information for the packing geometry of DNA inside the phage.

Knots can be seen as discrete measuring units of the organizational com-
plexity of filaments and fibers. Here, we show that knot distributions of DNA
molecules can provide information on the long-range organization of DNA in
a biological structure. We chose the problem of DNA packing in an icosahe-
dral phage capsid and addressed the questions of randomness and chirality by
comparing experimental knot distributions with simulated knot distributions.
The scarcity of the achiral knot 41 and the predominance of the torus knot
51 in the experimental distribution highly contrasted with simulated distri-
butions of random knots in confined volumes, in which the knot 41 is more
probable than any five-crossing knot, and the knot 52 is more probable the
knot 51. To our knowledge, these results produce the first topological proof
of nonrandom packaging of DNA inside a phage capsid. Our simulations also
show that a reduction of the knot 41 cannot be obtained by confinement alone
but must include writhe bias in the conformation sampling. Moreover, in con-
trast to the knot 52, the probability of the torus knot 51 rapidly increases in a
writhe-biased sampling. Given that there is no evidence for any other biolog-
ical factor that could introduce all of the above deviations from randomness,
we conclude that a high writhe of the DNA inside the phage capsid is re-
sponsible for the observed knot spectrum and that the cyclization reaction
captures that information.
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