Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
25 26 27 28 29 30 1
2
3
4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
Informationen für
„Integrality of smoothed p-adic Artin L-functions“
Bence Forrás, Universität Duisburg-Essen

We introduce a smoothed version of the equivariant $S$-truncated $p$-adic Artin $L$-function for one-dimensional admissible $p$-adic Lie extensions of number fields. Integrality of this smoothed $p$-adic $L$-function, conjectured by Greenberg, has been verified for pro-$p$ extensions (assuming the Equivariant Iwasawa Main Conjecture) as well as $p$-abelian extensions (unconditionally). Integrality in the general case is also expected to hold, and is the subject of ongoing research.

Freitag, den 3. Februar 2023 um 13:30 Uhr, in INF 205, SR A Freitag, den 3. Februar 2023 at 13:30, in INF 205, SR A

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Otmar Venjakob