Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
28 | 29 | 30 | 31 | 1 | 2 | 3 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 |
22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 1 |
Let $C$ be a curve over the rationals of genus $g \geq 2$. Such a curve has finitely many rational points, but finding them all is difficult. Assuming the rank of the Mordell-Weil group of the Jacobian is less than $g$, the Chabauty-Coleman method is very effective in practice, returning a small set of $p$-adic points containing the set of rational points. In this talk I will discuss a variant of Chabauty, geometric linear Chabauty (based on geometric quadratic Chabauty as developed by Edixhoven and Lido), that can outperform Chabauty-Coleman in some cases; I will compare this method to the classical Chabauty-Coleman method, and characterise the differences. If time permits, I will also talk about ongoing work in (geometric) quadratic Chabauty, an extension of Chabauty's method. This talk is based on joint work with Sachi Hashimoto and Juanita Duque-Rosero.
Freitag, den 24. Juni 2022 um 13:30 Uhr, in INF 205, SR A Freitag, den 24. Juni 2022 at 13:30, in INF 205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Marius Leonhardt