Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
25 26 27 28 29 30 1
2
3
4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
Informationen für
„Chern-Weil theory and Hilbert-Samuel theorem for toroidal semi-positive singular metrics on line bundles“
Dr. Ana María Botero, Universität Heidelberg

Using the theory of b-divisors and non-pluripolar products we show that Chen-Weil theory and a Hilbert Samuel theorem can be extended to a wide class of singular semi-positive metrics. We then apply these results to study the line bundle of Siegel-Jacobi forms on the universal abelian variety with the Peterson metric. We show on the one hand that the ring of Siegel-Jacobi forms of constant positive relative index is never finitely generated, and on the other, we recover a formula of Tai giving the asymptotic growth of the dimension of the spaces of Siegel-Jacobi modular forms. This is joint work with J. Burgos Gil, R. de Jong and D. Holmes.

Freitag, den 20. Mai 2022 um 13:30 Uhr, in INF 205, SR A Freitag, den 20. Mai 2022 at 13:30, in INF 205, SR A

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Otmar Venjakob