We present the formulation of a new Main Conjecture in the non-commutative Iwasawa theory of number fields. Specifically, a relation is predicted between leading coefficients at 0 of Artin L-functions and the refined Euler characteristic of a certain arithmetic complex of Iwasawa modules over the Galois group of a rank-one p-adic Lie extension L∞/K. As opposed to existing conjectures, this is done without assuming L∞ and K to be totally real and, crucially, under no requirement that Gal(L∞/K) be abelian. This new conjecture partially generalises work of Ritter and Weiss and recent work of Burns, Kurihara and Sano.
Freitag, den 11. Februar 2022 um 13:30 - 15:00 Uhr, in INF205, SR A Freitag, den 11. Februar 2022 at 13:30 - 15:00, in INF205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. O. Venjakob