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Abstract. Recently, many new almost perfect nonlinear (APN) and almost bent
(AB) functions have been constructed. These functions F n

2 → F n
2 play an impor-

tant role in cryptography. In this article, we will summarize different concepts of
equivalence between these functions, and discuss some invariants.

Two codes can be associated with APN and AB functions. This is useful to dis-
tinguish functions up to equivalence. We give a short proof about the dimension of
one of these codes.

We slightly extend the known concepts of equivalence to the more general case
of functions F n

2 → F m
2 . Moreover, we show that CCZ equivalence is the same as

extended affine equivalence if F is a vectorial bent function.
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1. Introduction

Many symmetric cryptographic algorithms use S-boxes as a main ingredient. Such S-
boxes are functions F : F n

2 → F m
2 . In order to be resistant against linear [28] and

differential [2] attacks, they should satisfy certain nonlinearity properties. To define the
two relevant concepts of nonlinearity (corresponding to linear and differential attacks),
we define the following characteristics of F :

δF (a, b) := |{x ∈ F n
2 : F (x+ a)− F (x) = b}| , (1)

WF (a, b) :=
∑
x∈F n

2

(−1)〈a,x〉+〈b,F (x)〉, (2)

where 〈 , 〉 denotes the standard inner product on a finite dimensional vector space. In
order to be resistant against differential attacks, the value

∆F := max
a∈F n

2 , b∈F m
2 , a 6=0

δF (a, b)

should be as small as possible. Resistance against linear attacks requires that
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ΛF := max
a∈F n

2 , b∈F m
2 , b 6=0

|WF (a, b)|

is as small as possible.
The multiset

{∗ δF (a, b) : a ∈ F n
2 , b ∈ F m

2 ∗}

is called the differential spectrum of F , and the multiset

WF := {∗ WF (a, b) : a ∈ F n
2 , b ∈ F m

2 ∗}

is called the Walsh spectrum of F . The set

{±WF }

is called the extended Walsh spectrum. For background on Boolean and vectorial func-
tions defined on F n

2 , we refer to the excellent articles [15] and [16].

2. Group algebras

There is a close connection between the differential and the Walsh spectrum. This is
best explained using group algebra notation. For the following very elementary facts in
representation theory, we refer the reader to any textbook in advanced algebra.

Let K be a field, and let G be a (multiplicatively written) abelian group. The set of
formal sums ∑

g∈G
ag · g, ag ∈ K

is called the group algebra K[G] where addition and multiplication on K[G] is defined
as follows: (∑

g∈G
ag · g

)
+
(∑
g∈G

bg · g
)

:=
∑
g∈G

(ag + bg) · g

and (∑
g∈G

ag · g
)
·
(∑
g∈G

bg · g
)

:=
∑
g∈G

(∑
h∈G

ahbgh−1

)
· g.

Moreover,

λ ·
(∑
g∈G

ag · g
)

:=
∑
g∈G

(λag) · g

for λ ∈ K.



Given a finite abelian group G of order v, there are v different homomorphisms χ :
G→ K∗, provided that K contains a v∗-th root of unity (v∗ is the exponent ofG, i.e. it is
the least common multiple of the orders of the elements inG). These homomorphisms are
called characters. The set of characters form a group Ĝ: If χ1 and χ2 are two characters,
then χ1 · χ2 : G→ K∗ is the character with (χ1 · χ2)(g) := χ1(g) · χ2(g). The identity
element in this character group is the so called trivial character or principal character
χ0 : G→ K∗ with χ0(g) = 1 for all g ∈ G. The group Ĝ is isomorphic to G.

If ψ is an automorphism of G, then the mapping χψ defined by χψ(g) := χ(ψ(g))
is a character, again.

We can extend characters (by linearity) to homomorphisms K[G] → K: We de-
fine χ(

∑
g∈G ag · g) :=

∑
g∈G ag · χ(g). Note that these mappings are indeed homo-

morphisms, which means that they satisfy χ(A · B) = χ(A) · χ(B) and χ(A + B) =
χ(A) + χ(B). The element ∑

χ∈ bG
χ(A) · χ ∈ K[Ĝ]

is called the Fourier transform of A ∈ K[G].
The following orthogonality relations are well known and easy to prove:

∑
g∈G

χ(g) =

{
0 if χ 6= χ0,

|G| if χ = χ0,

∑
χ∈ bG

χ(g) =

{
0 if g 6= 1,

|G| if g = 1.

Moreover,

ag =
1
|G|

∑
χ∈ bG

χ(A) · χ(g−1),

where A =
∑
g∈G ag g. This last statement is called the Fourier inversion formula. In

other words: If we know all the character values χ(A) of some group algebra element
A ∈ K[G], then we know A.

If A =
∑
g∈G ag · g ∈ K[G], the coefficient of the identity element in A · A(−1) is∑

g∈G a
2
g . Here we have used the notation A(−1) for the element

∑
g∈G ag · g−1. If we

apply Fourier inversion, we obtain

∑
g∈G

a 2
g =

1
|G|

∑
χ∈ bG

χ(A) · χ(A(−1)).

This is usually called the Parseval equation.
We will identify subsets T ⊆ G with the group algebra element

∑
g∈T g, which we

will also denote by T . The subset T ⊆ G is uniquely determined by the v character sums∑
g∈T χ(g), i.e. by the values χ(T ) (using Fourier inversion).



In this section, we have written the group multiplicatively. However, in many prac-
tical examples the groups under consideration are written additively (usually our groups
are elementary abelian 2-groups). We hope that this is not the source for confusion!

3. Relative difference sets and designs

Let G be an abelian multiplicatively written group which contains a subgoup N of order
n. Let m be the index of N in G. A relative difference set R ⊆ G with parameters
(m,n, k, λ) is a k-subset of G such that the list of differences (which are quotients since
we write the group multiplicatively)

{∗ r · r′−1 : r, r′ ∈ R ∗}

covers every element in G \N exactly λ times. No nonidentity element in N has such a
representation. If we identify R with its group algebra element R ∈ C[G], then

R ·R(−1) = k + λ · (G−N).

We say that R is an (m,n, k, λ) relative difference set (RDS). A simple example is the
set {0, 1, 3} in Z8 relative to N = {0, 4}, which is a (4, 2, 3, 1)-RDS.

Simple counting shows k(k − 1) = λ(v − n), which is an elementary necessary
condition. There are many constructions and many more necessary conditions on RDS’s
known. We refer to [30] for a slightly outdated survey article: However, that article con-
tains some of the still most important constructions of RDS’s. Much more has been done,
since, however it is more difficult to describe these new constructions; instead, we refer
to [33], for instance.

IfG ∼= H×N , then the RDS is called splitting. The above mentioned example in Z8

is non splitting. If R is splitting and k = m, then the relative difference set R describes
a function F : H → N : Since no element in N has a difference representation, each
coset of N (labelled by elements in H) contains exactly one element from R. Therefore,
for each h ∈ H there is a unique element gh ∈ N such that (h, gh) ∈ R. This defines
a function F : H → N by F (h) := gh. A function F : H → N defines a relative
difference set {(h, F (h) h ∈ H} in G×H if and only if

F (x · a) · F (x)−1 = b

has precisely λ solutions in x for each choice of a ∈ H and b ∈ N with a 6= 0. Functions
F corresponding to relative difference sets with parameters (m,n,m,m/n) are called
bent. Bent functions are the same objects as splitting (m,n,m,m/n) relative difference
sets. We refer the reader to [31] and [18] for a thorough discussion about the connection
between relative difference sets and the corresponding functions.

With each RDS, we may associate a design. In this paper, a design is an incidence
structure with a finite number v of points and a finite number b of blocks. Blocks are
simply sets of points. In design theory, one is interested in incidence structure with some
“nice” properties, for instance that any two distinct points are contained in a unique
block. We refer the reader to the comprehensive treatment [1] for background from de-
sign theory.



Any subsetR inG gives rise to an incidence structure with |G| points and |G| blocks:
The points are simply the elements in G, and the blocks are the translates Rg := {rg :
r ∈ R}.We call this design the development of R (abbreviated dev(R)).

If an element a ∈ G has λ representations r · r′−1, then

|R · g ∩R · (ga)| = λ.

Moreover, there are precisely λ blocks containing the elements g and ga: We have g, ga ∈
Rh if and only if r r′−1 = a.

Every design gives rise to a v × b incidence matrix M with entries from a field K.
Let

M = (mp,B)p point,B block ∈ K(v,b),

where the rows a labelled by points and the columns by blocks. The (p,B)-entry of M
is 1 if p is incident with B, otherwise the entry is 0.

If the design is the development of a subset R ⊆ G, we may obtain an incidence
matrix as follows: Label rows and columns by elements from G. Then all entries in the
incidence matrix are 0, except the entries in positions (g, h) with g−1h ∈ R. In other
words, the row corresponding to the identity is the characteristic function of R.

More generally, one can define an injective homomorphism Ψ : K[G] → K(v,v) as
follows: We label the rows and columns of the matrices in K(v,v) by the elements from
G. Then we define

Ψ(
∑
g∈G

ag · g) := (mx,y)x,y∈G

where mx,y := ax−1y . It is not difficult to check that this mapping is an injective ho-
momorphism. Therefore, the group algebra K[G] is simply the subalgebra of group in-
variant matrices in the matrix algebra K(v,v). This may have some interesting implica-
tions regarding the equivalence of cryptographic relevant functions, as we will discuss in
Section 6.

4. Almost perfect nonlinear and almost bent functions

Now let us apply these elementary facts from representation theory to functions F :
F n

2 → F m
2 . Our ambient group algebra will be C[F n

2 × F m
2 ]. Characters χa,b of F n

2 ×
F m

2 are the mappings defined by χa,b(x, y) := (−1)〈a,x〉+〈b,y〉, where a ∈ F n
2 , b ∈ F m

2 .
We define the graph GF := {(x, F (x)) : x ∈ F n

2 } of F : The graph is a subset of
F n

2 ×F m
2 , and it is uniquely determined by the character values χa,b(GF ). The multiset

of character values is the Walsh spectrum of F . We have to be a little bit careful here:
The Walsh spectrum does not determine F ; we also need to know which value in the
Walsh spectrum occurs for which character, so we need to know the Fourier transform of
GF .

The problem to find functions F : F n
2 → F m

2 with small ΛF can be reformulated
in terms of characters as follows: Find F such that



max
a∈F n

2 , b∈F m
2 , b 6=0

|χa,b(GF )|

is as small as possible.
Before we will present a well known bound on ΛF , we explain how the δF (a, b)

arise in the context of group algebras. We emphasize that in our case (where the group
algebra is C[F n

2 × F m
2 ]), we have A(−1) = A for all A ∈ C[F n

2 × F m
2 ].

Lemma 1. Let F : F n
2 → F m

2 . Then

GF ·GF =
∑

x∈F n
2 ,y∈F m

2

δF (x, y) · (x, y) (3)

in C[F n
2 × F m

2 ].

Since χ(GF ) ·χ(GF ) = χ(GF ·GF ), the character values on the right hand side of
(3) are determined by the character values χ(GF ), but not vice versa.

Some of the values in the differential spectrum are independent from F . We have:

δF (0, 0) = 2n,

δF (0, b) = 0 if b 6= 0.

If we apply Fourier inversion to compute δF (0, 0), we get

2n =
1

2n+m

∑
χ∈ bG

χ(G 2
F ) =

1
2n+m

∑
a∈F n

2 ,b∈F m
2

χa,b(G 2
F ).

Similarly to the differential values δF (0, b), some of the Walsh coefficients χa,b(GF ) are
known:

χ0,0(GF ) = 2n,

χa,0(GF ) = 0 if a 6= 0,

hence we obtain

22n+m − 22n =
∑

a∈F n
2 , b∈F m

2 , b 6=0

χa,b(G 2
F ).

Since there are 2n+m − 2n characters χa,b with b 6= 0, we have the following theorem,
see [19]:

Theorem 1. If F : F n
2 → F m

2 , then there is at least one character χa,b, b 6= 0 with
|χ(a,b)(GF )| ≥ 2n/2. If 2n/2 is the largest possible character value, i.e. ΛF = 2n/2,
then |χ(a,b)(GF )| = 2n/2 for all b 6= 0. In this case, GF is a relative difference set
with parameters (2n, 2m, 2n, 2n−m) in F n

2 × F m
2 relative to {(0, x) : x ∈ F m

2 }, i.e.
δF (a, b) = 2n−m for all a 6= 0.



Note that the function F is bent if we have equality in Theorem 1. For such bent
functions, we have ∆F = 2n−m, and that is the smallest possible value. The part of
Theorem 1 which states that GF is an RDS if F is bent is a consequence of the Fourier
inversion formula. The character bound follows from Parseval’s equation.

It has been shown in [29] and [32] that bent functions cannot exist if m > n/2:

Theorem 2. There are no bent functions F : F n
2 → F m

2 if m > n/2. Bent functions
F : F n

2 → F m
2 exist for all even m with m ≤ n/2.

The “classical” bent functions are those F 2n
2 → F2. There are several easy con-

structions (via quadratic functions), but also more elaborate ones, see [15], for instance.
Not much seems to be known about ΛF and ∆F if n/2 < m < n. If n is odd, not much
is known for 1 ≤ m < n. For instance if m = 1, the problem to determine the minimum
value of ΛF is equivalent to finding the covering radius of the first order Reed-Muller
code. This is known for the case n even (and the solutions, i.e. the vectors far away from
the Reed-Muller code, are given by the classical bent functions), but it is open for the
case n odd. If n is odd and n = m, we have the following bound (see [19]):

Theorem 3. If F : F n
2 → F n

2 , then there is at least one character χa,b, b 6= 0, with
|χ(a,b)(GF )| ≥ 2(n+1)/2. If this is the maximum (non trivial) character value, i.e. if
ΛF = 2(n+1)/2, then χ(a,b)(GF ) ∈ {0,±2(n+1)/2} for all b 6= 0.

Functions F : F n
2 → F n

2 with ΛF = 2(n+1)/2 are called almost bent. They are
“as bent as possible” in the sense that the Walsh spectrum is as flat as possible: Bent
functions give rise to flat spectra, i.e. all character values χa,b(GF ), b 6= 0, have the same
absolute value.

What can we say about the differential spectrum of functions F : F n
2 → F n

2 ? There
are no bent functions F n

2 → F n
2 : We may quote Theorem 2 or use a more elementary

argument: According to Theorem 1, such a bent function would correspond to a relative
(n, n, n, 1) difference set, hence F (x+a)+F (x) = b has exactly one solution (in x) for
all a 6= 0. But this is impossible since the solutions come in pairs: If F (x+a)+F (x) = b,
then F ((x + a) + a) + F (x + a) = b, hence x + a is another solution (different from
x if a 6= 0)). This shows ∆F ≥ 2 if F : F n

2 → F n
2 . We call a function F with ∆F = 2

almost perfect nonlinear (APN). Using Fourier inversion, it is not difficult to show that
any AB function is APN, see [19], again:

Theorem 4. Any AB function is APN.

There are several examples of APN and AB functions. Two of them are described
below.

The converse of Theorem 4 is not true, since there are, for instance, APN functions
with n even, but there are no AB functions with n even. There are also APN functions if
n is odd which are not AB, for instance the function x 7→ x−1 is APN if n is odd, but it
is not AB.

The fundamental group algebra identity corresponding to an APN function F is as
follows:

GF ·GF = 2n + 2DF ∈ C[F n
2 × F n

2 ], (4)



whereDF corresponds to a subset of F n
2 ×F n

2 which is disjoint from {(0, x) : x ∈ F n
2 }.

The following Theorem is contained in the interesting article [17]. Its proof is not
difficult:

Theorem 5. If F is AB, then the set DF corresponds to a bent function, i.e. the mapping
f : F n

2 × F n
2 → F2 with f(u, v) = 1 if (u, v) ∈ DF , and 0 otherwise, is bent.

The set DF (the support of the function f ) is a so called Hadamarad difference set.
One may think of GF as a “root” of 2n + 2DF . In our opinion, it is interesting to ask:

Problem. Which Hadamard difference sets D ⊆ F n
2 × F n

2 admit a decomposition

T 2 = 2n + 2D

for a suitable subset T ⊆ F 2n
2 .

There are several constructions of APN and AB functions. It is not the purpose of
this paper to summarize these, but we just refer to the literature ([4,7,10,11,13,14,23,24])
for the most recent new constructions.

Basically all constructions of APN and AB functions make use of the identification
of F n

2 with the additive group of F2n . Any mapping F2n → F2n can be described by a
polynomial. This polynomial description makes it possible (sometimes) to obtain infor-
mation about the functions F (x+ a)− F (x), which have to be 2-to-1 mappings if F is
APN. Also the Walsh spectrum is somewhat easier to determine if the function F is given
as a polynomial: The characters of F2n are given by the trace mapping x 7→ (−1)tr(α·x),
where α ∈ F2n and tr denotes the usual trace function F2n → F2. However, we em-
phasize that the APN property (and also the Walsh spectrum) are related to the additive
structure of F2n , only. This phenomenon occurs frequently in connection with problems
about difference sets: You use one algebraic structure of the field to construct a set, but
then you interpret this set relative to the other algebraic structure of the field. Popular
examples are the squares in Fp (Paley difference sets in the additive group of Fp) or the
Singer cycle (hyperplane of F2n , interpreted in the multiplicative group of F2n ).

Until recently, only AB and APN power mappings were known: More precisely, all
examples have been equivalent to a power mapping. However, in this context it is not so
clear what is meant by “equivalent”, hence we postpone the discussion of equivalence
issues until we have described different concepts of equivalence.

At this point, we would like to describe two very important constructions of
APN/AB functions on F2n :

Construction GOLD: The mappings x 7→ x2i+1 are APN if gcd(i, n) = 1. If n is odd,
these functions are AB. The GOLD power mappings are examples of quadratic functions:
We say that a function F : F n

2 → F n
2 is quadratic if the functions x 7→ F (x+a)−F (x)

are affine for all a ∈ F n
2 , but F is not affine. Equivalently, in the polynomial description

of F , all the exponents are of type 2i + 2j , and at least one exponent is different from 0
and 2i. Except an example in [24], see also [5], all recently constructed APN functions
are quadratic.

Construction KASAMI: The mappings x 7→ x22i−2i+1 are APN if gcd(i, n) = 1. If n
is odd, these functions are AB.



5. Equivalence of functions

The question arises whether these functions are equivalent. We are now going to discuss
several different concepts of equivalence. This is best done using the graphs GF of the
functions F : F n

2 → F m
2 .

Affine equivalence: Functions F1, F2 : F n
2 → F m

2 are affine equivalent if there are
linear bijective mappings ψ : F n

2 → F n
2 , φ : F m

2 → F m
2 and elements a ∈ F n

2 , b ∈ F m
2

such that L(GF1) + (a, b) = GF2 , where L : F n+m
2 → F n+m

2 is the linear mapping

L(x, y) := (ψ(x), φ(y)).

We define

H := {(x, 0) : x ∈ F n
2 }

and N := {(0, y) : y ∈ F m
2 }.

Then L : H × N → H × N is a linear mapping which fixes H and N setwise. With
respect to a basis {b1, . . . bn, c1, . . . cm} of F n

2 × F m
2 such that the set {b1, . . . , bn}

generates H and {c1, . . . , cm} generates N , the linear mapping L is represented by(
L1 0n,m

0m,n L4

)
(5)

where 0n,m and 0m,n denote the 0-matrices of sizes (n,m) and (m,n). An invariant
for affine equivalence is the extended Walsh spectrum and the differential spectrum. We
have to work with the extended Walsh spectrum since χ(GF +(a, b)) = χ(GF ) ·χ(a, b),
so that adding (a, b) to the elements in GF may change the sign of the character values.

Extended affine equivalence: Functions F1, F2 : F n
2 → F m

2 are called extended
affine equivalent if there are linear bijective mappings ψ : F n

2 → F n
2 , φ : F m

2 → F m
2 ,

elements a ∈ F n
2 , b ∈ F m

2 and a linear mapping α : F n
2 → F m

2 such that L(GF1) +
(a, b) = GF2 : Here L is defined via

L(x, y) := (ψ(x), φ(y) + α(x)),

and it can be represented by (
L1 0n,m
L3 L4

)
. (6)

In this case, the subgroup N is fixed by L. Again, the extended Walsh spectrum and
the differential spectrum is invariant under extended affine equivalence. The algebraic
degree is another invariant for extended affine equivalence. It is defined as follows: The
function F can be described by m coordinate functions F n

2 → F2. These functions can
be described by multivariate polynomials, and the maximum degree of these functions is
the algebraic degree.



CCZ equivalence: More generally, we may look at regular matrices of the form(
L1 L2

L3 L4

)
. (7)

In this case, we speak about CCZ equivalence: The term “CCZ” refers to Carlet, Charpin
and Zinoviev, who introduced this concept for APN and AB functions in [17]. We say
that F1 and F2 are CCZ-equivalent if there are linear mappings ψ : F n

2 → F n
2 , φ :

F m
2 → F m

2 , α : F n
2 → F m

2 and β : F m
2 → F n

2 such that L(GF1) + (a, b) = GF2 ,
where

L(x, y) = (ψ(x) + β(y), φ(y) + α(x)) (8)

is bijective. There is a subtle difference between the concept of (extended) affine and
CCZ equivalence: In the case of (extended) affine equivalence, we may apply any linear
mapping of type (5) or (6) to the graph of a function F in order to get the graph of
another function which has the same extended Walsh spectrum and the same differential
spectrum. If we do the same for linear mapping of type (7), the resulting group algebra
element is not necessarily described by a function: We can say that the Fourier transform
of L(GF ) is the same as those ofGF , and similarly both group algebra elements have the
same differential properties, but L(GF ) is not necessarily a function. Another difference
to the case of extended affine equivalence is that the algebraic degree is not an invariant.
For instance, if F is a permutation, then F−1 is CCZ equivalent to F , but the degree
of F−1 is, in general, different from the degree of F . This argument shows that CCZ
equivalence is more general than EA equivalence. Other examples in [12] show that there
are a lot more possibilities to construct CCZ but not EA equivalent functions, starting
from the GOLD case.

In the case of bent functions, CCZ equivalence is the same as extended affine equiv-
alence. More generally, we prove:

Theorem 6. IfR1 andR2 are both relative (m,n, k, λ)-difference sets in the (multiplica-
tively written) group G relative to a subgroup N , then any automorphism ψ : G → G
with ψ(R1) = R2 · g has to fix N setwise.

Proof. Note that R1 ·R (−1)
1 = (R2g) · (R2g) (−1) = k+ λ(G−N), hence Ψ has to fix

the subgroup N setwise since λ 6= 0.

This theorem slightly generalizes [26]. In particular, we have

Corollary 1. If F1, F2 are bent functions F n
2 → F m

2 which are CCZ equivalent via a
linear mapping L as defined in (8), then β : F m

2 → F n
2 has to be the zero map.

Proof. If there is one element y ∈ F m
2 with y 6= 0, then L(0, y) /∈ N , hence N is not

fixed setwise.

This corollary has been proven independently by Budaghyan and Carlet [8]. A
slightly more general result is the following:



Theorem 7. Let F, F ′ : F n
2 → F m

2 be functions. If there is an isomorphism L on
F n

2 × F m
2 with L(GF ) + (a, b) = GF ′ such that F ′ is CCZ equivalent but not EA

equivalent to F , then there is a subgroup N ′ of order 2m in F n
2 × F m

2 with N ′ 6=
{0} × F m

2 such that no nonzero element in N ′ has a representation as a difference with
elements from GF . In other words, the coefficients of the nonzero elements in N ′ are 0
in GF ·GF .

Proof. If F is CCZ but not EA equivalent to some other function F ′, there must be a
linear mappingL such thatL(N) 6= N , andL(GF )+(a, b) is the graph of some function
F ′, but L(GF ) is the graph of a function, too, hence we may assume (a, b) = (0, 0).
The element GF ′ contains exactly one element from each coset of N . This shows that
L−1(GF ′) contains exactly one element from each coset of L−1(N) =: N ′. Therefore,
the group algebra elementGF ·GF has coefficients 0 for all nonzero elements inN ′.

It is possible that L does not fix N , but the function described by L(GF ) is EA
equivalent to F . An example is given in [12]. In general, this situation is characterized
through the following Theorem:

Theorem 8. Let F, F ′ : F n
2 → F m

2 be functions which are CCZ equivalent via the
linear mappping L, i.e. L(GF ) + (a, b) = GF ′ . Using the notation from Theorem 7, the
function F is EA equivalent to F ′ if and only if there is a linear isomorphism L′ with
L′(N) = N ′, L′(GF ) + (a′, b′) = GF .

Proof. If F and F ′ are EA equivalent, there is a linear bijection L′′ with L′′(GF ) +
(a′′, b′′) = GF ′ , L′′(N) = N . Then L−1 ◦ L′′ gives the desired isomorphism L′.

Conversely, L′′ = L ◦ L′ gives the affine equivalence.

The first non power examples of APN and AB functions have been found in [12]:
These are EA inequivalent to power mappings, however they are CCZ equivalent to
power mappings. In [23], the first examples not CCZ equivalent to power mappings have
been described. That paper started quite an extensive search for APN functions. Refer-
ences have been given above.

The knowledge about the inequivalence of the known series of APN and AB func-
tions is still unsatisfactory. A systematic investigation of the (in)equivalence of the GOLD

power mappings is contained in [9]. As a result, the GOLD power mappings x2i+1,
i < n/2, gcd(i, n) = 1, are pairwise CCZ inequivalent. Moreover, they are CCZ in-
equivalent to the KASAMI power mappings (except in small (trivial) cases. Proofs are by
“brute force”: You take two functions and try to construct a linear mapping (defined as a
linearized polynomial) that maps the graph of one function to those of the other function.
Finally, after heavy computations, you see that this is impossible. It would be nice, but
apparently difficult, to compute some CCZ invariants associated with the functions. We
say more about invariants in the next section.

6. Equivalence of functions and designs

Now we return to designs and discuss isomorphism issues in this context. We have seen
already that, for RDS’s, CCZ equivalence is the same as extended affine equivalence.
However, there is another possibility to generalize EA equivalence for RDS’s to another



more general (and, from a design theoretic point of view, more relevant) concept. We
refer to [25] for more on this design theoretic approach.

If M1 and M2 are incidence matrices of designs, then we say that the designs are
isomorphic if and only if there are permutation matrices P andQ such that P ·M1 ·Q =
M2. In this way, we may identify the automorphism groups with the set of all pairs (P,Q)
of permutation matrices such that P · M1 · Q = M1. Let us assume that the designs
are given as the developments of subsets of a group G. Not all of the isomorphism (or
automorphisms) have a nice interpretation in terms of group automorphisms: LetM1 and
M2 be two matrices in Ψ(K[G]), i.e. they are group developed from sets R1 and R2.
We say that the designs are equivalent if there is a group automorphism φ and a group
element g ∈ G such that φ(R1) = R2g. In this case, the designs dev(R1) and dev(R2)
are isomorphic.

We say that two function F1, F2 : F n
2 → F m

2 are isomorphic if dev(GF1) is iso-
morphic to dev(GF2)

“Isomorphism” of designs is more general than “equivalence” of the corresponding
difference sets. In fact, a design can be written as dev(R) for different (inequivalent)R’s,
as shown by the tables on difference sets in [20].

It seems to be difficult to distinguish between “isomorphism” and “equivalence”
since we are not aware of parameters which are invariant only under “equivalence”. All
the interesting invariants with respect to “equivalence” are also invariants for “isomor-
phisms”, let us mention just a few:

• The rank of an incidence matrix.
• The Smith normal form of an incidence matrix.
• The Automorphism group of the design.

We think that it is worth to look more carefully at this new concept of “isomorphism”
corresponding to APN and AB functions: We are not aware of any pair of functions
F1 and F2 which are not CCZ inequivalent, but the designs dev(F1) and dev(F2) are
isomorphic. So one may try to prove that isomorphism and equivalence coincides for
APN and AB functions, or one can try to find new functions as follows: Take an APN or
AB function F and construct its incidence matrix M . Then compute M ′ = P ·M · Q
for some permutation matrices P and Q. Since this design is isomorphic to the design
corresponding to M , it must have a representation as the development of some GF ′ .
Check, whether F ′ is CCZ equivalent to F . We have not yet pursued this approach, but
it is, in our opinion, quite interesting: You may be able to construct new APN and AB
functions. We believe that as soon as you find one application of this approach, there will
be many! If there are no applications of our technique, so if equivalence coincides with
isomorphism, we are sure that a proof of this fact will give more insight into the theory
of APN and AB functions.

If F is APN, there is not just the design defined by GF , but also the design de-
fined by DF (see (4)). If F1 and F2 are CCZ equivalent, then dev(DF1) and dev(DF2)
are equivalent, hence isomorphic. Hence the isomorphism type both of dev(DF ) and of
dev(GF ) may be used to distinguish functions up to CCZ equivalence.

However, design theoretic isomorphism may be a too coarse equivalence relation.
The appropriate equivalence relation is graph theoretic isomorphism, as we will explain
now:

The set DF defines a graph with 22n vertices (which are the elements in F n
2 ×F n

2 ).
Two vertices g and h are adjacent if g − h ∈ DF . This relation is symmetric since



g − h = g + h. There is a connection between this graph and the incidence structure
dev(GF ). If M is an incidence matrix of dev(GF ), then the matrix 1

2 (MMᵀ − 2nI)
is an adjacency matrix of the graph described by DF . Two of the vertices in this graph,
say g and h with g 6= h, are adjacent if the two group elements, considered as points in
dev(GF ), are joined by two blocks of dev(GF ): The two (distinct) points g = (x, y) and
h = (x′, y′) are inGF +(a, b) if and only if (x−x′, y−y′) = (r−r′, F (r)−F (r′)) for
some r, r′ ∈ F n

2 . Therefore, there are 0 or 2 solutions. But if the pair r, r′ is a solution,
then r + a = x and F (r) + b = y, or r′ + a = x and F (r′) + b = y. In particular, g
and h are adjacent if and only if g + h ∈ DF . If two designs dev(GF1) and dev(GF2)
are isomorphic, the graphs (consisting of vertices and edges) defined by DF1 and DF2

are isomorphic: Note that this isomorphism in graph theoretic terms is much more re-
strictive than design isomorphism: In the design case, the permutation matrices P and
Q multiplied on the left and right can be arbitrarily. If you consider graph isomorphism,
you have to multiply by P and P ᵀ.

In our opinion, the determination of the automorphism groups of the designs
dev(GF ) is very promising to distinguish the isomorphism type of the functions, in par-
ticular quadratic from nonquadratic functions. Experiments indicate that quadratic APNs
have a much larger automorphism group than nonquadratic ones. Similarly, the ranks
of the incidence matrices of quadratic functions seem to be smaller than those of non-
quadratic APNs. It would be interesting to decide whether the following is true:

Problem. Let F1 and F2 are APN functions where F1 is quadratic and F2 is not CCZ
equivalent to a quadratic function. Is the F2 rank of an incidence matrix corresponding to
dev(GF1) is strictly smaller than the rank corresponding to dev(GF2)? Does this bound
also hold for dev(DF1) and dev(DF2)

This question resembles a little bit the famous Hamada conjecture (which is in gen-
eral not true) that the ranks of incidence matrices tend to become smaller if the automor-
phism groups are getting larger.

Finally, we would like to point out that the row space of the incidence matrix of a
design is called the K code associated with the design. Isomorphic designs have equiva-
lent codes, hence the code is an invariant under isomorphism. It seems that these codes
(which can be also viewed as the ideals generated byGF in K[F n

2 ×F m
2 ]) may be worth

to investigate in order to distinguish functions F : F n
2 → F m

2 up to equivalence. How-
ever, we are not aware of a systematic investigation of these codes. But there are other
codes associated with functions, which we will discuss in the next section.

7. Equivalence of functions and codes

In this final section, we will discuss relations between the different equivalence concepts
for functions F : F n

2 → F m
2 and code equivalence. The reader may consult the classical

book [27] for background from coding theory.

Let C(F ) ∈ F(n+m,2n)
2 be the matrix whose columns are the vectors

(
x

F (x)

)
,

x ∈ F n
2 . We extend this matrix by a first row consisting just of 1’s. We call this extended

matrix C1(F ). By C1(F ), we denote the F2-vector space of all vectors orthogonal to the



rows of C1(F ). Using terminology from coding theory, the vector space C1(F ) is a code
of length 2n. If we multiply C1(F ) by an invertible matrixM of size n+m+1 from the
left, we get a matrix M · C1(F ) whose rows generate the same vector space as the rows
of C1(F ), hence the set of vectors orthogonal to the rows of M ·C1(F ) is C1(F ), again.

Two codes U1 and U2 in F n
2 are called equivalent if there is a permutation π :

{1, . . . , 2n} → {1, . . . , 2n} such that

(x1, . . . x2n) ∈ U1 ⇐⇒ (xπ(1), . . . xπ(2n)) ∈ U2.

This shows that the codes generated by two functions F1 and F2 are equivalent if and
only if a permutation of the columns of C1(F2) gives a matrix such that the vector space
orthogonal to the rows of this permuted matrix is C1(F1). But two matrices H1 and H2

define the same codes (orthogonal to the rows of H1, resp. H2) if and only if there is an
invertible matrix M with M · H1 = H2. Therefore, if C1(F1) is equivalent to C1(F2),
there is an invertible matrix M such that M · C1(F1) is a matrix whose columns are a
permutation of the columns of C1(F2). It is easy to see that the matrix M must be of the
following type:

M =

c d e
a L1 L2

b L3 L4


with a ∈ F n

2 and b ∈ F m
2 , c ∈ F2, d ∈ F n

2 e ∈ F m
2 (as row vectors), and L1 ∈ F(n,n)

2

and L2 ∈ F(n,m)
2 , L3 ∈ F(m,n)

2 and L4 ∈ F(m,m)
2 . The first row v :== (c d e) of M has

the property that the inner product of v with all the columns of C1(F1) is 1. Hence we
may assume c = 1, d = 0 and e = 0. The first row in the matrix M has the effect that
(a, b) will be added to (x, F1(x)). More precisely:

M ·

 1
x

F1(x)


x∈F n

2

=

 1
L1x+ L2F1(x) + a
L3x+ L4F1(x) + b


x∈F n

2

We summarize this in the following theorem, see also [22,6]:

Theorem 9. Let F1 : F n
2 → F m

2 be a function. Then F1 is CCZ equivalent to a function
F2 : F n

2 → F m
2 if and only if the codes C1(F1) and C1(F2) are equivalent.

It is easy to see that affine can be also formulated in terms of codes. For this purpose,
we define two other matrices C2(F ) and C3(F ):

C2(F ) :=

 1 0
x 0

F (x) y


x∈F n

2 , y∈F m
2 \{0}

and

C3(F ) :=

 1 0 0
x 0 z

F (x) y 0


x∈F n

2 , y∈F m
2 \{0}, z∈F n

2 \{0}



These matrices are parity check matrices of two codes C2(F ) and C3(F ).
We obtain:

Theorem 10. Let F1 : F n
2 → F m

2 be a function.Then F1 is extended affine equivalent
to a function F2 : F n

2 → F m
2 if and only if the codes C2(F1) and C2(F2) are equivalent.

In the case of affine equivalence, we need to be more careful. If n = m, it may be
possible to swap the rows 2, . . . n+ 1 and the rows n+ 2, . . . , 2n+ 1. This is possible if
F is a permutation. We obtain:

Theorem 11. Let F1 : F n
2 → F m

2 be a function which is not a permutation. Then F1

is affine equivalent to a function F2 : F n
2 → F m

2 if and only if the codes C3(F1) and
C3(F2) are equivalent. If F1 is a permutation, then F1 or F−1

1 is affine equivalent to
F2 : F n

2 → F m
2 if and only if the codes C3(F1) and C3(F2) are equivalent.

These theorems which give a relation between code equivalence and equivalence
of functions are quite useful. For instance, the computer algebra package MAGMA [3]
provides a powerful tool to check code equivalence, hence it is for small values of n
(thanks to MAGMA) easy to distinguish the different types of equivalence. Moreover, the
automorphism groups of the codes can be computed and they may be used to distinguish
different functions. We note that

Aut(C3(F )) ⊆ Aut(C2(F )) ⊆ Aut(C1(F )).

In order to see this, we note that the automorphism group of the respective codes are
isomorphic to subgroups of the group of invertible matrices of size n + m + 1 over F2,
provided that the matrices Ci(F ) have full rank: Automorphisms of Ci(F ) correspond
to those permutation matrices Q such that M · Ci(F ) = Ci(F ) · Q for some invertible
matrix M . If the columns of ·Ci(F ) are all distinct, Q is uniquely determined by M .
If the above mentioned rank condition holds, different M ’s give different Q’s. Using
the representation of the automorphism groups as subgroups of GL(n + m + 1, 2), the
inclusion given above holds.

Finally, we would like to give a (short) proof of the fact that the rank of C1(F ) is
2n+ 1 if F : F n

2 → F n
2 is APN. This result is contained in [17]. The proof in [17] uses

bounds on the minimum weight of certain codes. A more elementary proof is contained
in [21].

Theorem 12. Let F : F n
2 → F m

2 be an APN function. Then the F2 rank of the matrix

C1(F ) =

 1
x

F (x)


x∈F n

2

is 2n+ 1 if n > 2.

Proof. If rank(C1(F )) ≤ 2n, there is an invertible matrix M such that

M · C1(F ) =

 1
x

F ′(x)


x∈F n

2



where F ′ : F n
2 → F n

2 , and the last row of the matrix is 0. This shows that F is CCZ
equivalent to a function F ′ such that GF ′ ⊆ U , |U | = 22n−1: U consists of all vectors
in F 2n

2 whose last coordinate is 0. We compute GF ′ · GF ′ in C[U ]: The coefficients of
the nonidentity elements are 0 or 2, and the coefficient 2 occurs 1

22n · (2n − 1) times.
But that is the number of elements in U \ N ′, where N ′ = {(0, x) : x ∈ F n

2 } ∩ U .
Therefore, GF is a relative (2n, 2n−1, 2n, 2) difference set in U . It is splitting since the
group is elementary abelian, hence it corresponds to a bent function, which cannot exist
if n > 2 according to Theorem 2.
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[25] F. GÖLOĞLU AND A. POTT, Almost perfect nonlinear functions: A possible geometric approach, in
Coding Theory and Cryptography II, S. Nikova, B. Preneel, L. Storme, and J. Thas, eds., Koninklijke
Vlaamse Academie van België voor Wetenschappen en Kunsten, 2007, pp. 75–100.

[26] G. KYUREGHYAN AND A. POTT, Some theorems on planar functions, in Arithmetic of Finite Fields,
J. von zur Gathen, J. L. Imaña, and Çetin Kaya Koç, eds., vol. 5130 of Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, 2008, pp. 117–122.

[27] F. J. MACWILLIAMS AND N. J. A. SLOANE, The theory of error-correcting codes. II, North-Holland
Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library, Vol. 16.

[28] M. MATSUI, Linear cryptanalysis method for DES cipher., in Advances in Cryptology – EUROCRYPT
93, T. Helleseth, ed., vol. 765 of Lecture Notes in Computer Science, Springer-Verlag, New York, 1993,
pp. 386–397.

[29] K. NYBERG, Perfect nonlinear S-boxes, in Advances in cryptology—EUROCRYPT ’91 (Brighton,
1991), Springer, Berlin, 1991, pp. 378–386.

[30] A. POTT, A survey on relative difference sets, in Groups, Difference Sets, and the Monster. Proceed-
ings of a Special Research Quarter at the Ohio State University, Spring 1993, K. T. Arasu, J. Dillon,
K. Harada, S. Sehgal, and R. Solomon, eds., Berlin, 1996, Walter de Gruyter, pp. 195–232.

[31] , Nonlinear functions in abelian groups and relative difference sets, Discrete Appl. Math., 138
(2004), pp. 177–193.

[32] B. SCHMIDT, On (pa, pb, pa, pa−b)-relative difference sets, J. Algebraic Combin., 6 (1997), pp. 279–
297.

[33] B. SCHMIDT, Characters and Cyclotomic Fields in Finite Geometry, vol. 1797 of Lecture Notes in
Mathematics, Springer-Verlag, 2002.


