Coding-theoretic constructions for (t, m, s)-nets and ordered orthogonal arrays

Jürgen Bierbrauer Department of Mathematical Sciences Michigan Technological University Houghton, Michigan 49931 (USA),

Yves Edel Mathematisches Institut der Universität Im Neuenheimer Feld 288 69120 Heidelberg (Germany), and

> Wolfgang Ch. Schmid^{*} Institut für Mathematik Universität Salzburg Salzburg (Austria)

> > March 4, 2005

1 Introduction

(t, m, s)-nets were defined by Niederreiter [17] in the context of quasi-Monte Carlo methods of numerical integration. Niederreiter pointed out close connections to certain combinatorial and algebraic structures. This was made precise in the work of Lawrence, Mullen and Schmid [11, 15, 24]. These

^{*}Research partially supported by the Austrian Science Fund (FWF) Grant S8311-MAT.

authors introduce a large class of finite combinatorial structures, which we will call **ordered orthogonal arrays** OOA. These OOA contain orthogonal arrays as a subclass. $(t, m, s)_q$ -nets (that is, (t, m, s)-nets in base q as in the original Definition 2.2 in [17]) are equivalent to another parametric subclass of OOA. Loosely speaking a $(t, m, s)_q$ -net is **linear** if it is defined over the field $I\!\!F_q$ with q elements. The duality between linear codes and linear orthogonal arrays carries over to the more general setting of linear OOA (see [14] or [20]). Here OOA generalize orthogonal arrays (dual codes). The weight function generalizing Hamming weight was first described by Niederreiter in [16, 18]. It was systematically exploited by Rosenbloom-Tsfasman in [23]. We use the term NRT-space for the corresponding metric space. A description is in Section 2.

Our main results are generalizations of coding-theoretic construction techniques from Hamming space to NRT-space, most notably concatenation (equivalently: Kronecker products), the (u, u + v)-construction and the Gilbert-Varshamov bound.

Let k = m-t denote the **strength** of a net. If a linear $(t, m, s)_q$ -net exists, where m < s, then a linear code $[s, s - m, k + 1]_q$ exists. From this point of view it is a basic problem (the problem of net-embeddability) to decide when a code $[s, s - m, k + 1]_q$ can be completed to a linear $(m - k, m, s)_q$ -net. More generally we ask when a linear OOA with certain parameters can be embedded in a larger OOA. We speak of a theorem of Gilbert-Varshamov type if the existence of the larger OOA can be guaranteed whenever the parameters satisfy a certain numerical condition. In the final section we apply our theoretical construction techniques as well as computer-generated net embeddings of error-correcting codes to improve upon net-parameters for nets of moderate strength and dimension defined over small fields.

2 Linear nets and linear ordered orthogonal arrays

A (t, m, s)-net is a subset of Euclidean s-space. We mentioned in the introduction that (t, m, s)-nets can equivalently be described by finite geometrical objects. More precisely (t, m, s)-nets are equivalent to a subclass of **ordered orthogonal arrays.** For our purposes this description is more natural. We use it as a definition. Moreover we concentrate on the linear case. **Definition 1.** Let $\Omega = \Omega^{(T,s)}$ be a set of Ts elements, partitioned into s blocks $B_i, i = 1, 2..., s$, where $B_i = \{\omega_1^{(i)}, \ldots, \omega_T^{(i)}\}$. Each block carries a total ordering:

$$\omega_1^{(i)} < \omega_2^{(i)} < \dots < \omega_T^{(i)}.$$

This gives Ω the structure of a partially ordered set, the union of s totally ordered sets of T points each. We consider Ω as a basis of a Ts-dimensional vector space $\mathbb{F}_q^{(T,s)}$. An ideal in Ω is a set of elements closed under predecessors. An antiideal is a subset closed under followers. Observe that antiideals are precisely the complements of ideals.

We visualize elements $x = (x_j^{(i)}) \in \mathbb{F}_q^{(T,s)}, i = 1, \ldots, s; j = 1, \ldots, T$ either as strings of length Ts, divided in s segments (the blocks) of length T each, or as matrices with T rows and s columns. Refer to these representations as **vector notation** and **matrix notation**, respectively. The interpretation of $x \in \mathbb{F}_q^{(T,s)}$ as a point in the s-dimensional unit cube is obtained by reading the $x_j^{(i)}$ for fixed i as the T first digits of the q-ary expansion of a real number between 0 and 1. As an example, the point $\boxed{\begin{array}{c} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}}$ in $\mathbb{F}_2^{(3,4)}$ is mapped

to the point $(\frac{3}{8}, \frac{1}{4}, \frac{3}{4}, \frac{5}{8}) \in [0, 1)^4$. This also motivates the hierarchical ordering inside the blocks.

We introduce some more terminology, which will be helpful in describing the basic parameters of NRT-space.

Definition 2. We refer to coordinate positions of $\mathbb{F}_q^{(T,s)}$ as cells. They are in obvious bijection with the elements of Ω . The breadth b = b(x) of a vector $x \in \mathbb{F}_q^{(T,s)}$ is the number of blocks $B_i, i = 1, 2, ..., s$ where x has a nonzero entry. The ideal K = K(x) generated by x is the smallest ideal containing the support of x. The breadth of an ideal K is the number of blocks it intersects nontrivially. Let n = |K| be the size of K. The type $\pi = \pi(K)$ is the partition n, where the multiplicity f_i of i as a part of π is the number of blocks, which intersect K in i points. The breadth $b(\pi)$ of a partition is the number of its nonzero parts. If $\pi = \pi(K(x))$, then $b(\pi) = b(x)$.

Definition 3 (NRT-metric). Let $x \in \mathbb{F}_q^{(T,s)}$. The weight of x is

$$\rho(x) = \rho(x, 0) = \sum_{i=1}^{s} T - \max\{j \mid x_1^{(i)} = \dots x_j^{(i)} = 0\}$$

The distance $\rho(x, y)$ is defined as $\rho(x, y) = \rho(x-y)$. The minimum weight (=minimum distance) of a subspace $C \subseteq \mathbb{F}_q^{(T,s)}$ is the minimum among the weights of its nonzero members

We may visualize the weight $\rho(x)$ as follows: in each block let the leading zeroes evaporate. The number of remaining cells is $\rho(x)$. It is clear that ρ is a metric. Also, $Ts - \rho(x, y)$ is the size of the maximal ideal on which x and y agree.

Definition 4. Let $S_l^{(T,s)}$ be the number of vectors of weight l in $\mathbb{F}_q^{(T,s)}$ and $V_l^{(T,s)} = \sum_{i=0}^l S_i^{(T,s)}$ the volume of a ball of radius l in $\mathbb{F}_q^{(T,s)}$.

Proposition 1. We have

$$S_l^{(T,s)} = \sum_{\pi} {\binom{s}{f_T, \dots, f_1, s-b}} (q-1)^b q^{l-b},$$

where the sum is over all partitions π of l of depth $\leq T$, and $b = b(\pi), f_i = f_i(\pi)$.

Proof. $S_l^{(T,s)}$ counts the vectors of $\mathbb{F}_q^{(T,s)}$, whose support generates an ideal of size l. The type of such an ideal K is a partition π as above. The number of vectors generating a fixed K of breadth b clearly is $(q-1)^b q^{l-b}$. It remains to count the ideals K with a given type π . This number is

$$\binom{s}{f_T}\binom{s-f_T}{f_{T-1}}\dots\binom{s-f_T-\dots-f_2}{f_1} = \binom{s}{f_T,\dots,f_1,s-b}.$$

We now define the objects we are primarily interested in.

Definition 5. A linear subspace (code) $C \subseteq \mathbb{F}_q^{(T,s)}$ has strength k = k(C) if k is maximal such that the projection from C to any ideal of size k is surjective. We also call such a subspace an ordered orthogonal array OOA, which is q-linear, has length s, depth T, dimension $m = \dim(C)$ and strength k.

A linear $(m - k, m, s)_q$ -net is equivalent to an m-dimensional code $\mathcal{C} \subseteq \mathbb{F}_q^{(k,s)}$ of strength k. Observe also that linear OOA of depth 1 are precisely linear orthogonal arrays, in other words an m-dimensional code in $\mathbb{F}_q^{(1,s)}$ of strength k is the dual (with respect to the ordinary dot product) of a code $[s, s - m, k + 1]_q$.

Definition 6. Define a symmetric bilinear form on $\mathbb{F}_q^{(T,s)}$ by

$$\langle x, y \rangle = \sum_{i=1}^{s} x_1^{(i)} y_T^{(i)} + x_2^{(i)} y_{T-1}^{(i)} + \dots + x_T^{(i)} y_1^{(i)}.$$

The dual \mathcal{C}^{\perp} is defined with respect to this scalar product.

Observe that $\mathbb{F}_q^{(1,s)}$ is the usual Hamming space, with its metric, the dot product and the corresponding notion of duality. Generalizing the notion of Hamming space we may call $\mathbb{F}_q^{(T,s)}$ with the NRT-metric and the corresponding notion of strength the **NRT-space**. It is an important albeit elementary observation that the duality (in Hamming space) between strength and minimum distance can be extended to our setting (see [14] or [20]).

Theorem 1. Let $\mathcal{C} \subseteq I\!\!F_q^{(T,s)}$ be a linear subspace (code). Then

 $\rho(\mathcal{C}^{\perp}) = k(\mathcal{C}) + 1.$

We are led to the natural problem of generalizing coding-theoretic bounds and constructions from Hamming space to NRT-space.

3 Trace codes

Theorem 2. Let $\mathcal{C} \subseteq \mathbb{F}_{q^r}^{(T,s)}$ of dimension m and strength k. We can construct $\tilde{\mathcal{C}} \subseteq \mathbb{F}_q^{(T,rs)}$ of dimension rm and strength k.

Proof. Let $\{b_1, \ldots, b_r\}$ be a basis of $F = I\!\!F_{q^r} \mid I\!\!F_q$. We describe an $I\!\!F_q$ -isomorphism $\tilde{}: \mathcal{C} \longrightarrow \tilde{\mathcal{C}}$ as follows: Let $tr : F \longrightarrow I\!\!F_q$ be the trace and $x \in \mathcal{C}$. The entry of \tilde{x} in coordinate (i, a), where $1 \leq i \leq s, 1 \leq a \leq r$ and depth j is $\tilde{x}_j^{(i,a)} = tr(x_j^{(i)}b_a)$. It is obvious that we have an $I\!\!F_q$ - isomorphism as the kernel is trivial. In particular dim $(\tilde{\mathcal{C}}) = mr$. It is also obvious that $\tilde{\mathcal{C}}$ still has strength k.

The special case of nets was proved in [22].

4 Concatenation

The following construction may be seen as a concatenation construction or as a Kronecker product for linear codes in NRT-space. A different Kronecker product construction is in [21]. **Theorem 3.** Let $C_1 \subseteq \mathbb{F}_q^{(T_1,s_1)}$ of dimension m and $C_2 \subseteq \mathbb{F}_q^{(T_2,s_2)}$ of dimension r. Let $\alpha : \mathbb{F}_{q^r} \longrightarrow C_2$ be an \mathbb{F}_q -isomorphism. Define the concatenation $C_2 \circ C_1 = \alpha(C_1) \subset \mathbb{F}_q^{(T_1T_2,s_1s_2)}$ as follows (in matrix notation): each $x \in C_1$ yields $\alpha(x) \in C_2 \circ C_1$ by applying α to each entry of x. Then dim $(C_2 \circ C_1) = mr$ and $k(C_2 \circ C_1) \geq \min\{k(C_1), k(C_2)\}$.

Proof. As the elements of $C_2 \circ C_1$ are in bijection with those of C_1 , the statement concerning the dimension is obvious. Let $k = \min\{k(C_1), k(C_2)\}$. Consider an ideal K of size k in $\Omega^{(T_1T_2,s_1s_2)}$. The natural projection \overline{K} to $\Omega^{(T_1,s_1)}$ is an ideal of size $\leq k$. We can therefore find $x \in C_1$ such that $\alpha(x)$ has arbitrarily chosen entries from C_2 in the positions of this ideal. For each $(i_1, j_1) \in \overline{K}$ the intersection of K with the corresponding $\Omega^{(T_2,s_2)}$ is itself an ideal, clearly of size $\leq k$. The claim follows.

The special cases of Theorem 3 when either C_1 or C_2 is a net and the other is an OA $(T_2 = 1 \text{ or } T_1 = 1)$ is in [22].

5 The (u, u + v)-construction

Theorem 4. For i = 1, 2 let $C_i \subset \mathbb{F}_q^{(T,s_i)}$ be linear OOA of dimension m_i and strength k_i , where $s_1 \leq s_2$. We can construct $C \subset \mathbb{F}_q^{(T,s_1+s_2)}$ of dimension $m_1 + m_2$ and strength min $\{k_2, 2k_1 + 1\}$.

Proof. This is a direct generalization of the famous (u, u + v)-construction in coding theory, which seems to go back to [26]. Consider the duals C_i^{\perp} . These have dimension $Ts_i - m_i$ and distance $k_i + 1$. We apply the (u, u + v)-construction to C_i^{\perp} . Our C will be obtained by dualizing (back). More precisely let $C_i = (C_i^{(1)}, C_i^{(2)}, \ldots, C_i^{(s_i)})$ be a generic element of $C_i, i = 1, 2$. We define C^{\perp} as the image of the (u, u + v)-mapping

$$u: \mathcal{C}_1^\perp \oplus \mathcal{C}_2^\perp \longrightarrow I\!\!F_q^{(T,s_1+s_2)}$$

given by

$$u(C_1, C_2) = (C_1^{(1)}, C_1^{(1)} + C_2^{(1)}, \dots, C_1^{(s_1)}, C_1^{(s_1)} + C_2^{(s_1)}, C_2^{(s_1+1)}, \dots, C_2^{(s_2)}).$$

It is obvious that u is \mathbb{F}_q -linear and injective. In particular $\dim(\mathcal{C}^{\perp}) = (Ts_1 - m_1) + (Ts_2 - m_2) = T(s_1 + s_2) - (m_1 + m_2)$, hence $\dim(\mathcal{C}) = m_1 + m_2$. In order to find the strength of \mathcal{C} we have to determine the distance of \mathcal{C}^{\perp} . Let $C_2 = 0, C_1 \neq 0$. Then $\rho(C_1, 0) = 2\rho(C_1) \geq 2(k_1 + 1)$. Let $C_2 \neq 0$. For each $j = 1, 2, \ldots, s_1$ the weight of the pair of columns $(C_1^{(j)}, C_1^{(j)} + C_2^{(j)})$ is at least the weight of the single column $C_2^{(j)}$. It follows $\rho(C_1, C_2) \geq k_2 + 1$ if $C_2 \neq 0$.

Let $k_2 = 2k_1 + 1$. In order to obtain a net as result, we must have $T = k_2$. This means that C_2 is a $(t_2, m_2, s_2)_q$ -net, $k_2 = m_2 - t_2$, whereas C_1 has depth $T = k_2 > k_1$ and strength k_1 . The effective depth of C_1 is therefore k_1 , and C_1 is obtained from a net of strength k_1 by adding meaningless rows. We have seen the following:

Corollary 1. Assume $k_2 \leq 2k_1 + 1$ and there exist linear $(t_1, m_1, s_1)_q$ - and $(t_2, m_2, s_2)_q$ -nets, where $k_i = m_i - t_i$ and $s_1 \leq s_2$. Then we can construct a linear $(m_1 + t_2, m_1 + m_2, s_1 + s_2)_q$ -net.

An application of Corollary 1 to nets $(16, 23, 127)_2$ and $(2, 5, 15)_2$ yields a $(21, 28, 142)_2$ -net. As a ternary example we obtain an $(11, 22, 23)_3$ -net from a $(4, 15, 12)_3$ -net and a $(2, 7, 11)_3$ -net. A different generalization of the (u, u + v)-construction is attempted in [20].

As an example start from $(6, 17, 10)_2$ and apply Corollary 1 with $(3, 8, 10)_2$ as second ingredient. The result is a $(14, 25, 20)_2$ -net. More examples will show up in the last section. Just as in coding theory, it is possible to apply Corollary 1 in a recursive fashion.

The (u, u + v)-construction can be generalized from the linear case to not necessarily linear ordered orthogonal arrays. The following definition generalizes Definition 5.

Definition 7. Let \mathcal{A} be an alphabet of size $|\mathcal{A}| = q$. A multisubset $\mathcal{C} \subseteq \mathcal{A}^{(T,s)}$ of size q^m has strength $k = k(\mathcal{C})$ if k is maximal such that for every ideal Kof size k and every k-tuple of entries in K precisely q^{m-k} elements of \mathcal{C} have the prescribed projection to K. We call \mathcal{C} an ordered orthogonal array OOA of length s, depth T, dimension m and strength k.

Observe that in the nonlinear case the dimension m need not be integer.

Theorem 5. Let \mathcal{A} be an alphabet of size $|\mathcal{A}| = q$. For i = 1, 2 let $\mathcal{C}_i \subset \mathcal{A}^{(T,s_i)}$ of dimension m_i and strength k_i , where $s_1 \leq s_2$. We can construct $\mathcal{C} \subset \mathcal{A}^{(T,s_1+s_2)}$ of dimension $m_1 + m_2$ and strength $k = \min\{k_2, 2k_1 + 1\}$.

Proof. We write the elements of $\mathcal{A}^{(T,s)}$ as Ts-tuples with s sections of length T (this is the vector notation mentioned in Section 2). For every pair u, v, where $u \in \mathcal{C}_2$ and $v \in \mathcal{C}_1$, we define a row in $\mathcal{A}^{(T,s_1+s_2)}$ by r(u,v) = (u,u+v). Here we have chosen a structure of an abelian group on \mathcal{A} . The addition in u+v is componentwise. The last s_2-s_1 blocks of u have been removed before performing the addition. Let the array \mathcal{C} consist of all these rows r(u,v). We have to show that \mathcal{C} has strength $\geq k$.

Denote the cells of $\mathcal{A}^{(T,s_1+s_2)}$ by (L, i, j), where $i \leq s_2, j \leq T$ (these form the **left part** L) and (R, i, j), where $i \leq s_1, j \leq T$ (the **right part** R). Let K be an ideal of size k. Let $C(K) = \{(i, j) | (R, i, j) \in K \text{ and } (L, i, j) \in K\}$ and c = |C(K)|. Let an arbitrary k-tuple be prescribed on the cells from K. The projection of u to the cells from $K \cap L$ are prescribed. Let x be a tuple on (R, C(K)) and U_x the set of elements $u \in \mathcal{C}_2$ having the prescribed projection on $K \cap L$ and projecting to x on (R, C(K)). Let further V_x be the set of elements $v \in \mathcal{C}_1$ such that u + v has the prescribed projection on (R, C(K)). For every $v \in V_x$ let $U_{x,v}$ consist of those $u \in U_x$ such that u + vhas the prescribed projection on $(K \cap R) \setminus (R, C(K))$. The pairs (u, v) such that r(u, v) has the required projection on K is then

$$\bigcup_{x} \bigcup_{v \in V_x} (U_{x,v}, \{v\}).$$

Observe that $c \leq k_1$ as $2c \leq k$. We are done.

It follows that Corollary 1 generalizes from the linear case to arbitrary nets.

6 The finite Gilbert-Varshamov bounds for OOA

Let a code $\mathcal{C} \subseteq \mathbb{F}_q^{(T-1,s)}$ of dimension m and strength k be given. It can be represented as follows: let $a(r), r = 1, \ldots m$ be a basis of \mathcal{C} . Write the a(r) as rows of a matrix A. The section corresponding to block B_i is $a^{(i)} = (a_1^{(i)}, \ldots, a_{T-1}^{(i)})$, where $a_j^{(i)} \in \mathbb{F}_q^m$.

We want to find vectors $a_T^{(i)}$, which complement \mathcal{C} to an *m*-dimensional code in $\mathbb{F}_q^{(T,s)}$ of strength k. It can be assumed that $a_T^{(i)}$, i < s have been found already. Our counting condition must be strong enough to guarantee the existence of $a_T^{(s)}$.

Each ideal $K \subset \Omega^{(T,s-1)}$ of size $l \leq k-T$ yields a condition. The number of candidates for $a_T^{(s)}$ excluded by K is q^{T-1} times the number of vectors in $\mathbb{F}_q^{(T,s-1)}$ whose support generates K. We obtain the following:

Theorem 6. Let $C \subseteq \mathbb{F}_q^{(T-1,s)}$ of dimension m and strength $\geq k$ be given. Assume

$$V_{k-T}^{(T,s-1)} < q^{m-T+1},$$

equivalently

$$\sum_{l \le k-T} \sum_{\pi} (q-1)^b q^{l-b} \binom{s-1}{f_T, \dots, f_1, s-1-b} < q^{m-T+1},$$

where the sum is over all partitions of l of depth $\leq T$, and b is the breadth of π . Then there is a code $\mathcal{D} \subseteq \mathbb{F}_q^{(T,s)}$ of dimension m and strength $\geq k$, which projects to \mathcal{C} .

We mention that Theorem 6 generalizes the strengthened Gilbert-Varshamov bound ([13], p. 34, Theorem 2 of [1]) from Hamming space to NRT-space. It is stronger than the generalization of the ordinary Gilbert-Varshamov bound obtained in [23]. Theorem 6 has the following obvious corollary:

Theorem 7. Assume $V_{k-T}^{(T,s-1)} < q^{m-T+1}$ holds for T = 1, 2, ..., k-1. Then there is a linear $(m-k, m, s)_q$ -net, equivalently a code $C \subset \mathbb{F}_q^{(k,s)}$ of dimension m and strength $\geq k$.

7 Net-embeddable error-correcting codes

Definition 8. Let C be a linear code $[s, s - m, k + 1]_q$ (equivalently: $C^{\perp} \subseteq \mathbb{F}_q^{(1,s)}$ has dimension m and strength $\geq k$). We call C net-embeddable if there is a linear $(m - k, m, s)_q$ -net projecting to C^{\perp} .

Recall that we identify linear nets with the corresponding linear subspaces of $I\!\!F_q^{(k,s)}$. Net-embeddability is guaranteed if Theorem 6 can be applied recursively, for $T = 2, \ldots, k$. In this section we apply our method in the following form:

Theorem 8. Assume a linear code $[s, s - m, k + 1]_q$ exists and $V_{k-T}^{(T,s-1)} < q^{m-T+1}$ holds for T = 2, ..., k - 1. Then there is an $(m - k, m, s)_q$ -net.

The following lemma simplifies the comparison between the corresponding conditions.

Lemma 1. Let $V_q(r,n) = V_r^{(1,n)}$ be the volume of a ball of radius r in Hamming space $I\!\!F_q^{(1,n)}$. If $n \ge \frac{2q-1}{q-1}r + \frac{q}{q-1}$, then

$$V_q(r+1,n) \ge qV_q(r,n).$$

Proof. As $V_q(r+1,n) = V_q(r,n) + \binom{n}{r+1}(q-1)^{r+1}$ the claim is equivalent to $V_q(r,n) \leq (q-1)^r \binom{n}{r+1}$. We have $V_q(r,n) = V_q(r-1,n) + \binom{n}{r}(q-1)^r$. By induction we have $V_q(r-1,n) \leq (q-1)^{r-1}\binom{n}{r}$. It suffices to show

$$(q-1)^{r-1} \binom{n}{r} + (q-1)^r \binom{n}{r} \le (q-1)^r \binom{n}{r+1},$$

equivalently $\binom{n}{r}q \leq \binom{n}{r+1}(q-1)$. We have

$$\binom{n}{r+1} / \binom{n}{r} = (n-r)/(r+1).$$

Our claim is therefore $q(r+1) \leq (q-1)(n-r)$, equivalently $n \geq \frac{2q-1}{q-1}r + \frac{q}{q-1}$.

It is easy to see that for strength k < 3 net-embeddability is always satisfied. In the case of strength 3 we are given a code $[s, s - m, 4]_q$. Geometrically this is an s-cap in projective space PG(m-1,q). Depth 2 can be reached provided $V_1^{(2,s-1)} = 1 + (s-1)(q-1) < q^{m-1}$. The depth 3 condition is then automatically satisfied. We conclude that each code $[s, s - m, 4]_q$ is net-embeddable provided $s < 1 + (q^{m-1} - 1)/(q - 1)$. This has been proved in [24]. The first non-embeddable codes occur in this case when q = 2 (the extended binary Hamming code is non-embeddable) and in characteristic 2 when m = 3. The best binary strength 3 net parameters are $(m-3, m, 2^{m-1} - 1)_2$.

For strength 4 the depth 2 condition is strongest. We conclude that a linear code $[s, s - m, 5]_q$ is net-embeddable provided $V_2^{(2,s-1)} < q^{m-1}$. As $V_2^{(2,s-1)} = V_q(2, s-1) + q(q-1)(s-1)$ we arrive at a statement first proved in [25]. The present paper grew out of an attempt to generalize this result.

7.1 Strength 5

Again the depth 2 condition is dominating. This implies that every linear code $[s, s-m, 6]_q$, which satisfies $V_q(3, s-1) + q(q-1)(s-1)V_q(1, s-2) < q^{m-1}$ is net-embeddable.

7.2 Strength 6

It follows from Lemma 1 that the condition for depth 3 is weaker than the depth 2 condition provided $s \ge 12$. The conditions for larger depths are weaker yet. This implies that each linear code $[s, s - m, 7]_q$, $s \ge 12$ which satisfies $V_q(4, s - 1) + q(q - 1)(s - 1)V_q(2, s - 2) + q^2(q - 1)^2 {s-1 \choose 2} < q^{m-1}$ is net-embeddable.

8 Net parameters

We present tables of net parameters $(m-k, m, s)_q$. For q = 2, 3, 4, 5 we list k, m, s. Observe that in case s > m the underlying error-correcting code has parameters $[s, s-m, k+1]_q$. As a starting point we used the tables in [5] for q = 2, 3, 5. Label t refers to surviving entries from these tables. In some cases when there was a choice we replaced label t by one of the constructions below. Net parameters from [22, 19] are labelled a and b, respectively. The values for strength 3 in the non-binary case follow from cap constructions, see [9]. The label used for nets obtained from embeddings of caps is c. The caps leading to values $(6, 9, 1216)_3$ and $(8, 11, 6464)_3$ are constructed in [7]. Many values for strength k = 4 are derived from the families described in [2, 8]. More families of binary nets of moderate strengths based on cyclic codes will be constructed in a forthcoming publication. The corresponding table entries carry the subscript f. The nets with subscript e are computer-constructions obtained by the second author. When s > m starting point is an error-correcting code. Subscript u indicates an application of the (u, u + v)-construction. When $s \leq m$ Theorem 7 (pure GV) is applied. The corresponding subscript is g. In case s > m typically we start from a code parameter given in [3] and apply Theorem 8 to prove that it can be embedded in a net. The corresponding entries are marked h.

A class of interesting constacyclic quaternary codes with d = 5 were

constructed in [10, 6]. We use parameters

 $[85, 77, 5]_4, [171, 162, 5]_4, [341, 331, 5]_4, [683, 672, 5]_4, [1365, 1353, 5]_4,$

 $[2731, 2718, 5]_4, [5461, 5447, 5]_4, [10923, 10908, 5]_4.$

In some cases, when no better construction seemed available, we used Theorem 7 (subscript g) also when s > m. Some good nets can be derived from Theorem 6 starting from $\mathcal{C} \subset \mathbb{F}_q^{(T-1,s)}$ of strength k for T > 2. All our examples have T = 3. These entries are labelled i. The depth 2 codes \mathcal{C} are derived from linear OA of strength k and length $\geq 2s$ in the most obvious way, by identifying 2s coordinates of the space containing the OA with the coordinates of $\Omega^{(2,s)}$. The codes which we used as ingredients can either be obtained from the data base [3] or from primitive BCH-codes. As an example, a $(12, 16, 3125)_5$ -net is based on a $[3125, 3109, 5]_5$ -code, an extended primitive BCH-code.

While we focused attention on linear nets, the tables contain also parameters of nonlinear nets. The only surviving parameters based on nonlinear nets are Mark Lawrence's $(5, 21, 516)_2$ and $(5, 25, 2503)_2$ from [12]. They carry subscript *L*. Finally, we leave a blank for values (k, m) in the tables whenever either we cannot construct a net of length *s* exceeding the entry in cell (k, m - 1) or when we have reached a length of several thousand for a dimension m' < m already.

Notation in tables											
indices	explanation										
t	tables from [5]										
a	Niederreiter-Xing [22]										
b	Niederreiter [19]										
с	embedding of caps, see [9]										
е	computer embeddings										
f	Families from $[2, 8]$										
g	Theorem 7										
h	code embedding Theorem 8										
i	Theorem 6										
u	(u, u + v)-construction										
L	M. Lawrence's nonlinear nets										

$k \setminus m$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
2	7_t	15t	31_t	63_t	127_{t}	255t	511_{t}	1023_t									1	
3	3_t	7_t	15t	31_t	63t	127t	255t	511_{t}	1023_{t}	2047_{t}	4095t	8191_{t}						
4		3_t	5_t	8_t	11_t	17_{f}	23_e	32_e	47_e	65_f	81_{h}	128_{e}	151_{h}	257_{f}		510_{f}		
5			3_t	5_t	7_t	10_e	14_e	20_e	26_e	36_e	45_e	69_e	77_e	129_{f}	140_{e}	257_{f}		
6				3_t	5_t	6_t	9_t	11_t	15_e	21_e	23_e	26_e	36_e	42_e	48_e	64_e		
7					3_t	5t	6_t	7_t	11_t	13_e	16_e	20_e	23_e	28_e	34_e	41_e		
8						3_t	5_t	6_t	7_t	9_t	11_e	14_t	16_e	19_e	22_e	26_e		
9							3_t	5_t	6_t	7_t	8_t	10_e	12_e	14_e	17_t	20_e		
10								3_t	5t	6_t	7_t	8t	9t	11_e	13_e	15e		
11									3_t	5_t	6_t	7_t	8_t	9_t	10_t	12_e		
12										3_t	5_t	6_t	7_t	8_t	9_t	10_t		
13											3_t	5_t	6_t	7_t	8t	9_t		
14												3_t	5_t	6_t	7_t	8_t		
15													3_t	5_t	6_t	7_t		
$k \setminus m$	19		20	21	22	2	23	24	25	26	27	28	29	30	31	32	33	34
4	513	f 1	025f		204	6 _f 2	2049 f	4097 f		8190f	8193f							
5		5	513 _f	516_{L}	102	5_f	J	2049_{f}	2053_{L}	4097_{f}	j	8193	f					
6	72_{e}		79_{e}	127 _e		J		130u	137_{h}	164 _h	196_{h}	511 f	,		1023	r .		2047_{f}
7	47_e		58_e	64_e			127 _f			133i	137_{i}	142u	511	f		514_{i}	518	$_{u}$ 526 $_{u}$
8	30_e		35_e	39_e			J		42_q	47_q	54_h	64_i	69 _h	78_h	89_{h}	128_{i}	132	$_{i}$ 133 $_{i}$
9	23_e		26_e	29_e					34_u	37_u	40_u	46_u	60_{i}	68_{i}	71_{i}	84_{i}	100	$_{i}$ 113 $_{i}$
10	17_e		20t	23_e				24t	25t	28_b	31_i	33_i	35_g	40u	43_{g}	47_{g}	52_{g}	$_{I} 57_{g}$
11	14_e		16_e	18_e					20_u	22_u	24_g	28_b	30_u	33_i	36_u	37_g	40_{g}	45_{i}
12	11_e		13_{e}	15_e					16_g	18_b	19_{g}	21_{g}	23_{g}	28_b		31_{g}	33 _g	$_{1}$ 36 $_{g}$
13	10t		11_e	12_e			13t	14t		16u	18u	19u	20u	22u	23_g	28_b		30_b
14	9_t		10_t		11	t	12t	13_t	14_t		15_t		17_{t}	18_{b}	20_g	21_{g}	23_{g}	$_{1}$ 28 _b
15	8_t		9_t	10_t			11_t	12t	13_t	14_t		15t		17_t	18_u	20_u	20_{g}	22_{g}
$k \backslash m$	35		36	37	3	38	39	40	41	42	43	44	45	46	47	48	49	50
6				2050	u 20	54_u	2062_{u}	8191 _f										
7	2047	7_{f}			20	50_u	2054_{u}	2062_{u}	8191 _f									
8	145	h	163_{h}	184_{P}	n 20	08_h	234_h	263_{h}	273_{h}	274_{h}	276_{h}	277_{h}	294_{g}	324_{g}	357_{g}	394_{g}	435_{g}	480_{g}
9	128	i	134_i		13	35_i	137_h	152_{h}	169_{h}	187_{h}	208_{h}	230_{h}	255_h	282_{h}	285_{h}	286_{h}	287_{h}	289_{g}
10	64	i	69_g	76_h	8	4_h	95_i	128_{i}	132_{i}	136_{i}		146_h	161_{h}	176_{h}	193_{h}	211_{h}	231_{h}	253_{h}
11	50,	i	62_i	68_i	7	1_i	75_i	91_i	100_i	110_{i}	121_i			122_h	133_h	144_{h}	156_{h}	170_{h}
12	- 39g	9	42g	45g	4	9_g	53_g	58_g	62_g	67_g	73_g	78_g	85g	91_g	99_g	106_{g}	115_{h}	124_h
13	$3\overline{3}_{g}$	9	36_i	38_g	4	1_g	44_g	47_g	51_g	54_g	64_i	68_i	71_i	72_g	77_g	83 _g	89_g	96_g
14			30_b	32_g	3	5_g	38_i	40_{b}	43_g	46_g	49_g	52_g	56_g	60_g	64_g	68_g	72_g	77_g
15	23_{g}	3	28_b		3	0_b	32_g	34_b	37_g	40_b	43_i	45_g	48_{g}	51_g	54_g	57_g	61_g	65_g

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	14	15	5	16	17	18]	
2	13_t	40_t	121_{t}	364_t	1093_{t}														
3	4c	10_c	20_c	56_c	112_{c}	248c	532c	1216_{c}	2744_{c}	6464_{c}									
4		4_t	8_t	14_e	26_f	41_{f}	80_f	121_{f}	242_{f}	365_{f}	728_{f}	1093	f 218	$6_f - 3_1$	281_{f}	6560_{f}	9841_{f}		
5			4_t	7_t	11_{e}	18_e	28_e	38_e	77_e	95_e	103_{e}	104_{h}	151	-h 2	219_{h}	244_{h}	245_{h}		
6				4_t	7_t	$\frac{8_t}{2}$	13_e	19_{e}	25_e	33_e	42_{e}		49	h	65_{h}	87 _h	110 _h		
7					4t	7t	$\frac{8t}{7}$	Π_e	15e	$\frac{20_{e}}{1.4}$	26e	34_e			41_{i}	431	$\frac{51_h}{22}$	_	
8						4_t	1	$\frac{8_t}{7}$	10t	14 _e	$\frac{1}{e}$	22 _e			16	25g	$\frac{32_b}{21}$	_	
9							4t	1 t	0t 7.	10 _t	12_t	10 _e	19		10_t	$\frac{16_u}{16_v}$	21g	-	
10								4t	11	0t 7.	10t 8.	$\frac{12t}{10t}$	10	t	14t 13.	10t	16.	_	
11									4 <u>t</u>	4	7,	10 _t	10	t .	$\frac{10_t}{12_t}$	14t	14	_	
13										-1	4+	7+	8	<i>t</i>	$\frac{12t}{10t}$	10t 12t	13+	_	
14											11	4+	7		8+	10+	12+		
15												-1	4		$\frac{2t}{7t}$	8 _t	10_{t}	_	
															U	U	v		
$k \setminus m$	19	2	0 5	21	22	23	24	25	26	27	28	3 2	9	30	31	32	3	3	34
5	660_{h}	73	0_h 73	31_h 19	985_h 2	2188_{h}	2189_{h}	5959_{h}	6562_{h}	6563	_h 656	4_h 656	55_h 6	566_{h}	6567_{P}	h 7262	2_g 955	7_g	
6	120_{h}	20	$1_h 2_{4}$	$\frac{14_h}{1}$	245_h	246_{h}	610 _h	729 _h	730 _h	731 _h	183	$6_h 218$	$37_h 2$	188_{h}	2189 _P	$\frac{5514}{100}$	$h_h 656$	1_h 6	562_{h}
7	64 _h	81	h I	21_i 1	.28 _h	160 _h	200_{h}	364 _i	365_{i}	390 _h	48	h = 10	$93_i \ 1$	094 _i	1094	i 1179	$h_h 328$	$30_i \ 3$	281 _i
8	37_{h}	45	h 5	4_h	$\frac{66_h}{41}$	80 _h	96 _h	$\frac{117_h}{c^2}$	141 _h	$\frac{170_{h}}{05}$	208	$p_h = 24$	6_h 2	247 _h	$\frac{364_i}{100}$	432	h = 520	$b_h = 6$	25_h
9	25_{g}	32	2 _b 3	5 <i>g</i>	41 _g	$\frac{49_h}{24}$	$\frac{58_h}{40}$	68 _h	80 _h	95 _h	71	$\frac{2_h}{2_h}$	$\frac{1_h}{1_h}$	155 _h	$\frac{182_h}{191}$	197	h = 243	$\frac{D_h}{2} = \frac{2}{1}$	40_h
10	19_t	10	$\frac{2i}{2i}$	$\frac{10g}{20}$	32b 22	$\frac{34_g}{26}$	40b 30.	40g	40,	01_h	56	$\frac{h}{5}$	² h 7	$\frac{95_h}{65}$	74.	121	h = 140	$h_h = 1$	109_h
11	16,	15	<i>t</i> 2	$\frac{\log}{\Omega_{i}}$	23u	20g	24.	- 34g	32.	44g	40	$\frac{b}{1}$	1 g 2	$\frac{00g}{56}$	14h	61	1 90 60	<u>h</u> 1	78
13	14	16	1 }≁	J_t	19+	219	241	211	24+	28:	32	$\frac{b}{1}$ $\frac{3}{3}$	1 ₀	401	43.	56	, 00	<u>g</u>	59.
14	13_{t}	14	η 1 ₊ 1	6+	101	19+	201	20+	22+	20 ₁ 24 _t	25	<u> </u>	19 8+	321	35 _a	40	, 42	a	56 ₄
15	12_t	13	$B_t = 1$	4	16 _t		19_t		$\frac{20_{t}}{20_{t}}$	22t	24	9 -		$\frac{28_{t}}{28_{t}}$	29a	32	35	g a	40_{h}
	Ū		U	c	U		v		U	U		0		U	9	C	,	9	0
$k \setminus m$	35		36	37	38	39	4	0 4	41 4	42	43	44	45	4	6	47	48	49	50
6	6563	h = 6	564_{h}	6565_{h}	65667	6862	2g - 854	18_g											
7	3281	i 3	284_{u}	3545_{h}	4417_{P}	$_{h}$ 5503	$B_h = 656$	68_h $\overline{65}$	69_h $\overline{65}$	70_h 6	571_{h}	6572_{h}	6573_{h}	681	2_{g} 81	180 _g 9	9824_{g}		
8	733	h 1	093 _i	1094_{i}	1306	1569 h	$\theta_h = 188$	$35_h 32_h$	$280_i 32$	281_{i}			3284_{u}	328	88_u 65	567_{h} 6	5568 _h	6569 _h	6570 _h
9	247	h 4	105_h	475 _h	556 _h	652	h 73	$2_h 73$	33 _h			796 _g	912_{g}	104	16 _g 12	200_g 1	1376_{g}	1578 _g	1809g
10	194	h 2	$\frac{224_{h}}{42}$	$\frac{364_i}{161}$	$\frac{365_i}{100}$	365	$\frac{0}{1}$ 39	$\frac{2_h}{5}$ 45	$\frac{51_h}{10}$ 5	18_h				573	$3_g = 6$	47_{g}	731_{g}	825g	932g
11	125	h 1	$.42_h$	$\frac{161_{h}}{111}$	$\frac{183_h}{118}$	207	h = 23	$\frac{b_h}{c} = \frac{24}{12}$	$\frac{18}{75}$ 10	$\frac{19_h}{17}$	004i	947	949	0.44	4	00g	446_{g}	497g	$\frac{555_g}{267}$
12	88 _h		$\frac{90h}{79}$	***	$\frac{118_h}{01}$	101	h 15	$\frac{v_h}{2}$ 10	$\frac{10h}{10}$ 19	$\frac{y_{lh}}{20.1}$	54.	241h	248 _h	24	$\frac{9h}{1}$ 2	24.	301g 250.	<u>ააა</u> 251	307g
13	00g		13g 57	84g	91g 70	101	h 11	$\frac{2h}{5}$	$\frac{25h}{4}$ 10	$\frac{59h}{14}$	$\frac{34_h}{15}$	$\frac{111h}{125}$	190_h	21. 15'	$\frac{1h}{2}$ 2, 1	$\frac{54_h}{60}$	200h 186.	$\frac{231_h}{204}$	203g
14	12		56,	00g	$i 0_g$	62	g 88 69	$\frac{g}{2}$ 9	$\frac{14}{3}$ I	94g 1	10 _h	120h	$\frac{139_h}{107}$	10.	$\frac{5h}{7}$ 1	$\frac{09_h}{28}$	130_h	$\frac{204}{140}$	220h
10	^{40}g		506			029	g 00	, g 1	4 <i>g</i> C	2g	S_g	go_g	101g	11	'g 1	20h	109h	149h	100h

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	1	4 1	5 16	17	18		
2	21_t	85t	341_{t}	1365_{t}	5461_{t}													
3	5c	17c	41_c	126c	288c	756_c	2110_{c}	4938_{c}										
4		5_a	10_e	19_e	32_e	85_e	171_{e}	341_{e}	683_{e}	965_h	1366	6_h 386	51_h 546	52_h				
5			5_a	9_a	16_e	26_e	36_e	64_e	81_e	96_h	154	h 24	$5_h 25$	8_h 619	$_{h}$ 983 $_{h}$	1026_{h}	ı	
6				5_a	9_a	12_e	18_e	26_e	34_e		45_{P}	$_{h}$ 65	h = 8	$l_h = 89$	$h 187_h$	257_{h}		
7					5a	9_a	10_a	15e	20_e		22_{g}	g 30	u = 40	0_h 53	$h 71_{h}$	94_h		
8						5_a	9_a	10_a	13_a	17_e		20	a = 23	$B_g = 29$	$g 37_h$	47_h		
9							5_a	9_a	10_a	13_a	15_{c}	a = 17	$a_{a} 20$	$D_a = 21$	$a 24_g$	29_g		
10								5a	9_a	10_a	13_{c}	a = 15	a 1'	$7_a = 20_a$	a 21a			
11									5_a	9_a	10	a = 13	a = 1	$5_a = 17_a$	a 20a	21_a		
12										5_a	9_a	10	a = 1	$B_a = 15$	a 17a	20_a		
13											5a	9,	a 10	$a_{a} = 13$	a 15a	17a		
14												5,	a 9	a 10	$a 13_a$	15 _a		
15													5	$a 9_a$	10_{a}	13_a		
$k \setminus m$	19		20	21	22	23	24	25	26		27	28	29	30	31	32	33	34
5	2479	1. 3	9371	40981	40991	4103	4119.	4278.	. 6046	i. 85	549 a							
6	258	h 2	259_{h}	7531	1025_{h}	1026 _h	1027	30204	4097	$\frac{y_{g}}{h} = 40$	98 ₁	40991	4103.	4114.	4696 _a	6195	8174a	
7	111	h]	119_{h}	219 _h	257 _h	2584	259 _h	325	886	h 10	25_{h}	1026_{h}	1027_{h}	1031,	3554 _b	4097_{h}	4098	4099_{h}
8	60 _h		73_{h}	85 _h	95 _h	112 _h	199 _h	252_{h}	257	h = 2!	58_h	292_{q}	355 _q	807 _h	1018 _h	1025_{h}	1026_{h}	1027_{h}
9	36		45_{h}	55_h	68_h	84 _h	94 _h	128i	155	h = 19	90_h	232_{h}	260_{h}	261 _h	512_{i}	518 _h	632_{h}	772 _h
10	26	ı	30 _q	36 _q	44_q	52_q	63_h	76_h	89 _h	1	01_h	111_{h}	155_{h}	186_{h}	222_h	259_{h}	260_{h}	264_{q}
11			26a	27_a	31_g	37_g	43_g	51_g	60_{g}	, 7	$'1_h$	83_h	98_h	115_{h}	125_{h}	132_{g}	185_{h}	217_{h}
12	21 _a	ı		26_a	27_a	28_g	32_g	37_g	43_{g}	, 5	$b0_g$	58_g	68_g	78_h	87_g	98_g	110_{g}	124_{g}
13	20_{a}	ı	21_a		26_a	27_a		29_a	33 _a	, 3	88_g	44_g	50_g	57_{g}	66_g	75_g	86_h	96_h
14	17_{a}	ı	20a	21_a		26_a	27a		29_{a}	ι 3	3a	35_g	39_g	44_g	50_g	57_g	65_g	73_{g}
15	15_{a}	ı	17_a	20_a	21_a		26_a	27_a		2	29_a	33_a		36_g	40_g	45_g	51_g	57_g
	05		9.0	97	90	20	10	41	49		49	4.4	45	4.0	477	10	10	50
$\kappa \setminus m$	- 35		30	37	38	39	40	41	42	4	43	44	45	46	47	48	49	50
7	4103	u 4	$\frac{114_u}{240}$	5153_{g}	6491 _g	8178g	1000	1100	4010		00	0001	0000					
8	1157	$\frac{g}{g}$ 3	$\frac{240_{h}}{220}$	4084_h	4097 _h	4098 _h	4099 _h	4100 _h	4618	Sg 56	529_{g}	6861g	8363 _g	4105	1000	F140	0110	
9	942	$h \downarrow$	029_{h}	2048_i	2048_i	2085_h	2543_h	$\frac{3101}{h}$	$\frac{3781}{1020}$	h 41	$\frac{02_{h}}{100}$	4103 _h	4104_{h}	4105_{h}	4326_{g}	5143_g	6116_{g}	7272_{g}
10	308	g t	035h	037h	(58 _h	903 _h	1028 _h	1029 _h	1030	$v_h = 20$	148 _i	2155 _h	1000			4101_h	4102_h	4103_h
11	254	h 4	209 _h	260g	298g	341g	391g	649 _h	758	$h = \frac{88}{3}$	50_h	1027h	1028 _h	700		1176g	1350g	1550g
12	140	g _	10/h	$\frac{215_h}{140}$	248 _h	$\frac{258_{h}}{180}$	259_h	292g	331	g = 3	$(4_g$	424g	000h	766 _h	F91		792_{g}	898g
13	107	h	119 _h	140 _h	100h	189 _h	210 _h	240 _h	201	h = 20	02_h	290g	320g	$\frac{\partial 1 Z_i}{\partial C_1}$	001h	200	957	$\frac{314_g}{207}$
14	839	1	93g 70	104 _h	115 _h	127g	141g	$\frac{171_{h}}{104}$	193	h 2.	$1\delta_h$	245h	$\frac{260_{h}}{107}$	201g	290g	322g	357g	397g
15	64_{g}	1	$i Z_g$	80_g	90_g	101_{g}	113_{g}	124_{g}	136	$g = 1^{4}$	49_{g}	164_{g}	197_h	221_{h}	240_{h}	259_{h}	265_{g}	291_{g}

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
2	31_t	156_t	781_{t}	3906	t												٦	
3	6_c	26_c	66_c	186_{c}	675_{c}	1715_{c}	4700_{c}											
4		6_t	12_e	27_e	44_e	78_e	137_e	138_{h}	167_{g}	285_{g}	625_{h}	$_{n}$ 831 _g	1421	$_{1}$ 3125 _h	4152_{g}	7099_{g}	1	
5			6_t	10_t	21_e	33_e	46_e	68_e	96_h	124_h	130_{h}	$_{n}$ 156 $_{g}$	233_{g}	624_{h}	625_{h}	775_{g}		
6				6_t	10_t	14_e	27_e	33_e		44_h	67_{h}	102_{h}	130_{h}	131_{h}	344_{h}	515_{h}		
7					6_t	10_t	12t	25e			31_u	50_u	57_h	79_h	110_{h}	131_{h}		
8						6_t	10_t	12_t	16_t	18_t	20_t	22_g	29_{g}	39_h	52_h	69_{h}		
9							6_t	10_t	12_t	16_t	18_t	20_t	21_t	24_g	30_g	39_g		
10								6_t	10_t	12t	16 _t	18t	20_t	21_t	22_a	26_{g}	_	
11									6_t	10_t	12 _t	16t	18t	20_t	21_t	22a	_	
12										6_t	10t	12t	16 _t	18t	20 _t	21_t	_	
13											0_t	10_t	12t	10t	18t	20t	_	
14												0_t	10 _t	$\frac{12_t}{10}$	10 _t	$\frac{18_t}{16}$	_	
10													0_t	10t	12t	10_t		
$k \backslash m$	19	2	20	21	22	23	24	25	26	2	7	28	29	30	31	32	33	34
5	1158	g 31	24_h	3125_{h}	3868_{g}	5784_{g}	8648_{g}											
6	627	62	28_h	1727_{h}	2584_{h}	3127_h	3128_h	3129_{h}	3133	u = 387	77_g :	5348_{g}	7378_{g}					
7	132_{i}	_i 16	53_g	404_{h}	559_{h}	627_h	628_{h}	629_{h}	2033	h 280	05_h :	3127_{h}	3128_{h}	3129_{h}	3133_{u}	4002_{g}	5233_{g}	6842_{g}
8	90_{h}	11	19_h	132_{h}	136_{g}	171_{g}	214_{g}	464_{h}	608_{h}	_n 62	7_h	628_{h}	668_{g}	840_{g}	2335_{h}	3055_{h}	3127_{h}	3128_{h}
9	50_{h}	6	3_h	79_h	102_{h}	129_{h}	132_{h}	148_{g}	180_{g}	, 21	9_g	267_{g}	524_{h}	626_h	627_{h}	628_{h}	723_{g}	883_{g}
10	32_{g}	3	9_g	49_{g}	60_h	75_h	92_h	113_{h}	131_{h}	₁ 13	4_g	159_{g}	190_{g}	226_{g}	269_{g}	476_{h}	583_{h}	626_{h}
11	23a	2	7_g	33_g	40_g	49_{g}	59_g	71_h	86_h	10	3_h	125_{h}	132_{h}	146_{g}	171_{g}	200_{g}	312_{i}	373_{h}
12	22_a	2	3_a	26_a	29_g	35_g	41_{g}	49_{g}	58_g	69	θ_g	82 _h	97_h	115_{h}	132_{h}	138_{g}	159_{g}	183_{g}
13	21_t	2	2_a	23_a	26_a	27 _a	32_a	37_g	43_{g}	50) _g	58_{g}	68 _g	80 _g	93_h	108_{h}	126_{h}	133_{h}
14	20_t	2	1_t	22_a	23 _a	26a	27_a	32_a	33_g	38	S_g	44g	51g	59g	68g	$\frac{78_{g}}{20}$	90g	104 _h
15	18_t	2	0_t	21_t	22_a	23_a	26_a	27_a	32_a			36_a	40_g	46_{g}	52_g	60_g	68_g	78_g
$k \backslash m$	35		36	37	38	39	40	41	42	4	3	44	45	46	47	48	49	50
8	3129	_h 33	26_g	4186_{g}	5267_{g}	6627_{g}	8340_{g}											
9	1079	g 26	36_h	3126_{h}	3127_{h}	3128_{h}	3129_{h}	3600_{g}	4401	g = 533	81 _g (6580_{g}	8045_{g}	9837_{g}				
10	627	65	52_{g}	779_{g}	931_{g}	1112_{g}	2400_{h}	2936_{h}	3126	h 312	27_h	3128_{h}	3244_{g}	3879_{g}	4637_{g}	5545_{g}	6629_{g}	7927_{g}
11	448	53	36_h	629_{h}	630_{h}	631_{h}	712_{g}	1562_{i}	1579	h 188	89_h	2260_{h}	$2\overline{704}_h$	$\overline{3130}_h$	3131_{h}	$3\overline{1}3\overline{2}_h$	3133_{h}	3543_{g}
12	211	g 24	43_g	366_h	430_{h}	507_{h}	596_h	$\overline{629}_h$	630 _k	₁ 66	$\overline{8}_g$	772_{g}	893_{g}	1576_{h}	1852_{h}	$2\overline{177}_h$	$\overline{2558}_h$	3006_{h}
13	150	$g = \overline{1'}$	71_{g}	195_{g}	222_{g}	253_{g}	288_{g}	420_h	488_{P}	$_{i}$ 56	5_h	628_{h}	629_{h}	638_{g}	728_{g}	832_{g}	951_{g}	1086_{g}
14	120	13	32_h	145_{g}	163_{g}	183_{g}	207_{g}	233_{g}	263_{g}	₉ 29	7_g	335_{g}	476_{h}	545_{h}	624_{h}	628_h	629_{h}	698_{g}
15	89_{g}	10	01_{g}	115_{h}	131_{h}	141_{g}	157_{g}	175_{g}	196_{g}	₂ 21	.9 _g	245_{g}	274_{g}	306_{g}	342_{g}	469_{h}	531_{h}	602_{h}

References

- J. Bierbrauer and Y. Edel: Lengthening and the Gilbert-Varshamov bound, IEEE Trans. Inform. Theory 43 (1997), 991-992.
- [2] J. Bierbrauer and Y. Edel: Construction of digital nets from BCH-codes, Monte Carlo and Quasi-Monte Carlo Methods 1996, Lecture Notes in Statistics 127(1997), 221-231.
- [3] A.E. Brouwer: Data base of bounds for the minimum distance for linear codes, URL http://www.win.tue.nl/~aeb/voorlincod.html
- [4] W.W.L. Chen and M.M. Skriganov: *Explicit constructions in the classical mean squares problem in irregularities of point distributions*, to appear in J. Reine Angewandte Math.
- [5] A.T. Clayman, K.M. Lawrence, G.L. Mullen, H. Niederreiter and N.J.A. Sloane: Updated tables of parameters of (t, m, s)-nets, J. Combin. Designs 7 (1999), 381–393.
- [6] I. Dumer and V.A. Zinoviev: Some new maximal codes over GF(4), Probl. Peredach. Inform 14 (1978), 24–34, translation in Problems in Information Transmission 1979, 174–181.
- [7] Y. Edel: *Extensions of generalized product caps*, submitted for publication in Designs, Codes and Cryptography.
- [8] Y. Edel and J. Bierbrauer: Families of ternary (t, m, s)-nets related to BCH-codes, Monatsh. Math. 132 (2001), 99–103.
- [9] Y. Edel and J. Bierbrauer: Large caps in small spaces, Designs, Codes and Cryptography 23 (2001), 197–212.
- [10] D.N. Gevorkyan, A.M. Avetisyan and G.A. Tigranyan: On the structure of two-error-correcting in Hamming metric over Galois fields, in: Computational Techniques (in Russian) 3, Kuibyshev 1975, 19–21.
- [11] K.M. Lawrence: A combinatorial characterization of (t, m, s)-nets in base b, J. Combin. Designs 4 (1996), 275–293.
- [12] K.M. Lawrence: Construction of (t, m, s)-nets and orthogonal arrays from binary codes, manuscript.

- [13] F.J. McWilliams and N.J. Sloane: The Theory of Error-Correcting Codes, North-Holland, Amsterdam 1977.
- [14] W.J. Martin and D.R. Stinson: Association schemes for ordered orthogonal arrays and (t,m,s)-nets, Canadian Journal of Mathematics 51(1999), 326–346.
- [15] G.L. Mullen and W.Ch. Schmid: An equivalence between (t, m, s)-nets and strongly orthogonal hypercubes, J. Comb. Theory A 76 (1996), 164–174.
- [16] H. Niederreiter: Low-discrepancy point sets, Monatsh. Math. 102 (1986), 155–167.
- [17] H. Niederreiter: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273–337.
- [18] H. Niederreiter: A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Statist. Comp. 8 (1987), 1035–1051.
- [19] H. Niederreiter: Constructions of (t, m, s)-nets, Monte Carlo and Quasi-Monte Carlo Methods 1998, (H. Niederreiter and J. Spanier, eds), Springer, Berlin (2000), 70–85.
- [20] H. Niederreiter and G. Pirsic: Duality for digital nets and its applications, Acta Arith. 97 (2001), 173–182.
- [21] H. Niederreiter and G. Pirsic: A Kronecker product construction for digital nets, Monte Carlo and Quasi-Monte Carlo Methods 2000, (K.T. Fang, F.J. Hickernell and H. Niederreiter, eds), Springer, Berlin (2002), 396–405.
- [22] H. Niederreiter and C.P. Xing: Nets, (t, s)-sequences, and algebraic geometry, Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds), Lecture Notes in Statistics 138 (1998), 267–302.
- [23] M.Yu. Rosenbloom and M.A. Tsfasman: Codes for the m-metric, Problems of Information Transmission 33 (1997),45-52, translated from Problemy Peredachi Informatsii 33(1996),55-63.

- [24] W.Ch. Schmid: (t, m, s)-nets: digital construction and combinatorial aspects, PhD dissertation, Salzburg (Austria), 1995.
- [25] W.Ch. Schmid and R. Wolf, Bounds for digital nets and sequences, Acta Arith. 78 (1997), 377–399.
- [26] N.J.A. Sloane and D.S. Whitehead: A new family of single-error correcting codes, IEEE Trans. Inform. Theory 16 (1970), 717–719.
- [27] M.M. Skriganov: Coding theory and uniform distributions, to appear in St. Petersburg Math. J., translated from Algebra i Analiz 13 (2001), 191–239.