Coding-theoretic constructions for (t, m, s)-nets and ordered orthogonal arrays

Jürgen Bierbrauer
Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931 (USA),

Yves Edel
Mathematisches Institut der Universität
Im Neuenheimer Feld 288
69120 Heidelberg (Germany), and
Wolfgang Ch. Schmid*
Institut für Mathematik
Universität Salzburg
Salzburg (Austria)
March 4, 2005

1 Introduction

(t, m, s)-nets were defined by Niederreiter [17] in the context of quasi-Monte Carlo methods of numerical integration. Niederreiter pointed out close connections to certain combinatorial and algebraic structures. This was made precise in the work of Lawrence, Mullen and Schmid [11, 15, 24]. These

[^0]authors introduce a large class of finite combinatorial structures, which we will call ordered orthogonal arrays OOA. These OOA contain orthogonal arrays as a subclass. $(t, m, s)_{q}$-nets (that is, (t, m, s)-nets in base q as in the original Definition 2.2 in [17]) are equivalent to another parametric subclass of OOA. Loosely speaking a $(t, m, s)_{q}$-net is linear if it is defined over the field \mathbb{F}_{q} with q elements. The duality between linear codes and linear orthogonal arrays carries over to the more general setting of linear OOA (see [14] or [20]). Here OOA generalize orthogonal arrays (dual codes). The weight function generalizing Hamming weight was first described by Niederreiter in $[16,18]$. It was systematically exploited by Rosenbloom-Tsfasman in [23]. We use the term NRT-space for the corresponding metric space. A description is in Section 2.

Our main results are generalizations of coding-theoretic construction techniques from Hamming space to NRT-space, most notably concatenation (equivalently: Kronecker products), the $(u, u+v)$-construction and the Gilbert-Varshamov bound.

Let $k=m-t$ denote the strength of a net. If a linear $(t, m, s)_{q}$-net exists, where $m<s$, then a linear code $[s, s-m, k+1]_{q}$ exists. From this point of view it is a basic problem (the problem of net-embeddability) to decide when a code $[s, s-m, k+1]_{q}$ can be completed to a linear $(m-k, m, s)_{q}$-net. More generally we ask when a linear OOA with certain parameters can be embedded in a larger OOA. We speak of a theorem of Gilbert-Varshamov type if the existence of the larger OOA can be guaranteed whenever the parameters satisfy a certain numerical condition. In the final section we apply our theoretical construction techniques as well as computer-generated net embeddings of error-correcting codes to improve upon net-parameters for nets of moderate strength and dimension defined over small fields.

2 Linear nets and linear ordered orthogonal arrays

A (t, m, s)-net is a subset of Euclidean s-space. We mentioned in the introduction that (t, m, s)-nets can equivalently be described by finite geometrical objects. More precisely (t, m, s)-nets are equivalent to a subclass of ordered orthogonal arrays. For our purposes this description is more natural. We use it as a definition. Moreover we concentrate on the linear case.

Definition 1. Let $\Omega=\Omega^{(T, s)}$ be a set of Ts elements, partitioned into s blocks $B_{i}, i=1,2 \ldots, s$, where $B_{i}=\left\{\omega_{1}^{(i)}, \ldots, \omega_{T}^{(i)}\right\}$. Each block carries a total ordering:

$$
\omega_{1}^{(i)}<\omega_{2}^{(i)}<\cdots<\omega_{T}^{(i)}
$$

This gives Ω the structure of a partially ordered set, the union of s totally ordered sets of T points each. We consider Ω as a basis of a Ts-dimensional vector space $\mathbb{F}_{q}^{(T, s)}$. An ideal in Ω is a set of elements closed under predecessors. An antiideal is a subset closed under followers. Observe that antiideals are precisely the complements of ideals.

We visualize elements $x=\left(x_{j}^{(i)}\right) \in \mathbb{F}_{q}^{(T, s)}, i=1, \ldots, s ; j=1, \ldots, T$ either as strings of length $T s$, divided in s segments (the blocks) of length T each, or as matrices with T rows and s columns. Refer to these representations as vector notation and matrix notation, respectively. The interpretation of $x \in \mathbb{F}_{q}^{(T, s)}$ as a point in the s-dimensional unit cube is obtained by reading the $x_{j}^{(i)}$ for fixed i as the T first digits of the q-ary expansion of a real number between 0 and 1. As an example, the point | 0 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | in $\mathbb{F}_{2}^{(3,4)}$ is mapped to the point $\left(\frac{3}{8}, \frac{1}{4}, \frac{3}{4}, \frac{5}{8}\right) \in[0,1)^{4}$. This also motivates the hierarchical ordering inside the blocks.

We introduce some more terminology, which will be helpful in describing the basic parameters of NRT-space.

Definition 2. We refer to coordinate positions of $\mathbb{F}_{q}^{(T, s)}$ as cells. They are in obvious bijection with the elements of Ω. The breadth $b=b(x)$ of a vector $x \in \mathbb{F}_{q}^{(T, s)}$ is the number of blocks $B_{i}, i=1,2, \ldots, s$ where x has a nonzero entry. The ideal $K=K(x)$ generated by x is the smallest ideal containing the support of x. The breadth of an ideal K is the number of blocks it intersects nontrivially. Let $n=|K|$ be the size of K. The type $\pi=\pi(K)$ is the partition n, where the multiplicity f_{i} of i as a part of π is the number of blocks, which intersect K in i points. The breadth $b(\pi)$ of a partition is the number of its nonzero parts. If $\pi=\pi(K(x))$, then $b(\pi)=b(x)$.

Definition 3 (NRT-metric). Let $x \in \mathbb{F}_{q}^{(T, s)}$. The weight of x is

$$
\rho(x)=\rho(x, 0)=\sum_{i=1}^{s} T-\max \left\{j \mid x_{1}^{(i)}=\ldots x_{j}^{(i)}=0\right\}
$$

The distance $\rho(x, y)$ is defined as $\rho(x, y)=\rho(x-y)$. The minimum weight (=minimum distance) of a subspace $\mathcal{C} \subseteq \mathbb{F}_{q}^{(T, s)}$ is the minimum among the weights of its nonzero members

We may visualize the weight $\rho(x)$ as follows: in each block let the leading zeroes evaporate. The number of remaining cells is $\rho(x)$. It is clear that ρ is a metric. Also, $T s-\rho(x, y)$ is the size of the maximal ideal on which x and y agree.
Definition 4. Let $S_{l}^{(T, s)}$ be the number of vectors of weight l in $\mathbb{F}_{q}^{(T, s)}$ and $V_{l}^{(T, s)}=\sum_{i=0}^{l} S_{i}^{(T, s)}$ the volume of a ball of radius l in $\mathbb{F}_{q}^{(T, s)}$.
Proposition 1. We have

$$
S_{l}^{(T, s)}=\sum_{\pi}\binom{s}{f_{T}, \ldots, f_{1}, s-b}(q-1)^{b} q^{l-b}
$$

where the sum is over all partitions π of l of depth $\leq T$, and $b=b(\pi), f_{i}=$ $f_{i}(\pi)$.
Proof. $S_{l}^{(T, s)}$ counts the vectors of $\mathbb{F}_{q}^{(T, s)}$, whose support generates an ideal of size l. The type of such an ideal K is a partition π as above. The number of vectors generating a fixed K of breadth b clearly is $(q-1)^{b} q^{l-b}$. It remains to count the ideals K with a given type π. This number is

$$
\binom{s}{f_{T}}\binom{s-f_{T}}{f_{T-1}} \ldots\binom{s-f_{T}-\cdots-f_{2}}{f_{1}}=\binom{s}{f_{T}, \ldots, f_{1}, s-b} .
$$

We now define the objects we are primarily interested in.
Definition 5. A linear subspace (code) $\mathcal{C} \subseteq \mathbb{F}_{q}^{(T, s)}$ has strength $k=k(\mathcal{C})$ if k is maximal such that the projection from \mathcal{C} to any ideal of size k is surjective. We also call such a subspace an ordered orthogonal array OOA, which is q-linear, has length s, depth T, dimension $m=\operatorname{dim}(\mathcal{C})$ and strength k.

A linear $(m-k, m, s)_{q}$-net is equivalent to an m-dimensional code $\mathcal{C} \subseteq$ $\mathbb{F}_{q}^{(k, s)}$ of strength k. Observe also that linear OOA of depth 1 are precisely linear orthogonal arrays, in other words an m-dimensional code in $\mathbb{F}_{q}^{(1, s)}$ of strength k is the dual (with respect to the ordinary dot product) of a code $[s, s-m, k+1]_{q}$.

Definition 6. Define a symmetric bilinear form on $\mathbb{F}_{q}^{(T, s)}$ by

$$
\langle x, y\rangle=\sum_{i=1}^{s} x_{1}^{(i)} y_{T}^{(i)}+x_{2}^{(i)} y_{T-1}^{(i)}+\cdots+x_{T}^{(i)} y_{1}^{(i)}
$$

The dual \mathcal{C}^{\perp} is defined with respect to this scalar product.
Observe that $\mathbb{F}_{q}^{(1, s)}$ is the usual Hamming space, with its metric, the dot product and the corresponding notion of duality. Generalizing the notion of Hamming space we may call $\mathbb{F}_{q}^{(T, s)}$ with the NRT-metric and the corresponding notion of strength the NRT-space. It is an important albeit elementary observation that the duality (in Hamming space) between strength and minimum distance can be extended to our setting (see [14] or [20]).
Theorem 1. Let $\mathcal{C} \subseteq \mathbb{F}_{q}^{(T, s)}$ be a linear subspace (code). Then

$$
\rho\left(\mathcal{C}^{\perp}\right)=k(\mathcal{C})+1 .
$$

We are led to the natural problem of generalizing coding-theoretic bounds and constructions from Hamming space to NRT-space.

3 Trace codes

Theorem 2. Let $\mathcal{C} \subseteq \mathbb{F}_{q^{r}}^{(T, s)}$ of dimension m and strength k. We can construct $\tilde{\mathcal{C}} \subseteq \mathbb{F}_{q}^{(T, r s)}$ of dimension $r m$ and strength k.

Proof. Let $\left\{b_{1}, \ldots, b_{r}\right\}$ be a basis of $F=\mathbb{F}_{q^{r}} \mid \mathbb{F}_{q}$. We describe an \mathbb{F}_{q}-isomorphism $\sim: \mathcal{C} \longrightarrow \tilde{\mathcal{C}}$ as follows: Let $\operatorname{tr}: F \longrightarrow \mathbb{F}_{q}$ be the trace and $x \in \mathcal{C}$. The entry of \tilde{x} in coordinate (i, a), where $1 \leq i \leq s, 1 \leq a \leq r$ and depth j is $\tilde{x}_{j}^{(i, a)}=\operatorname{tr}\left(x_{j}^{(i)} b_{a}\right)$. It is obvious that we have an $\mathbb{F}_{q}-$ isomorphism as the kernel is trivial. In particular $\operatorname{dim}(\tilde{\mathcal{C}})=m r$. It is also obvious that $\tilde{\mathcal{C}}$ still has strength k.

The special case of nets was proved in [22].

4 Concatenation

The following construction may be seen as a concatenation construction or as a Kronecker product for linear codes in NRT-space. A different Kronecker product construction is in [21].

Theorem 3. Let $\mathcal{C}_{1} \subseteq \mathbb{F}_{q^{r}}^{\left(T_{1}, s_{1}\right)}$ of dimension m and $\mathcal{C}_{2} \subseteq \mathbb{F}_{q}^{\left(T_{2}, s_{2}\right)}$ of dimension r. Let $\alpha: \mathbb{F}_{q^{r}} \longrightarrow \mathcal{C}_{2}$ be an \mathbb{F}_{q}-isomorphism. Define the concatenation $\mathcal{C}_{2} \circ \mathcal{C}_{1}=\alpha\left(\mathcal{C}_{1}\right) \subset \mathbb{F}_{q}^{\left(T_{1} T_{2}, s_{1} s_{2}\right)}$ as follows (in matrix notation): each $x \in \mathcal{C}_{1}$ yields $\alpha(x) \in \mathcal{C}_{2} \circ \mathcal{C}_{1}$ by applying α to each entry of x. Then $\operatorname{dim}\left(\mathcal{C}_{2} \circ \mathcal{C}_{1}\right)=m r$ and $k\left(\mathcal{C}_{2} \circ \mathcal{C}_{1}\right) \geq \min \left\{k\left(\mathcal{C}_{1}\right), k\left(\mathcal{C}_{2}\right)\right\}$.

Proof. As the elements of $\mathcal{C}_{2} \circ \mathcal{C}_{1}$ are in bijection with those of \mathcal{C}_{1}, the statement concerning the dimension is obvious. Let $k=\min \left\{k\left(\mathcal{C}_{1}\right), k\left(\mathcal{C}_{2}\right)\right\}$. Consider an ideal K of size k in $\Omega^{\left(T_{1} T_{2}, s_{1} s_{2}\right)}$. The natural projection \bar{K} to $\Omega^{\left(T_{1}, s_{1}\right)}$ is an ideal of size $\leq k$. We can therefore find $x \in \mathcal{C}_{1}$ such that $\alpha(x)$ has arbitrarily chosen entries from \mathcal{C}_{2} in the positions of this ideal. For each $\left(i_{1}, j_{1}\right) \in \bar{K}$ the intersection of K with the corresponding $\Omega^{\left(T_{2}, s_{2}\right)}$ is itself an ideal, clearly of size $\leq k$. The claim follows.

The special cases of Theorem 3 when either \mathcal{C}_{1} or \mathcal{C}_{2} is a net and the other is an $\mathrm{OA}\left(T_{2}=1\right.$ or $\left.T_{1}=1\right)$ is in [22].

5 The $(u, u+v)$-construction

Theorem 4. For $i=1,2$ let $\mathcal{C}_{i} \subset \mathbb{F}_{q}^{\left(T, s_{i}\right)}$ be linear $O O A$ of dimension m_{i} and strength k_{i}, where $s_{1} \leq s_{2}$. We can construct $\mathcal{C} \subset \mathbb{F}_{q}^{\left(T, s_{1}+s_{2}\right)}$ of dimension $m_{1}+m_{2}$ and strength $\min \left\{k_{2}, 2 k_{1}+1\right\}$.

Proof. This is a direct generalization of the famous $(u, u+v)$-construction in coding theory, which seems to go back to [26]. Consider the duals \mathcal{C}_{i}^{\perp}. These have dimension $T s_{i}-m_{i}$ and distance $k_{i}+1$. We apply the ($u, u+$ v)-construction to \mathcal{C}_{i}^{\perp}. Our \mathcal{C} will be obtained by dualizing (back). More precisely let $C_{i}=\left(C_{i}^{(1)}, C_{i}^{(2)}, \ldots, C_{i}^{\left(s_{i}\right)}\right)$ be a generic element of $\mathcal{C}_{i}, i=1,2$. We define \mathcal{C}^{\perp} as the image of the $(u, u+v)$-mapping

$$
u: \mathcal{C}_{1}^{\perp} \oplus \mathcal{C}_{2}^{\perp} \longrightarrow \mathbb{F}_{q}^{\left(T, s_{1}+s_{2}\right)}
$$

given by

$$
u\left(C_{1}, C_{2}\right)=\left(C_{1}^{(1)}, C_{1}^{(1)}+C_{2}^{(1)}, \ldots, C_{1}^{\left(s_{1}\right)}, C_{1}^{\left(s_{1}\right)}+C_{2}^{\left(s_{1}\right)}, C_{2}^{\left(s_{1}+1\right)}, \ldots, C_{2}^{\left(s_{2}\right)}\right)
$$

It is obvious that u is $\mathbb{F}_{q^{-}}$-linear and injective. In particular $\operatorname{dim}\left(\mathcal{C}^{\perp}\right)=$ $\left(T s_{1}-m_{1}\right)+\left(T s_{2}-m_{2}\right)=T\left(s_{1}+s_{2}\right)-\left(m_{1}+m_{2}\right)$, hence $\operatorname{dim}(\mathcal{C})=m_{1}+m_{2}$. In order to find the strength of \mathcal{C} we have to determine the distance of \mathcal{C}^{\perp}.

Let $C_{2}=0, C_{1} \neq 0$. Then $\rho\left(C_{1}, 0\right)=2 \rho\left(C_{1}\right) \geq 2\left(k_{1}+1\right)$. Let $C_{2} \neq 0$. For each $j=1,2, \ldots, s_{1}$ the weight of the pair of columns $\left(C_{1}^{(j)}, C_{1}^{(j)}+C_{2}^{(j)}\right)$ is at least the weight of the single column $C_{2}^{(j)}$. It follows $\rho\left(C_{1}, C_{2}\right) \geq k_{2}+1$ if $C_{2} \neq 0$.

Let $k_{2}=2 k_{1}+1$. In order to obtain a net as result, we must have $T=k_{2}$. This means that \mathcal{C}_{2} is a $\left(t_{2}, m_{2}, s_{2}\right)_{q}$-net, $k_{2}=m_{2}-t_{2}$, whereas \mathcal{C}_{1} has depth $T=k_{2}>k_{1}$ and strength k_{1}. The effective depth of \mathcal{C}_{1} is therefore k_{1}, and \mathcal{C}_{1} is obtained from a net of strength k_{1} by adding meaningless rows. We have seen the following:

Corollary 1. Assume $k_{2} \leq 2 k_{1}+1$ and there exist linear $\left(t_{1}, m_{1}, s_{1}\right)_{q^{-}}$and $\left(t_{2}, m_{2}, s_{2}\right)_{q}$-nets, where $k_{i}=m_{i}-t_{i}$ and $s_{1} \leq s_{2}$. Then we can construct a linear $\left(m_{1}+t_{2}, m_{1}+m_{2}, s_{1}+s_{2}\right)_{q}$-net.

An application of Corollary 1 to nets $(16,23,127)_{2}$ and $(2,5,15)_{2}$ yields a $(21,28,142)_{2}$-net. As a ternary example we obtain an $(11,22,23)_{3}$-net from a $(4,15,12)_{3}$-net and a $(2,7,11)_{3}$-net. A different generalization of the $(u, u+v)$-construction is attempted in [20].

As an example start from $(6,17,10)_{2}$ and apply Corollary 1 with $(3,8,10)_{2}$ as second ingredient. The result is a $(14,25,20)_{2}$-net. More examples will show up in the last section. Just as in coding theory, it is possible to apply Corollary 1 in a recursive fashion.

The $(u, u+v)$-construction can be generalized from the linear case to not necessarily linear ordered orthogonal arrays. The following definition generalizes Definition 5 .

Definition 7. Let \mathcal{A} be an alphabet of size $|\mathcal{A}|=q$. A multisubset $\mathcal{C} \subseteq \mathcal{A}^{(T, s)}$ of size q^{m} has strength $k=k(\mathcal{C})$ if k is maximal such that for every ideal K of size k and every k-tuple of entries in K precisely q^{m-k} elements of \mathcal{C} have the prescribed projection to K. We call \mathcal{C} an ordered orthogonal array $O O A$ of length s, depth T, dimension m and strength k.

Observe that in the nonlinear case the dimension m need not be integer.
Theorem 5. Let \mathcal{A} be an alphabet of size $|\mathcal{A}|=$ q. For $i=1,2$ let $\mathcal{C}_{i} \subset$ $\mathcal{A}^{\left(T, s_{i}\right)}$ of dimension m_{i} and strength k_{i}, where $s_{1} \leq s_{2}$. We can construct $\mathcal{C} \subset \mathcal{A}^{\left(T, s_{1}+s_{2}\right)}$ of dimension $m_{1}+m_{2}$ and strength $k=\min \left\{k_{2}, 2 k_{1}+1\right\}$.

Proof. We write the elements of $\mathcal{A}^{(T, s)}$ as $T s$-tuples with s sections of length T (this is the vector notation mentioned in Section 2). For every pair u, v, where $u \in \mathcal{C}_{2}$ and $v \in \mathcal{C}_{1}$, we define a row in $\mathcal{A}^{\left(T, s_{1}+s_{2}\right)}$ by $r(u, v)=(u, u+v)$. Here we have chosen a structure of an abelian group on \mathcal{A}. The addition in $u+v$ is componentwise. The last $s_{2}-s_{1}$ blocks of u have been removed before performing the addition. Let the array \mathcal{C} consist of all these rows $r(u, v)$. We have to show that \mathcal{C} has strength $\geq k$.

Denote the cells of $\mathcal{A}^{\left(T, s_{1}+s_{2}\right)}$ by (L, i, j), where $i \leq s_{2}, j \leq T$ (these form the left part L) and (R, i, j), where $i \leq s_{1}, j \leq T$ (the right part R). Let K be an ideal of size k. Let $C(K)=\{(i, j) \mid(R, i, j) \in K$ and $(L, i, j) \in K\}$ and $c=|C(K)|$. Let an arbitrary k-tuple be prescribed on the cells from K. The projection of u to the cells from $K \cap L$ are prescribed. Let x be a tuple on $(R, C(K))$ and U_{x} the set of elements $u \in \mathcal{C}_{2}$ having the prescribed projection on $K \cap L$ and projecting to x on $(R, C(K))$. Let further V_{x} be the set of elements $v \in \mathcal{C}_{1}$ such that $u+v$ has the prescribed projection on $(R, C(K))$. For every $v \in V_{x}$ let $U_{x, v}$ consist of those $u \in U_{x}$ such that $u+v$ has the prescribed projection on $(K \cap R) \backslash(R, C(K))$. The pairs (u,v) such that $r(u, v)$ has the required projection on K is then

$$
\bigcup_{x} \bigcup_{v \in V_{x}}\left(U_{x, v},\{v\}\right) .
$$

Observe that $c \leq k_{1}$ as $2 c \leq k$. We are done.
It follows that Corollary 1 generalizes from the linear case to arbitrary nets.

6 The finite Gilbert-Varshamov bounds for OOA

Let a code $\mathcal{C} \subseteq \mathbb{F}_{q}^{(T-1, s)}$ of dimension m and strength k be given. It can be represented as follows: let $a(r), r=1, \ldots m$ be a basis of \mathcal{C}. Write the $a(r)$ as rows of a matrix A. The section corresponding to block B_{i} is $a^{(i)}=$ $\left(a_{1}^{(i)}, \ldots, a_{T-1}^{(i)}\right)$, where $a_{j}^{(i)} \in \mathbb{F}_{q}^{m}$.

We want to find vectors $a_{T}^{(i)}$, which complement \mathcal{C} to an m-dimensional code in $\mathbb{F}_{q}^{(T, s)}$ of strength k. It can be assumed that $a_{T}^{(i)}, i<s$ have been found already. Our counting condition must be strong enough to guarantee the existence of $a_{T}^{(s)}$.

Each ideal $K \subset \Omega^{(T, s-1)}$ of size $l \leq k-T$ yields a condition. The number of candidates for $a_{T}^{(s)}$ excluded by K is q^{T-1} times the number of vectors in $\mathbb{F}_{q}^{(T, s-1)}$ whose support generates K. We obtain the following:

Theorem 6. Let $\mathcal{C} \subseteq \mathbb{F}_{q}^{(T-1, s)}$ of dimension m and strength $\geq k$ be given. Assume

$$
V_{k-T}^{(T, s-1)}<q^{m-T+1}
$$

equivalently

$$
\sum_{l \leq k-T} \sum_{\pi}(q-1)^{b} q^{l-b}\binom{s-1}{f_{T}, \ldots, f_{1}, s-1-b}<q^{m-T+1}
$$

where the sum is over all partitions of l of depth $\leq T$, and b is the breadth of π. Then there is a code $\mathcal{D} \subseteq \mathbb{F}_{q}^{(T, s)}$ of dimension m and strength $\geq k$, which projects to \mathcal{C}.

We mention that Theorem 6 generalizes the strengthened Gilbert-Varshamov bound ([13], p. 34, Theorem 2 of [1]) from Hamming space to NRT-space. It is stronger than the generalization of the ordinary Gilbert-Varshamov bound obtained in [23]. Theorem 6 has the following obvious corollary:

Theorem 7. Assume $V_{k-T}^{(T, s-1)}<q^{m-T+1}$ holds for $T=1,2, \ldots, k-1$. Then there is a linear $(m-k, m, s)_{q}$-net, equivalently a code $\mathcal{C} \subset \mathbb{F}_{q}^{(k, s)}$ of dimension m and strength $\geq k$.

7 Net-embeddable error-correcting codes

Definition 8. Let \mathcal{C} be a linear code $[s, s-m, k+1]_{q}$ (equivalently: $\mathcal{C}^{\perp} \subseteq$ $\mathbb{F}_{q}^{(1, s)}$ has dimension m and strength $\left.\geq k\right)$. We call \mathcal{C} net-embeddable if there is a linear $(m-k, m, s)_{q}$-net projecting to \mathcal{C}^{\perp}.

Recall that we identify linear nets with the corresponding linear subspaces of $\mathbb{F}_{q}^{(k, s)}$. Net-embeddability is guaranteed if Theorem 6 can be applied recursively, for $T=2, \ldots, k$. In this section we apply our method in the following form:

Theorem 8. Assume a linear code $[s, s-m, k+1]_{q}$ exists and $V_{k-T}^{(T, s-1)}<$ q^{m-T+1} holds for $T=2, \ldots, k-1$. Then there is an $(m-k, m, s)_{q}-$ net.

The following lemma simplifies the comparison between the corresponding conditions.

Lemma 1. Let $V_{q}(r, n)=V_{r}^{(1, n)}$ be the volume of a ball of radius r in Hamming space $\mathbb{F}_{q}^{(1, n)}$. If $n \geq \frac{2 q-1}{q-1} r+\frac{q}{q-1}$, then

$$
V_{q}(r+1, n) \geq q V_{q}(r, n) .
$$

Proof. As $V_{q}(r+1, n)=V_{q}(r, n)+\binom{n}{r+1}(q-1)^{r+1}$ the claim is equivalent to $V_{q}(r, n) \leq(q-1)^{r}\binom{n}{r+1}$. We have $V_{q}(r, n)=V_{q}(r-1, n)+\binom{n}{r}(q-1)^{r}$. By induction we have $V_{q}(r-1, n) \leq(q-1)^{r-1}\binom{n}{r}$. It suffices to show

$$
(q-1)^{r-1}\binom{n}{r}+(q-1)^{r}\binom{n}{r} \leq(q-1)^{r}\binom{n}{r+1},
$$

equivalently $\binom{n}{r} q \leq\binom{ n}{r+1}(q-1)$. We have

$$
\binom{n}{r+1} /\binom{n}{r}=(n-r) /(r+1)
$$

Our claim is therefore $q(r+1) \leq(q-1)(n-r)$, equivalently $n \geq \frac{2 q-1}{q-1} r+\frac{q}{q-1}$.

It is easy to see that for strength $k<3$ net-embeddability is always satisfied. In the case of strength 3 we are given a code $[s, s-m, 4]_{q}$. Geometrically this is an s-cap in projective space $P G(m-1, q)$. Depth 2 can be reached provided $V_{1}^{(2, s-1)}=1+(s-1)(q-1)<q^{m-1}$. The depth 3 condition is then automatically satisfied. We conclude that each code $[s, s-m, 4]_{q}$ is net-embeddable provided $s<1+\left(q^{m-1}-1\right) /(q-1)$. This has been proved in [24]. The first non-embeddable codes occur in this case when $q=2$ (the extended binary Hamming code is non-embeddable) and in characteristic 2 when $m=3$. The best binary strength 3 net parameters are $\left(m-3, m, 2^{m-1}-1\right)_{2}$.

For strength 4 the depth 2 condition is strongest. We conclude that a linear code $[s, s-m, 5]_{q}$ is net-embeddable provided $V_{2}^{(2, s-1)}<q^{m-1}$. As $V_{2}^{(2, s-1)}=V_{q}(2, s-1)+q(q-1)(s-1)$ we arrive at a statement first proved in [25]. The present paper grew out of an attempt to generalize this result.

7.1 Strength 5

Again the depth 2 condition is dominating. This implies that every linear code $[s, s-m, 6]_{q}$, which satisfies $V_{q}(3, s-1)+q(q-1)(s-1) V_{q}(1, s-2)<q^{m-1}$ is net-embeddable.

7.2 Strength 6

It follows from Lemma 1 that the condition for depth 3 is weaker than the depth 2 condition provided $s \geq 12$. The conditions for larger depths are weaker yet. This implies that each linear code $[s, s-m, 7]_{q}, s \geq 12$ which satisfies $V_{q}(4, s-1)+q(q-1)(s-1) V_{q}(2, s-2)+q^{2}(q-1)^{2}\binom{s-1}{2}<q^{m-1}$ is net-embeddable.

8 Net parameters

We present tables of net parameters $(m-k, m, s)_{q}$. For $q=2,3,4,5$ we list k, m, s. Observe that in case $s>m$ the underlying error-correcting code has parameters $[s, s-m, k+1]_{q}$. As a starting point we used the tables in [5] for $q=2,3,5$. Label t refers to surviving entries from these tables. In some cases when there was a choice we replaced label t by one of the constructions below. Net parameters from $[22,19]$ are labelled a and b, respectively. The values for strength 3 in the non-binary case follow from cap constructions, see [9]. The label used for nets obtained from embeddings of caps is c. The caps leading to values $(6,9,1216)_{3}$ and $(8,11,6464)_{3}$ are constructed in [7]. Many values for strength $k=4$ are derived from the families described in $[2,8]$. More families of binary nets of moderate strengths based on cyclic codes will be constructed in a forthcoming publication. The corresponding table entries carry the subscript f. The nets with subscript e are computer-constructions obtained by the second author. When $s>m$ starting point is an error-correcting code. Subscript u indicates an application of the $(u, u+v)$-construction. When $s \leq m$ Theorem 7 (pure GV) is applied. The corresponding subscript is g. In case $s>m$ typically we start from a code parameter given in [3] and apply Theorem 8 to prove that it can be embedded in a net. The corresponding entries are marked h.

A class of interesting constacyclic quaternary codes with $d=5$ were
constructed in [10, 6]. We use parameters

$$
\begin{gathered}
{[85,77,5]_{4},[171,162,5]_{4},[341,331,5]_{4},[683,672,5]_{4},[1365,1353,5]_{4},} \\
{[2731,2718,5]_{4},[5461,5447,5]_{4},[10923,10908,5]_{4} .}
\end{gathered}
$$

In some cases, when no better construction seemed available, we used Theorem 7 (subscript g) also when $s>m$. Some good nets can be derived from Theorem 6 starting from $\mathcal{C} \subset \mathbb{F}_{q}^{(T-1, s)}$ of strength k for $T>2$. All our examples have $T=3$. These entries are labelled i. The depth 2 codes \mathcal{C} are derived from linear OA of strength k and length $\geq 2 s$ in the most obvious way, by identifying $2 s$ coordinates of the space containing the OA with the coordinates of $\Omega^{(2, s)}$. The codes which we used as ingredients can either be obtained from the data base [3] or from primitive BCH-codes. As an example, a $(12,16,3125)_{5}$-net is based on a $[3125,3109,5]_{5}$-code, an extended primitive BCH -code.

While we focused attention on linear nets, the tables contain also parameters of nonlinear nets. The only surviving parameters based on nonlinear nets are Mark Lawrence's $(5,21,516)_{2}$ and $(5,25,2503)_{2}$ from [12]. They carry subscript L. Finally, we leave a blank for values (k, m) in the tables whenever either we cannot construct a net of length s exceeding the entry in cell $(k, m-1)$ or when we have reached a length of several thousand for a dimension $m^{\prime}<m$ already.

Notation in tables	
indices	explanation
t	tables from [5]
a	Niederreiter-Xing [22]
b	Niederreiter [19]
c	embedding of caps, see [9]
e	computer embeddings
f	Families from [2, 8]
g	Theorem 7
h	code embedding Theorem 8
i	Theorem 6
u	$(u, u+v)$-construction
L	M. Lawrence's nonlinear nets

$\mathrm{q}=2$

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2	$7 t$	15_{t}	31_{t}	63_{t}	127_{t}	$255 t$	511_{t}	1023_{t}								
3	3_{t}	7_{t}	15_{t}	31_{t}	63_{t}	127_{t}	255_{t}	511_{t}	$1023{ }_{t}$	$2047{ }_{t}$	$4095{ }_{t}$	8191 t				
4		3_{t}	$5 t$	8_{t}	11_{t}	17_{f}	23_{e}	$32{ }_{e}$	47_{e}	65_{f}	81_{h}	$128{ }_{e}$	151_{h}	$257{ }_{f}$		510_{f}
5			3_{t}	$5 t$	7_{t}	$10{ }_{e}$	14_{e}	20_{e}	26_{e}	$36 e$	45_{e}	69_{e}	77_{e}	$129 f$	$140{ }_{e}$	257_{f}
6				3_{t}	5_{t}	6_{t}	9_{t}	11_{t}	15 e	21_{e}	23_{e}	26_{e}	$36 e$	42_{e}	48_{e}	$64{ }_{e}$
7					3_{t}	5_{t}	6_{t}	7_{t}	11_{t}	13_{e}	16_{e}	20_{e}	23_{e}	28_{e}	34_{e}	41_{e}
8						3_{t}	5_{t}	6_{t}	$7 t$	9_{t}	11_{e}	14_{t}	$16{ }_{e}$	19_{e}	22_{e}	26_{e}
9							3_{t}	$5 t$	$6{ }_{t}$	$7 t$	$8 t$	10_{e}	12_{e}	14_{e}	$17{ }_{t}$	20_{e}
10								3_{t}	$5 t$	6_{t}	$7 t$	8_{t}	9_{t}	11_{e}	13_{e}	15_{e}
11									3_{t}	5_{t}	6_{t}	7_{t}	8_{t}	9_{t}	10_{t}	12_{e}
12										3_{t}	$5 t$	6_{t}	7_{t}	8_{t}	9_{t}	10_{t}
13											3_{t}	$5 t$	6_{t}	$7 t$	8_{t}	9_{t}
14												3_{t}	$5 t$	6_{t}	$7 t$	$8 t$
15													3_{t}	5_{t}	6_{t}	7_{t}

$k \backslash m$	19	20	21	22	23	24	25	26_{1}	27	28	29	30	31	32	33
4	513_{f}	1025_{f}		2046_{f}	2049_{f}	4097_{f}		8190_{f}	8193_{f}						
5		513_{f}	516_{L}	1025_{f}		2049_{f}	2053_{L}	4097_{f}		8193_{f}					
6	72_{e}	79_{e}	127_{e}			130_{u}	137_{h}	164_{h}	196_{h}	511_{f}			1023_{f}		
7	47_{e}	58_{e}	64_{e}		127_{f}			133_{i}	137_{i}	142_{u}	511_{f}			514_{u}	518_{u}
8	30_{e}	35_{e}	39_{e}				42_{g}	47_{g}	54_{h}	64_{i}	69_{h}	78_{h}	89_{h}	128_{i}	132_{i}
9	23_{e}	26_{e}	29_{e}				34_{u}	37_{u}	40_{u}	46_{u}	60_{i}	68_{i}	71_{i}	84_{i}	100_{i}
10	17_{e}	20_{t}	23_{e}			24_{t}	25_{t}	28_{b}	31_{i}	33_{i}	35_{g}	40_{u}	43_{g}	47_{g}	52_{g}
11	14_{e}	16_{e}	18_{e}				20_{u}	22_{u}	24_{g}	28_{b}	30_{u}	33_{i}	36_{u}	37_{g}	40_{g}
12	11_{e}	13_{e}	15_{e}				16_{g}	18_{b}	19_{g}	21_{g}	23_{g}	28_{b}		31_{g}	33_{g}
13	10_{t}	11_{e}	12_{e}		13_{t}	14_{t}		16_{u}	18_{u}	19_{u}	20_{u}	22_{u}	23_{g}	28_{b}	
14	9_{t}	10_{t}		11_{t}	12_{t}	13_{t}	14_{t}		15_{t}		17_{t}	18_{b}	20_{g}	21_{g}	23_{g}
15	8_{t}	9_{t}	10_{t}		11_{t}	12_{t}	13_{t}	14_{t}		15_{t}		17_{t}	18_{u}	20_{u}	20_{g}

$k \backslash m$	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
6			2050_{u}	2054_{u}	2062_{u}	8191_{f}										
7	2047_{f}			2050_{u}	2054_{u}	2062_{u}	8191_{f}									
8	145_{h}	163_{h}	184_{h}	208_{h}	234_{h}	263_{h}	273_{h}	274_{h}	276_{h}	277_{h}	294_{g}	324_{g}	357_{g}	394_{g}	435_{g}	480_{g}
9	128_{i}	134_{i}		135_{i}	137_{h}	152_{h}	169_{h}	187_{h}	208_{h}	230_{h}	255_{h}	282_{h}	285_{h}	286_{h}	287_{h}	289_{g}
10	64_{i}	69_{g}	76_{h}	84_{h}	95_{i}	128_{i}	132_{i}	136_{i}		146_{h}	161_{h}	176_{h}	193_{h}	211_{h}	231_{h}	253_{h}
11	50_{i}	62_{i}	68_{i}	71_{i}	75_{i}	91_{i}	100_{i}	110_{i}	121_{i}			122_{h}	133_{h}	144_{h}	156_{h}	170_{h}
12	39_{g}	42_{g}	45_{g}	49_{g}	53_{g}	58_{g}	62_{g}	67_{g}	73_{g}	78_{g}	85_{g}	91_{g}	99_{g}	106_{g}	115_{h}	124_{h}
13	33_{g}	36_{i}	38_{g}	41_{g}	44_{g}	47_{g}	51_{g}	54_{g}	64_{i}	68_{i}	71_{i}	72_{g}	77_{g}	83_{g}	89_{g}	96_{g}
14		30_{b}	32_{g}	35_{g}	38_{i}	40_{b}	43_{g}	46_{g}	49_{g}	52_{g}	56_{g}	60_{g}	64_{g}	68_{g}	72_{g}	77_{g}
15	23_{g}	28_{b}		30_{b}	32_{g}	34_{b}	37_{g}	40_{b}	43_{i}	45_{g}	48_{g}	51_{g}	54_{g}	57_{g}	61_{g}	65_{g}

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2	$13 t$	40_{t}	121_{t}	$364 t$	$1093{ }_{t}$											
3	4_{c}	10_{c}	20_{c}	56_{c}	112_{c}	$248{ }_{c}$	$532{ }_{\text {c }}$	1216_{c}	2744_{c}	6464_{C}						
4		4_{t}	$8 t$	14_{e}	26_{f}	41_{f}	80_{f}	121_{f}	242_{f}	$365{ }_{f}$	728_{f}	$1093{ }_{f}$	2186_{f}	$3281{ }_{f}$	$6560{ }_{f}$	9841_{f}
5			4_{t}	$7 t$	11_{e}	18_{e}	28_{e}	38_{e}	$77 e$	$95 e$	$103{ }_{e}$	104_{h}	151_{h}	$219{ }_{h}$	244_{h}	$245{ }_{h}$
6				4_{t}	$7 t$	$8 t$	$13{ }_{e}$	$19 e$	$25 e$	33_{e}	42_{e}		49_{h}	65_{h}	87_{h}	110_{h}
7					4_{t}	$7 t$	8_{t}	11_{e}	15_{e}	20_{e}	26_{e}	34_{e}		41_{i}	43_{i}	51_{h}
8						4_{t}	$7 t$	$8 t$	10_{t}	14_{e}	17_{e}	22_{e}			25_{g}	32_{b}
9							4_{t}	$7 t$	8_{t}	10_{t}	12_{t}	$15 e$		16_{t}	$18 u$	21_{g}
10								$4 t$	$7 t$	$8 t$	10_{t}	12_{t}	13_{t}	14_{t}	16_{t}	
11									4_{t}	7_{t}	8_{t}	10_{t}	12_{t}	13_{t}	14_{t}	16_{t}
12										4_{t}	7_{t}	8_{t}	10_{t}	12_{t}	13_{t}	14_{t}
13											4_{t}	$7 t$	$8 t$	10_{t}	12_{t}	13_{t}
14												4_{t}	$7 t$	$8 t$	10_{t}	12_{t}
15													4_{t}	7_{t}	$8 t$	10_{t}

$k \backslash m$	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
5	660_{h}	730_{h}	$731{ }_{h}$	$1985{ }_{h}$	2188_{h}	2189_{h}	$5959{ }_{h}$	6562_{h}	$6563{ }_{h}$	$6^{6564} h$	$6565 h$	6566_{h}	6567_{h}	7262_{g}	9557_{g}	
6	120_{h}	201_{h}	244_{h}	245_{h}	246_{h}	610_{h}	729_{h}	730_{h}	731_{h}	$1836{ }_{h}$	2187_{h}	2188_{h}	2189_{h}	5514_{h}	$6561{ }_{h}$	6562_{h}
7	64_{h}	81_{h}	121_{i}	128_{h}	160_{h}	200_{h}	364_{i}	365_{i}	390_{h}	$487{ }_{h}$	$1093{ }_{i}$	$1094{ }_{i}$	$1094{ }_{i}$	$1179{ }_{h}$	3280_{i}	$3281{ }_{i}$
8	37_{h}	45_{h}	54_{h}	66_{h}	80_{h}	96_{h}	117_{h}	141_{h}	170_{h}	205_{h}	246_{h}	247_{h}	364_{i}	432_{h}	520_{h}	625_{h}
9	25_{g}	32_{b}	35 g	41_{g}	49_{h}	58_{h}	68_{h}	80_{h}	95_{h}	112_{h}	131_{h}	155_{h}	182_{h}	214_{h}	245_{h}	246_{h}
10	19_{t}	22_{i}	25_{g}	32_{b}	34_{g}	40_{b}	46_{g}	56_{b}	61_{h}	71_{h}	82_{h}	95_{h}	121_{i}	127_{h}	146_{h}	169_{h}
11		19_{t}	20_{g}	$23{ }_{u}$	26_{g}	32_{b}	34_{g}	40_{b}	44_{g}	56_{b}	$57 g$	65 g	74_{h}	85_{h}	96_{h}	110_{h}
12	16_{t}		19_{t}		21_{g}	24_{i}	27_{i}	32 b	34_{g}	40_{b}	43_{g}	56_{b}		61_{g}	69_{g}	78 g
13	14_{t}	16_{t}		19_{t}		20_{t}	22_{t}	24_{t}	28_{i}	32_{b}	34_{g}	40_{b}	43_{g}	56_{b}		59_{g}
14	13_{t}	14_{t}	16_{t}		19_{t}		20_{t}	22_{t}	24_{t}	25_{g}	28_{t}	32_{b}	35_{g}	40_{b}	42_{g}	56_{b}
15	$12 t$	13_{t}	14_{t}	16_{t}		19_{t}		20_{t}	22_{t}	24_{t}		$28 t$	29_{g}	32_{b}	35_{g}	40_{b}

$k \backslash m$	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
6	$6563{ }_{h}$	$6564{ }_{h}$	6565_{h}	$6566{ }_{h}$	$6862{ }_{g}$	8548 g										
7	$3281{ }_{i}$	$3284{ }_{u}$	3545_{h}	4417_{h}	5503_{h}	$6568{ }_{h}$	6569_{h}	6570_{h}	$6571{ }_{h}$	$6572{ }_{h}$	$6573{ }_{h}$	$6812{ }_{g}$	8180 g	9824g		
8	733_{h}	$1093{ }_{i}$	$1094{ }_{i}$	$1306{ }_{h}$	1569_{h}	$1885{ }_{h}$	3280_{i}	$3281{ }_{i}$			$3284{ }_{u}$	$3288{ }_{u}$	$6567{ }_{h}$	6568_{h}	6569_{h}	6570_{h}
9	247_{h}	405_{h}	$475{ }_{h}$	$556{ }_{h}$	652_{h}	$732{ }_{h}$	733_{h}			$796 g$	$912{ }_{g}$	$1046{ }_{g}$	$1200{ }_{g}$	$1376{ }_{g}$	$1578{ }_{g}$	1809 g
10	194_{h}	$224 h$	$364{ }_{i}$	365_{i}	$365{ }_{i}$	392_{h}	451_{h}	$518{ }_{h}$				$573{ }_{g}$	647 g	7319	825 g	$932 g$
11	125_{h}	142_{h}	161_{h}	183_{h}	$207{ }_{h}$	235_{h}	$248{ }_{h}$	249_{h}	$364{ }_{i}$				400 g	$446{ }_{g}$	497 g	555 g
12	88_{h}	98_{h}	111_{h}	118_{h}	127_{h}	156_{h}	175_{h}	197_{h}	$220{ }_{h}$	$247{ }_{h}$	$248{ }_{h}$	249_{h}	$273{ }_{g}$	$301{ }_{g}$	333_{g}	367 g
13	66_{g}	73_{g}	82_{g}	91_{g}	101_{h}	112_{h}	125_{h}	139_{h}	$154{ }_{h}$	171_{h}	190_{h}	211_{h}	234_{h}	$250{ }_{h}$	$251{ }_{h}$	263 g
14		$57{ }_{g}$	63_{g}	70_{g}	77_{g}	$85{ }_{g}$	$94 g$	$104{ }_{g}$	$115 h$	125_{h}	139_{h}	153_{h}	$169{ }_{h}$	$186{ }_{h}$	204_{h}	$225 h$
15	43_{g}	56_{b}			62_{g}	$68 g$	$74{ }_{g}$	82_{g}	89_{g}	98_{g}	107 g	117 g	128_{h}	139_{h}	149_{h}	168_{h}

$\mathrm{q}=4$

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2	21_{t}	$85 t$	341_{t}	$1365{ }_{t}$	$5461{ }_{t}$											
3	$5{ }_{c}$	17_{c}	41_{c}	$126{ }_{c}$	$288{ }_{c}$	756_{c}	$2110{ }_{c}$	$4938{ }_{c}$								
4		$5{ }_{a}$	10_{e}	19_{e}	32_{e}	$85 e$	171_{e}	341_{e}	$683{ }_{e}$	$965{ }_{h}$	$1366{ }_{h}$	$3861{ }_{h}$	5462_{h}			
5			$5{ }_{a}$	$9{ }_{a}$	16_{e}	$26 e$	$36 e$	64_{e}	81_{e}	$96{ }_{h}$	154_{h}	$245{ }_{h}$	258_{h}	$619{ }_{h}$	$983{ }_{h}$	1026_{h}
6				$5 a$	$9{ }_{a}$	12_{e}	18_{e}	26_{e}	34_{e}		45_{h}	65_{h}	81_{h}	89_{h}	$187{ }_{h}$	257_{h}
7					$5 a$	9_{a}	10_{a}	$15{ }_{e}$	20_{e}		22_{g}	30_{u}	40_{h}	53_{h}	71_{h}	94_{h}
8						$5{ }_{a}$	9_{a}	10_{a}	13_{a}	17_{e}		20_{a}	23_{g}	29_{g}	37_{h}	47_{h}
9							$5 a$	$9{ }_{a}$	10_{a}	13_{a}	$15 a$	$17{ }_{a}$	20_{a}	21_{a}	24_{g}	29_{g}
10								$5 a$	$9{ }_{a}$	10_{a}	13_{a}	$15 a$	$17{ }_{a}$	20_{a}	21_{a}	
11									$5{ }_{a}$	9_{a}	10_{a}	13_{a}	$15 a$	17_{a}	20_{a}	21_{a}
12										$5{ }_{a}$	9_{a}	10_{a}	13_{a}	15_{a}	17_{a}	20_{a}
13											$5 a$	$9{ }_{a}$	10_{a}	13_{a}	$15 a$	$17{ }_{a}$
14												$5 a$	$9{ }_{a}$	10_{a}	13_{a}	$15 a$
15													$5 a$	$9{ }_{a}$	10_{a}	13_{a}

$k \backslash m$	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
5	$2479{ }_{h}$	$3937{ }_{h}$	$4098{ }_{h}$	4099_{h}	$4103{ }_{u}$	$4119{ }_{u}$	$4278{ }_{u}$	6046 g	8549_{g}							
6	258_{h}	$259{ }_{h}$	$753{ }_{h}$	1025_{h}	$1026{ }_{h}$	$1027{ }_{h}$	3020_{h}	$4097{ }_{h}$	$4098{ }_{\text {h }}$	4099_{h}	4103_{u}	4114_{u}	$4696{ }_{g}$	61959	$8174{ }_{g}$	
7	111_{h}	119_{h}	$219{ }_{h}$	$257{ }_{h}$	$258{ }_{h}$	259_{h}	325 g	886_{h}	1025_{h}	1026_{h}	$1027{ }_{h}$	$1031{ }_{u}$	3554_{h}	$4097{ }_{h}$	4098h	4099_{h}
8	60_{h}	73_{h}	85_{h}	95_{h}	112_{h}	199_{h}	252_{h}	257_{h}	$258{ }_{h}$	$292{ }_{g}$	355 g	$807{ }_{h}$	$1018{ }_{h}$	1025_{h}	1026_{h}	1027_{h}
9	36_{g}	45_{h}	55_{h}	$68{ }_{h}$	84_{h}	94_{h}	128_{i}	155_{h}	$190{ }_{h}$	$232{ }_{h}$	260_{h}	$261{ }_{h}$	512_{i}	518_{h}	632_{h}	772_{h}
10	26_{a}	30_{g}	36_{g}	44_{g}	52_{g}	63_{h}	$76{ }_{h}$	89_{h}	101_{h}	111_{h}	155_{h}	186_{h}	222_{h}	$259{ }_{h}$	260_{h}	$264{ }_{g}$
11		$26 a$	$27{ }_{a}$	31_{g}	37 g	$43{ }_{g}$	51_{g}	60_{g}	71_{h}	83_{h}	98_{h}	115_{h}	125_{h}	132 g	$185{ }_{h}$	217_{h}
12	21_{a}		26_{a}	27_{a}	28 g	$32{ }_{g}$	37_{g}	43_{g}	50_{g}	$58 g$	68 g	78 h	87 g	98 g	110 g	124 g
13	20_{a}	21_{a}		26_{a}	$27{ }_{a}$		29_{a}	33_{a}	38_{g}	44_{g}	$50 g$	57 g	66_{g}	75 g	86_{h}	96_{h}
14	17_{a}	20_{a}	21_{a}		26_{a}	27_{a}		29_{a}	33_{a}	35 g	39_{g}	44_{g}	50_{g}	57_{g}	65_{g}	73_{g}
15	$15 a$	$17{ }_{a}$	20_{a}	21_{a}		26_{a}	$27 a$		29_{a}	33_{a}		36 g	40_{g}	45_{g}	51_{g}	$57 g$
$k \backslash m$	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
7	$4103{ }_{u}$	4114_{u}	$5153{ }_{g}$	6491 g	8178 g											
8	1157 g	3240_{h}	$4084{ }_{h}$	$4097{ }_{h}$	4098h	4099_{h}	$4100{ }_{h}$	$4618{ }_{g}$	5629 g	$6861{ }_{g}$	$8363 g$					
9	942_{h}	1029_{h}	$2048{ }_{i}$	$2048{ }_{i}$	$2085{ }_{h}$	2543_{h}	3101_{h}	3781 h	$4102{ }_{h}$	4103_{h}	4104_{h}	4105_{h}	$4326{ }_{g}$	$5143{ }_{g}$	6116_{g}	$7272{ }_{g}$
10	$308{ }_{g}$	$535{ }_{h}$	$637{ }_{h}$	$758{ }_{h}$	903_{h}	$1028{ }_{h}$	1029_{h}	$1030{ }_{h}$	$2048{ }_{i}$	2155_{h}				$4101{ }_{h}$	$4102{ }_{h}$	4103_{h}
11	254_{h}	259_{h}	260_{g}	$298{ }_{g}$	$341{ }_{g}$	$391{ }_{g}$	649_{h}	$758 h$	$885{ }_{h}$	$1027{ }_{h}$	1028 h			$1176{ }_{g}$	$1350{ }_{g}$	$1550 g$
12	140 g	187_{h}	$215{ }_{h}$	$248{ }_{h}$	$258{ }_{h}$	259_{h}	$292{ }_{g}$	$331{ }_{g}$	$374 g$	424 g	666_{h}	766_{h}			$792 g$	898 g
13	$107{ }_{h}$	119_{h}	$146{ }_{h}$	166_{h}	189_{h}	216_{h}	$246{ }_{h}$	$261{ }_{h}$	$262{ }_{h}$	290 g	$325 g$	512_{i}	$531{ }_{h}$			$574{ }_{g}$
14	83_{g}	93_{g}	104_{h}	$115{ }_{h}$	127_{g}	$141{ }_{g}$	$171{ }_{h}$	$193{ }_{h}$	218_{h}	$245{ }^{\text {h }}$	260_{h}	$261{ }_{g}$	$290{ }_{g}$	$322 g$	$357 g$	397 g
15	$64 g$	$72{ }_{g}$	80_{g}	90_{g}	$101{ }_{g}$	$113 g$	$124 g$	136 g	149 g	$164{ }_{g}$	$197{ }_{h}$	221_{h}	$246{ }_{h}$	$259{ }_{h}$	$265{ }_{g}$	291 g

$\mathrm{q}=5$

$k \backslash m$	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2	31_{t}	$156{ }_{t}$	$781{ }_{t}$	$3906{ }_{t}$												
3	6_{c}	26_{c}	66_{c}	$186{ }_{c}$	$675{ }_{c}$	$1715{ }_{c}$	$4700{ }_{c}$									
4		6_{t}	12_{e}	27_{e}	44_{e}	$78{ }_{e}$	$137 e$	$138{ }_{h}$	$167{ }_{g}$	$285{ }_{g}$	625_{h}	$831{ }_{g}$	$1421{ }_{g}$	3125_{h}	$4152{ }_{g}$	7099_{g}
5			$6{ }_{t}$	10_{t}	21_{e}	33_{e}	46_{e}	68_{e}	$96{ }_{h}$	124_{h}	130_{h}	$156 g$	$233{ }_{g}$	624_{h}	$625{ }_{h}$	775 g
6				$6{ }_{t}$	10_{t}	14_{e}	27_{e}	33_{e}		44_{h}	67_{h}	$102 h$	130_{h}	$131{ }_{h}$	344_{h}	$515{ }_{h}$
7					6_{t}	10_{t}	12_{t}	25_{e}			31_{u}	50_{u}	57_{h}	79_{h}	110_{h}	131_{h}
8						6_{t}	10_{t}	12_{t}	16_{t}	18_{t}	20_{t}	22_{g}	29_{g}	39_{h}	52_{h}	69_{h}
9							$6 t$	10_{t}	12_{t}	16_{t}	18_{t}	20_{t}	21_{t}	24_{g}	30_{g}	39_{g}
10								6_{t}	10_{t}	12_{t}	16_{t}	18_{t}	20_{t}	21_{t}	22_{a}	26 g
11									6_{t}	10_{t}	12_{t}	16_{t}	18_{t}	20_{t}	21_{t}	22_{a}
12										6_{t}	10_{t}	12_{t}	16_{t}	18_{t}	20_{t}	21_{t}
13											$6 t$	10_{t}	12_{t}	16_{t}	18_{t}	20_{t}
14												$6 t$	10_{t}	12_{t}	16_{t}	18_{t}
15													6_{t}	10_{t}	12_{t}	16_{t}

$k \backslash m$	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
5	$1158{ }_{g}$	3124_{h}	3125_{h}	3868 g	$5784 g$	$8648{ }_{g}$										
6	627_{h}	628_{h}	1727_{h}	2584_{h}	3127_{h}	3128_{h}	3129_{h}	3133_{u}	$3877{ }_{g}$	$5348{ }_{g}$	$7378{ }_{g}$					
7	132_{h}	163 g	$404 h$	$559{ }_{h}$	627_{h}	628_{h}	629_{h}	$2033{ }_{h}$	2805_{h}	3127_{h}	3128_{h}	3129 h	$3133{ }_{u}$	4002 g	$5233{ }_{g}$	6842 g
8	90_{h}	119_{h}	$132{ }_{h}$	136 g	$171{ }_{g}$	$214{ }_{g}$	$464{ }_{h}$	608_{h}	$627{ }_{h}$	628_{h}	668 g	840 g	$2335{ }_{h}$	3055 h	3127_{h}	3128_{h}
9	50_{h}	63_{h}	79_{h}	$102 h$	129_{h}	132_{h}	148 g	180 g	$219{ }_{g}$	267 g	524_{h}	626_{h}	627_{h}	628_{h}	723_{g}	883 g
10	32_{g}	39_{g}	49_{g}	60_{h}	75_{h}	$92{ }_{h}$	113_{h}	$131{ }_{h}$	$134{ }_{g}$	159 g	190 g	$226{ }_{g}$	$269{ }_{g}$	$476{ }_{h}$	$583{ }_{h}$	626_{h}
11	23_{a}	27 g	33_{g}	40_{g}	49_{g}	59_{g}	71_{h}	86_{h}	103_{h}	125_{h}	132_{h}	146 g	$171{ }_{g}$	200 g	312_{i}	373_{h}
12	22_{a}	23_{a}	26_{a}	29_{g}	35 g	41_{g}	49_{g}	58_{g}	69_{g}	82_{h}	97_{h}	115_{h}	132_{h}	138 g	159 g	183 g
13	21_{t}	22_{a}	23_{a}	26_{a}	27_{a}	32_{a}	37_{g}	43_{g}	50_{g}	58_{g}	68_{g}	80_{g}	93_{h}	108_{h}	126_{h}	133_{h}
14	20_{t}	21_{t}	22_{a}	23_{a}	26_{a}	27_{a}	$32{ }_{a}$	33_{g}	38_{g}	44_{g}	51_{g}	59_{g}	68_{g}	$78{ }_{g}$	90_{g}	104_{h}
15	18_{t}	20_{t}	21_{t}	22_{a}	23_{a}	26_{a}	$27 a$	$32 a$		$36 a$	40 g	$46{ }_{g}$	$52{ }_{g}$	60_{g}	68 g	78 g
$k \backslash m$	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
8	3129 ${ }_{\text {h }}$	3326 g	4186 g	5267 g	6627 g	$8340{ }_{g}$										
9	1079 g	$2636{ }_{h}$	$3126{ }_{h}$	3127_{h}	3128_{h}	3129_{h}	$3600{ }_{g}$	4401_{g}	5381 g	$6580{ }_{g}$	8045 g	$9837{ }_{g}$				
10	$627{ }_{h}$	652 g	$779{ }_{g}$	$931{ }_{g}$	$1112{ }_{g}$	2400_{h}	$2936{ }_{h}$	3126_{h}	3127_{h}	3128_{h}	3244 g	$3879{ }_{g}$	4637 g	5545 g	6629 g	7927 g
11	$448{ }_{h}$	$536{ }_{h}$	629_{h}	630_{h}	631_{h}	$712 g$	$1562{ }_{i}$	$1579{ }_{h}$	1889_{h}	$2260{ }_{h}$	$2704{ }_{h}$	3130_{h}	$3131{ }_{h}$	3132_{h}	3133_{h}	3543 g
12	211_{g}	243 g	366_{h}	$430{ }_{h}$	$507 h$	$596{ }_{h}$	629_{h}	630_{h}	$668{ }_{g}$	772 g	$893 g$	$1576{ }_{h}$	1852_{h}	$2177{ }_{h}$	2558h	$3006 h$
13	150 g	$171{ }_{g}$	195 g	$222 g$	$253{ }_{g}$	$288{ }_{g}$	420_{h}	$488{ }_{h}$	$565{ }_{h}$	628_{h}	629_{h}	638 g	728 g	832 g	$951 g$	1086 g
14	120_{h}	132_{h}	$145{ }_{g}$	163_{g}	183 g	207 g	$233{ }_{g}$	$263{ }_{g}$	297 g	$335{ }_{g}$	$476{ }_{h}$	$545{ }_{h}$	$624{ }_{h}$	628_{h}	$629{ }_{h}$	$698 g$
15	89_{g}	$101 g$	115_{h}	$131{ }_{h}$	$141{ }_{g}$	157 g	175 g	$196{ }_{g}$	219_{g}	$245{ }_{g}$	$274{ }_{g}$	306 g	342 g	469_{h}	$531{ }_{h}$	602_{h}

References

[1] J. Bierbrauer and Y. Edel: Lengthening and the Gilbert-Varshamov bound, IEEE Trans. Inform. Theory 43 (1997), 991-992.
[2] J. Bierbrauer and Y. Edel: Construction of digital nets from BCH-codes, Monte Carlo and Quasi-Monte Carlo Methods 1996, Lecture Notes in Statistics 127(1997), 221-231.
[3] A.E. Brouwer: Data base of bounds for the minimum distance for linear codes, URL http://www.win.tue.nl/~aeb/voorlincod.html
[4] W.W.L. Chen and M.M. Skriganov: Explicit constructions in the classical mean squares problem in irregularities of point distributions, to appear in J. Reine Angewandte Math.
[5] A.T. Clayman, K.M. Lawrence, G.L. Mullen, H. Niederreiter and N.J.A. Sloane: Updated tables of parameters of (t, m, s)-nets, J. Combin. Designs 7 (1999), 381-393.
[6] I. Dumer and V.A. Zinoviev: Some new maximal codes over GF(4), Probl. Peredach. Inform 14 (1978), 24-34, translation in Problems in Information Transmission 1979, 174-181.
[7] Y. Edel: Extensions of generalized product caps, submitted for publication in Designs, Codes and Cryptography.
[8] Y. Edel and J. Bierbrauer: Families of ternary (t, m, s)-nets related to BCH-codes, Monatsh. Math. 132 (2001), 99-103.
[9] Y. Edel and J. Bierbrauer: Large caps in small spaces, Designs, Codes and Cryptography 23 (2001), 197-212.
[10] D.N. Gevorkyan, A.M. Avetisyan and G.A. Tigranyan: On the structure of two-error-correcting in Hamming metric over Galois fields, in: Computational Techniques (in Russian) 3, Kuibyshev 1975, 19-21.
[11] K.M. Lawrence: A combinatorial characterization of (t, m, s)-nets in base b, J. Combin. Designs 4 (1996), 275-293.
[12] K.M. Lawrence: Construction of (t, m, s)-nets and orthogonal arrays from binary codes, manuscript.
[13] F.J. McWilliams and N.J. Sloane: The Theory of Error-Correcting Codes, North-Holland, Amsterdam 1977.
[14] W.J. Martin and D.R. Stinson: Association schemes for ordered orthogonal arrays and (t, m, s)-nets, Canadian Journal of Mathematics 51(1999), 326-346.
[15] G.L. Mullen and W.Ch. Schmid: An equivalence between (t, m, s)-nets and strongly orthogonal hypercubes, J. Comb. Theory A 76 (1996), 164-174.
[16] H. Niederreiter: Low-discrepancy point sets, Monatsh. Math. 102 (1986), 155-167.
[17] H. Niederreiter: Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337.
[18] H. Niederreiter: A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Statist. Comp. 8 (1987), 1035-1051.
[19] H. Niederreiter: Constructions of (t, m, s)-nets, Monte Carlo and QuasiMonte Carlo Methods 1998, (H. Niederreiter and J. Spanier, eds), Springer, Berlin (2000), 70-85.
[20] H. Niederreiter and G. Pirsic: Duality for digital nets and its applications, Acta Arith. 97 (2001), 173-182.
[21] H. Niederreiter and G. Pirsic: A Kronecker product construction for digital nets, Monte Carlo and Quasi-Monte Carlo Methods 2000, (K.T. Fang, F.J. Hickernell and H. Niederreiter, eds), Springer, Berlin (2002), 396-405.
[22] H. Niederreiter and C.P. Xing: Nets, (t, s)-sequences, and algebraic geometry, Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds), Lecture Notes in Statistics 138 (1998), 267-302.
[23] M.Yu. Rosenbloom and M.A. Tsfasman: Codes for the m-metric, Problems of Information Transmission 33 (1997),45-52, translated from Problemy Peredachi Informatsii 33(1996),55-63.
[24] W.Ch. Schmid: (t, m, s)-nets: digital construction and combinatorial aspects, PhD dissertation, Salzburg (Austria), 1995.
[25] W.Ch. Schmid and R. Wolf, Bounds for digital nets and sequences, Acta Arith. 78 (1997), 377-399.
[26] N.J.A. Sloane and D.S. Whitehead: A new family of single-error correcting codes, IEEE Trans. Inform. Theory 16 (1970), 717-719.
[27] M.M. Skriganov: Coding theory and uniform distributions, to appear in St. Petersburg Math. J., translated from Algebra i Analiz 13 (2001), 191-239.

[^0]: *Research partially supported by the Austrian Science Fund (FWF) Grant S8311-MAT.

