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1 Introduction

A cap in affine space AG(k,q) is a set A of k-tuples in Fq’“ such that when-
ever ap, as, as are different elements of A and \; € Fj,7 = 1,2,3 such that
(A1, Ao, Ag) # (0,0,0) and Ay 4+ Ay + A3 = 0, we have 330 Mia; # 0. An
equivalent condition is that any three of the (k+ 1)-tuples (a;, 1) are linearly
independent.

Denote by Ci(g) the maximum cardinality of a cap in AG(k,q), and
cx(q) = Cr(q)/q*. Clearly c,(2) = 1. Henceforth we assume g > 2. The
values Cy(q) for k < 3 are well-known. We have Cy(¢) = ¢ + 1 in odd
characteristic, Cy(q) = ¢ + 2 for even ¢ > 2, and C3(q) = ¢* for all ¢ > 2.
Aside of these only a small number of values are known: Cy(3) = 20 (see [5])
and C5(3) = 45 (see [2]).

Clearly Ck(q) < qCk_1(q), hence ¢x(q) < cx_1(q). Our main results may
be seen as lower bounds on ¢;_1(q) — cx(q). In [4] Meshulam proves an upper
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bound on the size of subsets of abelian groups of odd order, which do not con-
tain 3-term arithmetic progressions. The output for caps may be described
as follows (see also [0]):

Theorem 1 (Meshulam). Let g = p" be odd. Then
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As a cap in AG(k,p") is also a cap in AG(kh,p), Theorem 1| is implied
by the special case ¢x(p) < 2/k for odd primes p. A more careful analysis
of Meshulam’s method in the case of caps shows that it can be generalized
to cover also the characteristic 2 case. Moreover stronger bounds can be
obtained. The central result is the following:

cr(q) <

Theorem 2. Let ¢ > 2 be a prime-power. If k > 3, then

g *+cri(q)
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equivalently
(1 = (@) (cr-1(a) — eula)) = g —a".

Theorem [I] follows immediately from Theorem 2] We will prove an im-
provement in Section [3]

In the next section we prove Theorem [2l It is possible to do this in the
framework of Fourier analysis. We prefer to give a direct treatment.

2 Proof of Theorem 2

We have a prime-power ¢ > 2, where ¢ = p/ (p a prime). Let k& > 3 and
A C AG(k,q) a cap. As ¢ > 2 we can find nonzero elements \; € I,
such that A\; + Ao + A3 = 0. Let = - y be the ordinary dot product defined
onV = F(f = AG(k,q) with values in Fy, and tr : F, — IF}, the trace
function. Put Q = |V| = ¢*. Finally, ¢ is a complex primitive p* root of
unity. We aim at an upper bound on |A|. Consider the complex number

S = Z Z C”((Zi/\iai)'y)'

yeV\{0} a1,a2,a3€A



Lemma 1. S = |A|(Q — |A]).

Proof. We have S =3\, 3" ¢tr2iiai)y) — | A]3. Whenever

Z?:l Aia; # 0, the corresponding sum over y € V vanishes. As A is a cap
this will always be the case, unless a; = ay = as. The first sum is therefore

Q[Al. m

Definition 1. Let 0 # X € [, and 0 # y € V. Consider the complex number
UN)y = > ,e4 ¢TIV Let u(N), = |U(N)y|. We define a real vector u(\)
of length Q@ — 1 whose coordinates are parametrized by the 0 # y € V, the
corresponding entry being u(\),.

a1,a2,a3€A

Lemma 2. Let 0 # X € I, and 0 #y € V. Then
u(A)y < qCr-1(q) — Al = ar-1(9)Q — Al

Proof. As AA is a cap we can assume A\ = 1. Denote by v, the number of
elements a € A such that a -y = c¢. As the v € V satisfying v -y = ¢ form a
subspace AG(k — 1,q), we have v, < Cy_1(q). It follows

)‘)y _ | Z Vcctr(c)| | Z Ck 1 . Vc Ctr(c |

ceFy ceFy
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The same kind of calculation as in the proof of Lemma [I| shows the
following.

Lemma 3. Let 0 # X\ € IF,. Then
lu(M)]* = [A(Q — A])

Comparison of Lemmas [2| and 3| yields a first lower bound on ¢;_1(q) —
ck(q), as follows. Choose |A| = Ci(q). The entries of u(\) are positive
numbers bounded by Q(cx-1(q) — cx(q)), the modulus of u(\) follows from
Lemma [3l We obtain

Theorem 3. (c;_1(q) — cx(q))?* > cr(q)(1 — cx(q))/(¢" — 1).



It was observed in Section (1| that cx(¢) < cx_1(q). Theorem [3[ shows that
strict inequality holds. The following lemma is an obvious consequence of
the definitions.

Lemma 4. We have S = 3" U(M)yU(X2)yU(A3)y, in particular

15| < Z w(A1)yu(A2)yu(As)y.

y#0

We now complete the proof of Theorem [2 Use Lemma [2] to obtain an
upper bound on u(A;),. The remaining expression has the form of a dot-
product. Use the Cauchy-Schwartz inequality between the dot product and
the lengths of the vectors u(A2) and u(A3). Because of Lemma [3| this yields

|51 < (er-1(0)@ — [AD(JANQ — [A]))-
Choose |A| = Ck(q). Standard constructions show Cy(q) > /Q (see [1]).

Lemma [1] implies that S is a negative integer. Comparison of Lemma 1| and
the upper bound on |S| yields after simplification the desired inequality.

3 Applications

¢ +1
g -1y O =
¢ — ¢*> + q (Theorem [3] is weaker). In particular Cy(3) < 21. It is easy
to see that we have sharp inequality in this case. It was in fact proved by
Pellegrino [5] that 20 is the maximal size of a cap not only in AG(4,3) but
also in PG(4,3). Based on C4(3) = 20 Theorem [2] yields C5(3) < 48. The
true value is C5(3) = 45, and the only 45-cap in AG(5, 3) is the affine part of
the Hill cap in PG(5,3) (see [2 B]). Based on this result Theorem [2| yields
Cs(3) < 114. As the doubling process (see [1]) based on the Hill cap yields a
112-cap in AG(6,3), we conclude that 112 < Cg(3) < 114.

Recall ¢3(q) = 1/q for ¢ > 2. Theoremyields ca(q) <

Theorem 4. Let ¢ > 2 and k > 3. Then

k—+1
c(e) < =5

in particular limsupg .o (kcg(q)) < 1.



Proof. We proceed by induction. For k = 3 the claim is true as ¢ > 9/4. Let
k > 4 and assume the claim is true for k — 1. Put ¢ = ¢4_1(q),d = cx(q),Q =
¢*. Theorem [2| and the induction hypothesis yield

Qe _Q +k/(k-1" (k-1?/Q+k

d < = :
~ l4+c T 1+4+k/(k—1)? (k—1)2+k

We have to prove that this expression is < . An equivalent condition

_|_
L2
is (k(k — 1))* < ¢". This is satisfied for all k& > 4 when ¢ > 4. The ternary
case is special. Here the condition is satisfied only for £ > 7. As the known
values C(3) for k£ < 5 and the bound C(3) < 114 satisfy the bound of our

theorem, we are done in the ternary case as well. m

As a cap in AG(k, ¢") is a cap in AG(hk, q) as well, Theorem {4 yields the

following corollary:
Corollary 1. Let ¢ > 2 and k > 3. Then

hk + 1
(hk)? -

(") <

The following slight generalization of Theorem [2l may sometimes be useful.

Theorem 5. Let ¢ > 2 be a prime-power, k > 3 and A C AG(k,q) be a cap
such that |A| > \/q* and A intersects each hyperplane AG(k —1,q) in < C
points. Let c = C/q"1. Then

Al e +c

g = 1+c¢

The proof is the same as for Theorem [2] All we have used there is the
fact that each hyperplane AG(k — 1, q) intersects A in < Cy_1(q) points. We
replace this number by our upper bound C' now.

References

[1] Y.Edel and J.Bierbrauer: Recursive constructions for large caps, Bul-
letin of the Belgian Mathematical Society - Simon Stevin 6(1999),249-
258.



[2] Y.Edel, S.Ferret, I.Landgev, L.Storme, The classification of the largest
caps in AG(5,3).

[3] R.Hill: On the largest size of cap in Ss 3, Atti Accad. Naz. Lincei Ren-
diconti 54(1973),378-384.

[4] R.Meshulam: On subsets of finite abelian groups with no 3-term arith-
metic progression, Journal of Combinatorial Theory A 71(1995),168-
172.

[5] G.Pellegrino: Sul massimo ordine delle calotte in S, 3, Matematiche
(Catania)25(1970),1-9.

[6] L.Storme, J.A.Thas and S.K.J.Vereecke: New lower and upper bounds
for the sizes of caps in finite projective spaces.



	Introduction
	Proof of Theorem 2
	Applications

