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1 Introduction

A cap in affine space AG(k, q) is a set A of k-tuples in IF k
q such that when-

ever a1, a2, a3 are different elements of A and λi ∈ IFq, i = 1, 2, 3 such that
(λ1, λ2, λ3) 6= (0, 0, 0) and λ1 + λ2 + λ3 = 0, we have

∑3
i=1 λiai 6= 0. An

equivalent condition is that any three of the (k +1)-tuples (ai, 1) are linearly
independent.

Denote by Ck(q) the maximum cardinality of a cap in AG(k, q), and
ck(q) = Ck(q)/q

k. Clearly ck(2) = 1. Henceforth we assume q > 2. The
values Ck(q) for k ≤ 3 are well-known. We have C2(q) = q + 1 in odd
characteristic, C2(q) = q + 2 for even q > 2, and C3(q) = q2 for all q > 2.
Aside of these only a small number of values are known: C4(3) = 20 (see [5])
and C5(3) = 45 (see [2]).

Clearly Ck(q) ≤ qCk−1(q), hence ck(q) ≤ ck−1(q). Our main results may
be seen as lower bounds on ck−1(q)− ck(q). In [4] Meshulam proves an upper
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bound on the size of subsets of abelian groups of odd order, which do not con-
tain 3-term arithmetic progressions. The output for caps may be described
as follows (see also [6]):

Theorem 1 (Meshulam). Let q = ph be odd. Then

ck(q) ≤
2

kh

As a cap in AG(k, ph) is also a cap in AG(kh, p), Theorem 1 is implied
by the special case ck(p) ≤ 2/k for odd primes p. A more careful analysis
of Meshulam’s method in the case of caps shows that it can be generalized
to cover also the characteristic 2 case. Moreover stronger bounds can be
obtained. The central result is the following:

Theorem 2. Let q > 2 be a prime-power. If k ≥ 3, then

ck(q) ≤
q−k + ck−1(q)

1 + ck−1(q)
,

equivalently
(1− ck(q))(ck−1(q)− ck(q)) ≥ c2

k − q−k.

Theorem 1 follows immediately from Theorem 2. We will prove an im-
provement in Section 3.

In the next section we prove Theorem 2. It is possible to do this in the
framework of Fourier analysis. We prefer to give a direct treatment.

2 Proof of Theorem 2

We have a prime-power q > 2, where q = pf (p a prime). Let k > 3 and
A ⊂ AG(k, q) a cap. As q > 2 we can find nonzero elements λi ∈ IFq

such that λ1 + λ2 + λ3 = 0. Let x · y be the ordinary dot product defined
on V = IF k

q = AG(k, q) with values in IFq, and tr : IFq −→ IFp the trace
function. Put Q = |V | = qk. Finally, ζ is a complex primitive pth root of
unity. We aim at an upper bound on |A|. Consider the complex number

S =
∑

y∈V \{0}

∑
a1,a2,a3∈A

ζtr((
∑

i λiai)·y).
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Lemma 1. S = |A|(Q− |A|2).

Proof. We have S =
∑

y∈V

∑
a1,a2,a3∈A ζtr((

∑
i λiai)·y) − |A|3. Whenever∑3

i=1 λiai 6= 0, the corresponding sum over y ∈ V vanishes. As A is a cap
this will always be the case, unless a1 = a2 = a3. The first sum is therefore
Q|A|.

Definition 1. Let 0 6= λ ∈ IFq and 0 6= y ∈ V. Consider the complex number
U(λ)y =

∑
a∈A ζtr((λa)·y). Let u(λ)y = |U(λ)y|. We define a real vector u(λ)

of length Q − 1 whose coordinates are parametrized by the 0 6= y ∈ V, the
corresponding entry being u(λ)y.

Lemma 2. Let 0 6= λ ∈ IFq and 0 6= y ∈ V. Then

u(λ)y ≤ qCk−1(q)− |A| = ck−1(q)Q− |A|.

Proof. As λA is a cap we can assume λ = 1. Denote by νc the number of
elements a ∈ A such that a · y = c. As the v ∈ V satisfying v · y = c form a
subspace AG(k − 1, q), we have νc ≤ Ck−1(q). It follows

u(λ)y = |
∑
c∈IFq

νcζ
tr(c)| = |

∑
c∈IFq

(Ck−1(q)− νc)ζ
tr(c)|

≤
∑

c

(Ck−1(q)− νc) = qCk−1(q)− |A|.

The same kind of calculation as in the proof of Lemma 1 shows the
following.

Lemma 3. Let 0 6= λ ∈ IFq. Then

‖u(λ)‖2 = |A|(Q− |A|)

Comparison of Lemmas 2 and 3 yields a first lower bound on ck−1(q)−
ck(q), as follows. Choose |A| = Ck(q). The entries of u(λ) are positive
numbers bounded by Q(ck−1(q) − ck(q)), the modulus of u(λ) follows from
Lemma 3. We obtain

Theorem 3. (ck−1(q)− ck(q))
2 ≥ ck(q)(1− ck(q))/(q

k − 1).
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It was observed in Section 1 that ck(q) ≤ ck−1(q). Theorem 3 shows that
strict inequality holds. The following lemma is an obvious consequence of
the definitions.

Lemma 4. We have S =
∑

y 6=0 U(λ1)yU(λ2)yU(λ3)y, in particular

|S| ≤
∑
y 6=0

u(λ1)yu(λ2)yu(λ3)y.

We now complete the proof of Theorem 2. Use Lemma 2 to obtain an
upper bound on u(λ1)y. The remaining expression has the form of a dot-
product. Use the Cauchy-Schwartz inequality between the dot product and
the lengths of the vectors u(λ2) and u(λ3). Because of Lemma 3 this yields

|S| ≤ (ck−1(q)Q− |A|)(|A|(Q− |A|)).

Choose |A| = Ck(q). Standard constructions show Ck(q) >
√

Q (see [1]).
Lemma 1 implies that S is a negative integer. Comparison of Lemma 1 and
the upper bound on |S| yields after simplification the desired inequality.

3 Applications

Recall c3(q) = 1/q for q > 2. Theorem 2 yields c4(q) ≤
q3 + 1

q3(q + 1)
, or C4(q) ≤

q3 − q2 + q (Theorem 3 is weaker). In particular C4(3) ≤ 21. It is easy
to see that we have sharp inequality in this case. It was in fact proved by
Pellegrino [5] that 20 is the maximal size of a cap not only in AG(4, 3) but
also in PG(4, 3). Based on C4(3) = 20 Theorem 2 yields C5(3) ≤ 48. The
true value is C5(3) = 45, and the only 45-cap in AG(5, 3) is the affine part of
the Hill cap in PG(5, 3) (see [2, 3]). Based on this result Theorem 2 yields
C6(3) ≤ 114. As the doubling process (see [1]) based on the Hill cap yields a
112-cap in AG(6, 3), we conclude that 112 ≤ C6(3) ≤ 114.

Theorem 4. Let q > 2 and k ≥ 3. Then

ck(q) ≤
k + 1

k2
,

in particular limsupk→∞(kck(q)) ≤ 1.
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Proof. We proceed by induction. For k = 3 the claim is true as q > 9/4. Let
k ≥ 4 and assume the claim is true for k− 1. Put c = ck−1(q), d = ck(q), Q =
qk. Theorem 2 and the induction hypothesis yield

d ≤ Q−1 + c

1 + c
≤ Q−1 + k/(k − 1)2

1 + k/(k − 1)2
=

(k − 1)2/Q + k

(k − 1)2 + k
.

We have to prove that this expression is ≤ k + 1

k2
. An equivalent condition

is (k(k − 1))2 ≤ qk. This is satisfied for all k ≥ 4 when q ≥ 4. The ternary
case is special. Here the condition is satisfied only for k ≥ 7. As the known
values Ck(3) for k ≤ 5 and the bound C6(3) ≤ 114 satisfy the bound of our
theorem, we are done in the ternary case as well.

As a cap in AG(k, qh) is a cap in AG(hk, q) as well, Theorem 4 yields the
following corollary:

Corollary 1. Let q > 2 and k ≥ 3. Then

ck(q
h) ≤ hk + 1

(hk)2
.

The following slight generalization of Theorem 2 may sometimes be useful.

Theorem 5. Let q > 2 be a prime-power, k ≥ 3 and A ⊂ AG(k, q) be a cap

such that |A| ≥
√

qk and A intersects each hyperplane AG(k − 1, q) in ≤ C
points. Let c = C/qk−1. Then

|A|
qk

≤ q−k + c

1 + c
.

The proof is the same as for Theorem 2. All we have used there is the
fact that each hyperplane AG(k− 1, q) intersects A in ≤ Ck−1(q) points. We
replace this number by our upper bound C now.
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