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Abstract

Aspherical neighborhoods on arithmetic surfaces

On arithmetic surfaces over local or global rings of integers this thesis exam-
ines whether a geometric point has a basis of étale neighborhoods which are
K(m, 1) with respect to a full class of finite groups ¢. These neighborhoods
are also called aspherical neighborhoods. In this thesis we will consider only
classes of finite groups ¢ such that the order of all groups in ¢ is prime to
the residue characteristics of the arithmetic surface in question. In the local
case we construct a basis of K (m,1)-neighborhoods for any geometric point
of a normal (but not necessarily regular) arithmetic surface. In the global
case the existence of such bases of neighborhoods is proven under additional
regularity assumptions and a condition on the [-division points of the Jaco-
bian of the generic fibre. Moreover, we assume in the global case case that ¢
is the class of finite [-groups for a prime number [ that is invertible on the
arithmetic surface.

Asphirische Umgebungen auf arithmetischen Flachen

Die vorliegende Arbeit beschéftigt sich mit der Existenz asphérischer étaler
Umgebungsbasen auf arithmetischen Fliachen, auch K (r, 1)-Umgebungsbasen
genannt. Genauer wird die K (m, 1)-Eigenschaft beziiglich einer vollen Klasse
endlicher Gruppen ¢ untersucht, wobei die Ordnung aller Gruppen in ¢ teiler-
fremd zu den Restklassencharakteristiken der jeweiligen arithmetischen Fla-
che ist. Das Basisschema der hier behandelten arithmetischen Flachen ist
dabei stets ein lokaler oder globaler Zahlring. Im lokalen Fall wird fiir alle
normalen (aber nicht notwendigerweise reguldren) arithmetischen Fldchen
eine K (7, 1)-Umgebungsbasis konstruiert. Fiir den globalen Fall sind zusétz-
liche Regularitdtsannahmen und eine Bedingung an die [-Teilungspunkte der
Jacobischen der generischen Faser notwendig. Aufserdem beschrénkt sich die
Untersuchung auf die Klasse ¢(l) der endlichen [-Gruppen fiir eine auf der
arithmetischen Fléache invertierbare Primzahl [.
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Chapter 1

Introduction

A classical result in topology states that every CW-complex is locally contractible. In other
words, for every point  in a CW-complex X we find an open neighborhood U of x such that the
inclusion {x} < U is a homotopy equivalence. In the category of CW-complexes this is equivalent
to saying that the induced maps of homotopy groups with base point x are isomorphisms, i.e.,
that {z} <— U is a weak homotopy equivalence. Since the homotopy groups of a point are trivial,
this amounts to saying that every point of X has a neighborhood with trivial homotopy groups.
As a consequence, we can cover X by contractible open subsets. The topological properties of X
are then completely encoded in the way these open subsets are patched together to form X.

We would like to have a similar result in étale homotopy theory. Let us sketch shortly what
étale homotopy theory is about. In [Fri II] it is explained how to functorially assign to a locally
noetherian scheme X with geometric point Z a pointed pro-CW-complex, the étale topological
type. Strictly speaking the étale topological type is not a pro-CW-complex but a pro-simplicial
set. After geometric realization, however, we can view it as pro-CW-complex. Its image in the
pro-homotopy category of CW-complexes is denoted X and is called étale homotopy type of X.
It was already constructed in [AM]. To the pro-CW-complex Xy we can associate its homotopy
pro-groups 7, (Xst). In [SGA3|, Exp. X, §6 there is already defined a first homotopy pro-group
for X, the "pro-groupe fondamentale enlargi" 71 (X, z). In order for étale homotopy theory to be
useful, the first homotopy group of the étale homotopy type X¢; should be related to w1 (X, 7).
And indeed, by [AM], Corollary 10.7 we have m1(Xes) = 71 (X, Z). It thus makes sense to define
the étale homotopy pro-groups of X as

(X, T) i= mp(Xet)-

If X is connected, geometrically unibranch, and noetherian, the étale homotopy pro-groups are
profinite (see [AM]|, Theorem 11.1) and thus can be interpreted as topological groups. In this
case the first homotopy group coincides with the fundamental group defined in [SGA1]. Further-
more, étale homotopy theory is compatible with étale cohomology in the following sense: Via
the isomorphism 7 (Xe) = m1(X, %) the locally constant étale sheaves on X are in one-to-one
correspondence with the local systems on Xg. If A is a locally constant sheaf on X and A its
corresponding local system on X, we have

H"(X, A) ~ H"(Xg, A)
by [AM], Corollary 10.8.

Let us return to the problem of local contractibility. The étale homotopy type X is in general
not a CW-complex but a pro-CW-complex. In the category of pro-CW-complexes there is a
priori no canonical notion of homotopy equivalence. Yet, we can still speak of a weak homotopy
equivalence by saying that it induces isomorphisms on homotopy pro-groups. Following [AM],
we will write f-isomorphism instead of weak homotopy equivalence. In general, we cannot expect
to find étale neighborhoods of a geometric point  in X such that all homotopy pro-groups
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are trivial. This might not even be the case if X is a point, i.e., the spectrum of a field K.
If K is not separably closed, its absolute Galois group Gx = Gal(K*°?|K) is nontrivial and the
fundamental group 1 (Spec K, Spec K*°) coincides with G . The higher homotopy pro-groups
of the spectrum of a field, however, are always trivial. This is a consequence of the following
criterion, which is a corollary of [AM], Theorem 4.3 (see Corollary 2.5):

Let X be a locally noetherian scheme and Z a geometric point of X. Then the homotopy pro-
groups m, (X, Z) vanish for n > 2 if and only if

lim H"(X',A) =0 (1.1)
X'—-X

for all locally constant sheaves A and all integers n = 1. The limit runs over the finite étale
coverings X' — X.

When this criterion is satisfied, we say that X is K(m, 1), i.e., X4 is a "pro-Eilenberg MacLane
space". In topology these spaces are also called aspherical (which accounts for the title of this
thesis). In case X is the spectrum of a field K, the criterion is satisfied as the étale cohomology
of X coincides with the group cohomology of the absolute Galois group of K and for group
cohomology the equality (1.1) always holds. In fact, the contrary is also true: If (1.1) is satis-
fied, the étale cohomology of X coincides with the group cohomology of its fundamental group.
The K (7, 1)-schemes are the analogues of contractible CW-complexes in the sense that they have
the homotopy type of a point in algebraic geometry, i.e., of the spectrum of a field.

We will need a slightly more specialized notion of K (m, 1)-spaces. In some situations, it is favor-
able not to examine all coverings of X but only the c-coverings for a full class of finite groups c.
There is a notion of c¢-completion for the category of pro-CW-spaces, which is universal in the
property that all homotopy pro-groups are pro-c¢-groups. Denoting by X¢(c) the c-completion
of the étale homotopy type X, we have m1(Xg(c)) = m1(X, Z)(c), i. e., formation of the funda-
mental group commutes with ¢-completion. However, this is not the case for higher homotopy
pro-groups, which boils down to the fact that in general c-completion of groups is not an ex-
act functor. We say that X is K(m, 1) with respect to ¢ if only the first homotopy pro-group
of Xet(c) is nontrivial. We have a cohomological criterion analogous to (1.1), where we take the
limit only over the pro-c-coverings of X and require A to be contained in ¢ and moreover to be
a 71 (X, Z)(c)-module (instead of only a 71 (X, Z)-module). This thesis is concerned with finding
systems of étale neighborhoods on a scheme which are K (7, 1) with respect to a full class of finite
groups c.

In case X is a smooth variety over C, neighborhoods of this kind were used by Artin in [SGA4]| in
order to compare the étale cohomology of X with the classical cohomology of X (C). The K (m,1)-
neighborhoods of X are constructed by locally writing X as successive fibrations by affine curves
(see [SGA4], Exp. XI, §3) and restricting these fibrations to the locus where they are particularly
well behaved. These well behaved fibrations are called elementary fibrations. The fact that the
resulting neighborhoods are K (m, 1) can then be drawn from the long exact homotopy sequence
associated with an elementary fibration.

The scenario where X is a smooth variety over an algebraically closed field of positive character-
istic and ¢ is the class of finite p-groups with p prime to the characteristic of X was treated by
Friedlander in [Fri I]. He also uses elementary fibrations and the homotopy sequence associated
with these fibrations. The major problem he has to deal with is non-exactness of ¢-completions
for a full class of finite groups c¢. If ¢ is the class of finite p-groups, he can prove that under
certain conditions c-completion is indeed exact by using special features of p-groups. The diffi-
culties with c-completions are the reason for the restriction to the case where ¢ is the class of
finite p-groups.

In the arithmetic setting Schmidt constructed in [Sch II] systems of Zariski neighborhoods of a
point z in the spectrum of the ring of integers of a number field, which are K (7, 1) with respect



to a given prime number p. Notably, p does not need to be prime to the residue characteristic
of x.

The aim of this thesis is to obtain similar results for higher dimensional arithmetic schemes, i.e.,
for schemes which are flat and of finite type over the ring of integers of a local or global number
field. One would expect that the existence of K (m, 1) neighborhoods on an arithmetic scheme X
does not depend on the smoothness of X over a base scheme, which is a relative notion. It rather
seems more natural to have K (m,1)-neighborhoods as soon as X is regular. The methods at our
hands, however, are all relative. Up to now there is no general way to compute cohomology groups
of higher dimensional schemes without using in some manner a fibration into curves. We explain
in Chapter 3 that even if X is smooth over the base scheme, we cannot expect to work only with
smooth fibrations into curves. This makes it impossible to use Friedlander’s results about the
homotopy fibres, where smoothness plays a prominent role in order to relate the geometric fibres
with the homotopy theoretic fibre. Instead, we are forced to work directly with the cohomological
criterion (1.1).

This thesis treats the case where the dimension of X is two and the orders of the groups in ¢ are
prime to the residue characteristics of X. First results in this direction were already obtained by
to Baben in his dissertation (see [tB]). The present thesis is partly based on his ideas.

In the context of arithmetic surfaces there is no need to construct a fibration into curves. The
surface X already comes with a fibration X — B, where the base scheme B is the spectrum of the
ring of integers of a local or global number field. Now, the interesting case is when the geometric
point & we want to find a K(m,1) neighborhood for maps to a singular fibre of X — B. In
general, for an étale neighborhood U of  we do not have a base change theorem for the structure
map U — B. It is thus favorable to embed U in an arithmetic surface U over B where base change
holds, e. g. for U/B proper. Using resolution of singularities, which is known for two-dimensional
excellent curves, one can achieve that the complement of U in U is a particularly nice Cartier
divisor D.

According to the criterion (1.1) for every étale c-covering U’ — U and every cohomology class ¢ €
H™(U’, A) there has to be found a c-covering U” — U’ such that ¢ maps to zero in H™(U", A).
Unfortunately, the normalization of U in U’ is not as well behaved as U itself. But the singularities
arising with such a c¢-covering are not too complicated. Chapter 4 shows that these singularities
are rational, i. e., that the exceptional fibres of a resolution of the singularities are rational curves.
More precisely, there is a desingularization such that the exceptional fibres are chains of P'’s.

In order to relate the cohomology groups of U with those of U, we can use the excision sequence
> H"(U, ) - H"(U,A) —» HY"N U, ) — ...

In Chapter 5 the cohomology groups with support in D are calculated using Gabber’s absolute
purity theorem (see [Fuj]). Since in general D is not regular, this has to be done in several steps.
Here, among others, the rationality of the singularities arising with a ¢-covering of U comes into
play in order to prove that H3 (U, A) vanishes in the limit over all ¢-coverings.

The next chapter (Chapter 6) treats the cohomology groups H™(U, A). Via the Leray spectral
sequence for 7 : U — B, the vanishing in the limit over all c-coverings of H "(U, A) is put down
to the vanishing of H?(B, Ri7,.A) in the limit. As mentioned before, U is chosen such that there
is a base change theorem for the structure map 7 : U — B. This makes it easier to treat the
cohomology groups H?(B, Rim, A). In the local case (i.e., where B is the spectrum of the ring
of integers of a local field) the only problematical group is H(B, R?m,.A). It is closely related
with the cokernel of the intersection matrix of the singular fibres of 7 : U — B. In the global
case (i.e., where B is the spectrum of the ring of integers of a global number field) additional
difficulties arise in the treatment of H'(B, R'm,.A). Here, the Jacobian of the generic fibre of 7
enters and we run into the same problems with c-completion as Friedlander in [Fri I]. This is the
reason why we assume in the global case that ¢ is the class of finite [-groups for a prime [ different
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from the residue characteristic of Z. Furthermore, also in the treatment of H'(B, R'm,A) the
cokernel of the intersection matrix plays a prominent role.

The vanishing in the limit of H" (U, ) and HP(B, Rim,A) treated in Chapters 5 and 6,
respectively, is subject to certain conditions on U. In Chapter 7 it is explained how to construct U
and U in order for these conditions to be satisfied. Moreover, it is proven that these conditions
are stable under c-coverings of U.

Finally, the results of the preceding chapters are collected in chapter 8 in order to prove the main
theorems of this thesis. They read as follows:

Theorem 1.1: Let Y/B be an arithmetic surface of local type and § — Y a geometric point.
Let ¢ be a full class of finite groups such that the residue characteristic of B is not contained
in N(¢) and for all but finitely many primes | € N(c) the extension B[] — B is a c-extension.
Then'Y has a basis of étale neighborhoods at § which are K(mw,1) with respect to c.

Theorem 1.2: Let Y/B be a regular arithmetic surface of global type and T — 'Y a geometric
point lying over a closed point x € Y mapping to b € B. We assume that x is contained in the
regular locus of (Yp)rea. Let 1 be a prime number different from the residue characteristic of x.
Let Xo denote the completion of the generic fibre Y, of Y — B. Suppose that the action of the
inertia group at b on the l-division points of the Jacobian of Xy factors through an l-primary
quotient. Then'Y has a basis of étale neighborhoods at T which are K (m,1) with respect to l.



Chapter 2

Setup and Notation

2.1 The K(m,1)-property

Definition 2.1: A full class of finite groups is a full subcategory ¢ of the category of finite groups
satisfying

(i) {1} ec
(i) Any subgroup of a c-group is in c¢. Moreover, if
0>A—->B—->C—0

is an exact sequence of groups, then B is a c-group if and only if A and C are.

In this thesis ¢ will be either the full class of finite I-groups for a prime number [ or the slightly
more general class ¢(ly,...,l,) for prime numbers [y, ...,[,. It is defined as the class of all finite
groups GG whose order is of the form

—J"M T
#G =17 -
for non-negative integers ry,...,7r,.

For a full class ¢ of finite groups we define
N(¢) := {n e N | 3G € ¢ with #G = n}.

By property (ii) of the definition above N(¢) is a monoid. If ¢ is the class of finite p-groups, N(c)
consists of all powers of p and if ¢ is the class ¢(ly,...,l,) for prime numbers Iy, ...,1,, N(c)
consists of all products of the form

__ ] T
#G =1L
for non-negative integers ry,...,7r,.

In [AM] to a connected, locally noetherian scheme X with geometric point Z there is associ-
ated a connected, pointed pro-CW-complex X,.;, the étale homotopy type, such that topolog-
ical coverings of X.; correspond to étale coverings of X. More precisely, X¢ is a pro-object
of the homotopy category of pointed, connected CW-complexes. For Xs we consider the ho-
motopy pro-groups m,(Xe) and for an abelian group A with a 7 (Xe)-action the cohomology
groups H™(X¢, A). The first homotopy pro-group of X, m1(Xet), coincides with the "pro-
groupe fondamentale enlargi" defined in [SGA3|, Exp. X, §6 (see [AM], Corollary 10.7). If X is
geometrically unibranch (e.g. normal), 7 (Xgt) is profinite and coincides with the usual funda-
mental group defined in [SGA1], Exp. V. Moreover, for an abelian group A with a m(Xet)-action
the cohomology groups H"(Xet, A) coincide with the étale cohomology groups H™ (X, A).



CHAPTER 2. SETUP AND NOTATION 9

For a full class of finite groups ¢ a Galois ¢-covering of X is a Galois covering with Galois group
in ¢ and analogously for X.. A c-covering is a covering which is dominated by a Galois ¢-
covering. The étale coverings of X constitute a Galois category by [SGA1|, Exp. V, §7. By
applying the following lemma to the fundamental group of X, we conclude that the same holds
for the c-coverings of X.

Lemma 2.2: Let G be a profinite group

(1) Let 3, and #2 be normal subgroups of G such that fori = 1,2 the quotient G/#; is contained
in c. Then G/(1 N ) € c.

(11) Let 31 be a normal subgroup of G such that G/#1 € ¢ and #s a normal subgroup of #,
such that #1/#s € ¢. Let # denote the mazimal subgroup of #s which is normal in G.
Then G /3 € c.

Proof: The first assertion follows from the exact sequence
1— gflgfz/%l g g/(%lgfg) g g/gfg — 1.

For the second assertion it suffices to prove that #,/# € ¢ as G/#, € ¢. Note that # is
the intersection of all groups g#.g~', where g € ¢ runs through a system of representatives
of G/#t;. Furthermore, the groups g#>g~! are normal in #; and thus the result follows from
assertion (i). O

The first statement of the lemma implies that the compositum of two c-coverings is again a
c-covering and the second one that the composition of two ¢-coverings is again a c-covering.

Let n be a positive integer and G a pro-group, which is assumed abelian if n > 1. There
exists a pointed, connected pro-CW-complex whose n*® homotopy pro-group is isomorphic to G
and whose remaining homotopy pro-groups vanish. It is unique up to a f-isomorphism and
called Eilenberg MacLane space of type K(G,n). In case G is a group (not just a pro-group),
Eilenberg MacLane spaces exist in the category of CW-complexes (see [EM]). The existence
of K(G,n) in the category of pro-CW-complexes for a pro-group G follows by taking inverse
systems of K (G, n)-spaces, where G is represented by an inverse system of groups G. By abuse
of notation we just write K (G, n) for any such pro-space and view it as an object of the category
of pointed, connected pro-CW-complexes. For any pointed, connected pro-CW-complex Z there
is a canonical morphism (up to homotopy)

Z — K(m(2),1).

For a pointed, connected pro-CW-complex Z we denote by Z(c) the pro-c-completion of Z (which
exists by [AM] Theorem 3.4). There is a natural isomorphism

m1(Z)(c) = m(Z(c))

but the higher homotopy groups of Z(¢) are not necessarily isomorphic to the c¢-completion of
the respective homotopy pro-groups of Z. Following [AM], in the category of pointed, connected
pro-CW-complexes a morphism X — Y is said to be a f-isomorphism if it induces isomorphisms
on all homotopy pro-groups.

Definition 2.3: Let ¢ be a full class of finite groups and X a locally noetherian scheme with
geometric point T. We say that X is K(mw,1) with respect to ¢ if the canonical morphism

Xet(c) = K(m(X,2)(c),1)

is a f-isomorphism.
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The key method we will apply for examining the K (m,1) property is provided by Theorem 4.3
in [AM]:

Proposition 2.4: Let ¢ be a full class of finite groups and f : Z — W a morphism of pro-CW-
complexes. The following assertions are equivalent:

(1) f(¢):Z(c) > W(c) is a §-isomorphism.
(ii) 7 (Z)(c) = w1 (W)(c), and for every c-twisted coefficient group M € ¢,
H'(W,M) > H (Z,M)  Vi=O0.

(iii) m(Z)(¢c) = m(W)(c), and for every induced map Z' — W' of corresponding c-covering
spaces, and every (untwisted) abelian M € ¢,

HW' M) > H(Z',M)  Yi=0.
We want to apply this proposition to our situation where f is the classifying map (see [EM])
Xet(c) = K(m (X, 7)(c), 1).

For a full class ¢ of finite groups and a locally noetherian scheme X we denote by X (¢) the
universal ¢-covering of X. Then we have the following characterization of schemes of type K (7, 1).

Corollary 2.5: Let ¢ be a full class of finite groups and X a locally noetherian scheme. The
following assertions are equivalent:

(i) X is K(m,1) with respect to c.
(i) H/(X(c),A) =0 for all i = 1 and all A = Z/IZ for a prime | € N(c).

(iii) Let i = 1 qnd A = Z/IZ with | € N(c¢). Then, for every c-covering X' — X and every
class ¢ € H' (X', \) there is a c-covering X" — X' such that ¢ maps to zero under

HY(X',A) — H'(X",A).
Proof: We first prove the equivalence of (ii) and (iii). Let A = Z/IZ with [ € N(¢). We have

Hi(X(),A) = Ty HI(X'A),
X'-»X

where the limit runs over all c¢-coverings X’ — X. Assertion (ii) is thus equivalent to the
following statement: For any c-covering X’ — X and every class ¢ € H'(X',A) there is a c-
covering X” — X which dominates X’ — X such that ¢ maps to zero under

HY (X',A) — H (X" \).
Let

X// X/
X

be a commutative diagram of pointed, connected locally noetherian schemes such that all mor-
phisms are étale and X’ — X is a c-covering. Then, as a consequence of the c-coverings consti-
tuting a Galois category, X” — X’ is a c-covering if and only if X” — X is. This proves the
equivalence of (ii) and (iii).
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Let us show that (ii) implies (i). Since every M € ¢ has a decomposition series into simple c-
groups, 1. e., groups of the form Z/IZ, we may assume that for all abelian ¢-groups M and all ¢ > 1
we have

HY(X(c), M) = 0.
Therefore, for every c-twisted abelian M € ¢ the Hochschild-Serre spectral sequence
Hi(m(X,z)(c), H (X (c), M)) = H" (X, M)
degenerates implying that the edge homomorphisms
Hi(m (X, 7)(c), M) — H(X, M)

are isomorphisms for all 7. But these edge homomorphisms coincide with the homomorphisms in
cohomology induced by the classifying map X.(c) — K(m1(X,Z)(c),1). Moreover,

m (K (m (X, 7)(c), 1))(¢) = m (X, 7)(c)

and thus, by the equivalence of (i) and (ii) in Proposition 2.4, X is K(m,1) with respect to c.

Finally, assume that X is K (7, 1) with respect to c. Let A equal Z/IZ for | € N(c) and j > 1. By
the equivalence of (i) and (iii) in proposition 2.4 we have an isomorphism

lim H7(X',A) = lim H'(m (X', 2)(c),A).
X'—X X'—-X

The right hand side is the limit over all open subgroups of 71 (X, Z)(¢) with transition maps the
restrictions in group cohomology. But for any profinite group G and G-module A the limit over
all open subgroups H,

lim H7(H,A)

—

HcG

vanishes for all 7 > 1. We conclude that

2.2 Arithmetic Surfaces

Definition 2.6: A Dedekind scheme is an excellent, connected, normal, noetherian scheme B of
dimension less or equal to 1. We say that a Dedekind scheme B is a local Dedekind scheme if it is
the spectrum of a complete discrete valuation ring with finite residue field and a global Dedekind
scheme if B is flat and of finite type over Z or P]%p for some prime number p.

A local Dedekind scheme has two points: the generic point 1 and the special point s. Its fraction
field is a local field. The fraction field of a global Dedekind scheme is a global field, i. e., either a
number field or a function field.

Definition 2.7: By an arithmetic scheme we mean an irreducible normal scheme X which is
flat and of finite type over a Dedekind scheme B such that the generic fibre is nonsingular and
geometrically connected. If the dimension of X is two and the dimension of B is one, we speak
of an arithmetic surface. We say that X is of local type if B is a local Dedekind scheme and of
global type if B is global.
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Note that if X is an arithmetic surface of local type, it need not be a local scheme.

In this thesis we want to find for each geometric point of a given arithmetic surface X /B a basis
of étale neighborhoods with the K (m,1)-property. Here, an étale neighborhood of a geometric
point T — X is an étale morphism of geometrically pointed arithmetic surfaces, i. e., an arithmetic
surface X', étale over X together with a geometric point ' which maps to  on X. We have the
following theorem of Nagata (see [Nag] or [Lue| for a more modern exposition):

Theorem 2.8: Let Y be a noetherian scheme and Z — Y separated and of finite type. Then
there exists a compactification Z — 'Y of Z — 'Y, i.e., a proper Y -scheme such that Z admits
an open Y -immersion into Z with scheme theoretically dense image.

Therefore, possibly after shrinking B and X (in case X /B is not separated), we have a com-
pactification X — B of X — B. By [Lic|, Theorem 2.8, if B is affine and X is regular, X is
automatically projective over B. By blowing up in closed points we can modify the compactifi-
cation in order to obtain a particularly well behaved one. More precisely:

Definition 2.9: Let Y be a normal, noetherian scheme and D an effective Cartier divisor on'Y .
We say that D has strictly normal crossings at a point y € Y if Y is reqular at y and there is a
system of parameters fi,..., fn aty such that Zariski locally at y, D is given by div(f{il N
for some nmon-negative integers dy,...,d,. We say that D has strictly normal crossings if it has
strictly normal crossings at every point y € Y. In this case we say that D is an snc-divisor (for
strictly normal crossings).

The divisor D has normal crossings if €tale locally it has strictly normal crossings.

Two effective divisors are said to intersect transversally if they do not have a common irreducible
component and their sum has normal crossings at every point of the intersection.

Definition 2.10: Let X/B be an arithmetic surface. A tidy divisor is an snc-divisor whose
horizontal part meets each vertical divisor of X transversally.

In particular, the horizontal irreducible components of a tidy divisor do not intersect. Tidy
divisors have the following local structure:

Lemma 2.11: Let X /B be an arithmetic surface, D < X a tidy divisor and x € D a closed point
with image b € B. Let us fix a uniformizer m at b. Then there is a smooth scheme of finite type Z
over B of relative dimension 2, a closed point z € Zy, and o surjective homomorphism Oz , —
Ox ; whose kernel is generated by an element F' € Oz , which takes the following form: There
is a system of parameters (m, f,g) of Oz, a unit & € Oy , and non-negative integers j, k
with 7 + k > 0 such that ’

F = figh—ar.

Furthermore, if we denote by f and g the image of f and g in Spec Ox ., we have either
(Dox., )rea = div f+divg or (Doy,)rea =div f.

Proof: Since D is tidy, X} has strictly normal crossings at x. Hence, by [Liu|, Proposition 2.34
and Remark 2.34 there is a smooth scheme of finite type Z over B of relative dimension 2, a
closed point z € Z;, and a surjective homomorphism Oz , — Ox , whose kernel is generated by
an element F' € Oy, which takes the following form: There is a system of parameters (7, f, g)
of Oz, aunit a € (92Z, and non-negative integers j, k with j + k& > 0 such that

F = figh —am.

If both j and k are positive, X}, has two components at o and the support of Do, , is contained
in (Spec Ox ), as otherwise the horizontal part of D could not intersect X, transversally at z.
If, say, £ = 0, X} has one component at x and there are the following three possibilities: If D has
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two components at z, one of these corresponds to the vertical component div f and the other one
is horizontal. We can choose the system of parameters (7, f, g) such that it is given by div g. If D
has a single vertical component at x, it is given by div f. If D has a single horizontal component
at x, we can choose the system of parameters (7, f, g) such that it is given by div g. In any case
we have either

(Dox.,)rea = div f+div g or (Doy,)rea =div f or (Do, )red =div g
and the Lemma follows (possibly interchanging f and g). O

Definition 2.12: Let X /B be an arithmetic surface and Z < X a proper closed subscheme. We
say that a closed point z € Z is a special point of Z if either Z is not a tidy divisor at z or Z is
tidy at z and Z is singular at z.

With the same notation as in Lemma 2.11 the special points of D are precisely the points
where (Doy, ,)rea = div f + div g, i.e., where two irreducible components of D intersect. If D is
not tidy but only snc, the special points are the singular points and the points where D intersects
a vertical divisor non-transversally.

If Y is a scheme and Z € Y a closed subscheme, we say (Y,Z) is a pair. By a morphism of
pairs (Y',Z') — (Y, Z) we mean a cartesian diagram

7 —Y'

|

Z —Y.

Definition 2.13: Let Y be a normal scheme and Z S Y a closed subscheme such thatY — Z
is dense in' Y. By a desingularization in the strong sense (Y',Z') — (Y, Z) of (Y, Z) we mean a
birational morphism Y’ — Y which is an isomorphism over the complement of Z such that Y’ is
reqular at every point of the preimage Z' of Z.

We say that (Yoin, Zmin) — (Y, Z) is the minimal desingularization of (Y,Z), if any other
desingularization factors through (Ymin, Zmin) — (Y, Z).

If Y is an excellent two-dimensional scheme, e. g. an arithmetic surface, desingularizations in the
strong sense exist (see [Lip]). Furthermore, by [Liu], Chapter 9, Proposition 3.32 there exists
a unique minimal desingularization of (Y, Z). Desingularizations exist also with the additional
requirement that Z’ be an snc-divisor (see [CJS]). Moreover, we can require that it be obtained
from the minimal desingularization (Y, Zmin) — (Y, Z) of (Y, Z) by successively blowing up in
singular points of Z,,;,. In this thesis we need an even more restrictive type of desingularization:

Definition 2.14: Let X /B be an arithmetic surface and Z < X a proper closed subscheme. A
tidy desingularization (X', Z") — (X, Z) of (X, Z) is a birational morphism X' — X such that Z'
is a tidy divisor of X' and (X', Z") — (X, Z) factors as

(X', 2Z") = (Xo0,20) = (X1, 2Z1) = ... = (X5, Zy) — (X, Z),

where (X, Z,) — (X, Z) is the minimal desingularization of (X,Z) and for i = 1,...,n the
morphisms (X;_1,Z;i—1) — (Xi, Zi) are blowups of X; in special points of Z;.

It is important that the blowups in the definition of a tidy desingularization are only allowed
to take place in special points of Z and not in any closed points of Z. The existence of tidy
desingularizations follows from the existence of desingularizations (X', Z') — (X, Z) such that Z’
is an snc-divisor:

Proposition 2.15: Let X /B be an arithmetic surface and Z < X a proper closed subscheme.
Then there exists a tidy desingularization of (X, Z).
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Proof: Note that since X is normal and irreducible, the complement of Z is automatically dense,
and thus the notion of a desingularization of (X, Z) is defined. Without loss of generality we may
assume that X is regular away from Z as X is singular in at most a finite set of closed points,
which we can remove from X if they do not lie on Z. By [CJS], Theorems 0.1 and 0.2 there is
a desingularization (X', Z’) — (X, Z) which is an isomorphism over the complement of Z such
that Z’ is an snc-divisor. Moreover, we can assume that (X', Z') — (X, Z) is obtained from the
minimal desingularization by successively blowing up in singular, hence special, points. Let D’
be the union of Z’ with the finitely many vertical prime divisors containing the points where Z’
intersects a vertical divisor non-transversally. After removing from X’ all points of D’ which are
not contained in Z’ and where D’ is singular, we may assume that the special points of D’ are
contained in Z’. By construction they coincide with the singular points of D’. Blowing up in
singular points of D’ we achieve that D’ is an snc-divisor. This is equivalent to saying that Z’ is
tidy. O

Let X/B be an arithmetic surface with compactification X — B and # — X a geometric
point of X lying over a closed point x. Let Z be the union of X — X with the singular locus
of X — z (equipped with the reduced subscheme structure). By the above we can find a tidy
desingularization (X', Z') — (X, Z). By construction X’ — X is an isomorphism when restricted
to a (Zariski) neighborhood of 2. Hence, given an arithmetic surface X /B and a closed point x €
X, we can find an open neighborhood U € X of z and a compactification U — B of U such
that U — U is a tidy divisor and U — z is regular.

2.3 Tame coverings of arithmetic surfaces

Definition 2.16: Let X be a normal, irreducible scheme and D € X an snc-divisor. Set U =
X —D. An étale covering U' — U is tame, if for any irreducible component C of D the associated
extension of function fields K'|K 1is tamely ramified at the discrete valuation corresponding to C.
A tame covering of (X, D) is a morphism of pairs (X', D’) — (X, D) such that X' — X is finite
and X' — D' — U is a tame étale covering.

Remark 2.17: The above definition of tame covering coincides with the one given in [Sch I,
Definition 1.4, as the proof of Proposition 1.14, loc. cit. shows.

For the rest of this section we fix an arithmetic surface X/B, a tidy divisor D < X and a
geometric point Z lying over a closed point  of U = X — D. Moreover, we fix a full class of finite
groups ¢ such that all integers in N(c) are invertible on X. We will mainly be interested in full
classes of finite groups of the form ¢(ly,...,l,) for prime numbers [y, ...,l, which are invertible
on X.

Definition 2.18: A c-covering of (X, D) is a tame covering (X1, D1) — (X, D) such that X1 —
Dy — X — D is a finite étale c-covering.

If (X1,D1) — (X, D) is a tame covering, in general D; is not a tidy divisor of X;. In fact, X3
might not even be regular at the points in D;. But using proposition 2.15 we find a tidy desin-
gularization (X', D') — (X1, Dq).

Definition 2.19: A desingularized c-covering (X', D’) — (X, D) is a cartesian diagram

D’ Dy D

L

X/ X1 X,
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such that (X1,D1) — (X, D) is a c-covering and (X', D') — (X1, D1) is a tidy desingularization.

If ¢ is not specified, we tacitly assume it to be the class of all finite groups with order prime to
the residue characteristics of X and speak of desingularized tame coverings instead of desingu-
larized c-coverings . Furthermore, we call the strict transform of Dy in X' the generalized strict
transform of D and we call the exceptional divisor of X' — X1 the generalized exceptional divisor
of (X',D") — (X, D).

Remark 2.20: The factorization (X',D’) — (X1,D1) — (X,D) in the above definition is
uniquely determined by the morphism X' — X. Namely, X1 — X is the normalization of X
m X' and the morphism X' — X; comes from the universal property of the normalization.
Therefore, we can exclude (X1, D1) from the notation and just write (X', D") — (X, D).

Lemma 2.21: The following assertions hold:
(i) If (X',D') — (X,D) and (X",D") — (X', D’) are both desingularized c-coverings, the
composite (X", D") — (X, D) is again a desingularized c-covering.
(ii) If (X',D') — (X,D) and (X",D") — (X, D) are desingularized c-coverings, there is a

commutative diagram of desingularized c-coverings

(X', D’

)
/ \

(X", D") (X, D).
/

.

(X”, D”)

(iii) Let X'/B' be another arithmetic surface with tidy divisor D' < X'. Let & — X' — D’ be
a geometric point. There is at most one desingularized tame covering (X', D’) — (X, D)
such that T — X' — D' — X — D coincides with the fized geometric point T — X — D.

In order to show this lemma, we need to know more about the local structure of desingularized
tame coverings. Therefore, we postpone its proof to the end of section 4.3 in the next chapter.

We denote by Jx p z the category of all desingularized c-coverings (X', D’) — (X, D) together
with a geometric point Z — X’ such that T — X’ — X coincides with the fixed geometric
point £ — X. By the above lemma Jx p ; is a cofiltered category.

Lemma 2.22: Let A be a c-twisted w1 (U, T)-module and i a non-negative integer. Then

li_H)l HI(X/ - DlaA) = h_I>n Hi(UlaA)a (21)
(X", D")eJx,p,z U'—-U

where the limit on the right is over the étale c-coverings of U.

Proof: Any étale c-covering U’ — U can be lifted to a desingularized ¢-covering (X', D’) —
(X, D). O

Let C be a category in which direct limits exist. Let F': Jx p z — C be a contravariant functor
and (X', D’) an object of Jx p z. We say that F(X’, D) vanishes in the limit if the natural map

F(X/,D/) N lir_)n F(X”,D”)

Jx,D,z

is the zero map. If C is the category of abelian groups (or a subcategory thereof) and ¢ is an
element of F(X’, D'), we say that ¢ vanishes in the limit if the image of ¢ in lim F(X",D")
X,D

, T

1S zero.



16 2.3. TAME COVERINGS OF ARITHMETIC SURFACES

For instance, we will use this terminology for the functors Jx p z — A6 defined by

(X',D') — H'(X', A),
(X', D) — Hb (X', A).

for a locally constant sheaf A on X,,. Note that if F(X, D) vanishes in the limit, this does not
yet imply that
lim F(X',D') =0.
JIx,p,z
The vanishing of the limit is equivalent (by definition) to saying that for every object (X', D’)
of Jx pz we have that F(X’, D) vanishes in the limit.
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Chapter 3

Non-existence of good Artin
neighborhoods

Before we start the construction of K (m, 1)-neighborhoods on arithmetic surfaces we explain why
Artin’s and Friedlander’s method using elementary fibrations is not promising in the arithmetic
setting. Let us review their line of reasoning.

Definition 3.1: An elementary fibration is a morphism of schemes f : X — B that can be

embedded in a commutative diagram
X 1o Xl y
Nl
B
satisfying the following conditions:

(i) j is an open immersion which is dense in every fibre and X = X — Y.
(ii) f is smooth and projective with geometrically irreducible fibres of dimension 1.
(i1i) g is étale with nonempty fibres.

Remark 3.2: Note that if X — B is an elementary fibration embedded in a diagram as in the
above definition and if X' — X is a finite étale morphism, then the pullback

f)?/ .¢ XX X’ — B
s again an elementary fibration. Moreover, the pullback of X — B wvia any morphism B’ — B

is again an elementary fibration as smoothness is stable under base change.

In [SGA4] Artin defines good neighborhoods (now called good Artin neighborhoods) over an
algebraically closed field as successive elementary fibrations. More precisely, the definition is as
follows:

Definition 3.3: Let k be an algebraically closed field. A good Artin neighborhood over k is a
scheme X over k such that there exist k-schemes

X=X,,...,Xo = Spec k
and elementary fibrations f; : X; — X;_1,i=1,...,n.
In case k is the field C of complex numbers, denote by (X;)q the analytification of X; endowed

with the classical topology. As explained in [SGA4|, Exp. XI, Variante 4.6 the elementary fibra-
tions f; : X; — X;_1,7 = 1,...,n induce locally trivial fibrations (f;)c : (Xi)ea — (Xi—1)a whose
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fibres are non-complete curves C;. If z is a closed point of X, it determines points x; of (X;)a
and ¢; of C;. Since C; is non-complete, we have

Wn(Ci,Ci) =0

for i > 1 and 7 (C}, ¢;) is a finitely generated free group. By induction on i and using the long
exact sequence of homotopy groups associated to a fibration, we conclude that

7 (Xe, ) =0

for i > 1 and that 71 (X, ) is a successive extension of free groups. In particular, X, has
the K (m,1)-property. Being a successive extension of free groups, m1(Xc,z) is a good group,
i.e.,

K(Trl(XClv .T), 1)/\ — K(Trl(XCh l')/\, 1)7

where "( )"" denotes profinite completion. Hence, X} is a K(m,1) space, as well. By the
generalized Riemann existence theorem (see [AM], Theorem 12.9 and Corollary 12.10) the same
is true for Xe¢. Actually, the argument is the other way round: In the proof of the comparison
theorem of étale and classical cohomology ([SGA4|, Exp. XI, Théoréme 4.4), Artin implicitly
shows that if X/k is a good Artin neighborhood, X is K(m,1) with respect to the class of
finite groups. Artin’s comparison theorem is then used in the proof of the generalized Riemann
existence theorem.

In [Fri I] Friedlander extends this result to smooth schemes over algebraically closed fields of
positive characteristic p. In this setting, he examines the K (7, 1)-property with respect to a prime
number [ # p. Let us explain his key theorem. For an elementary fibration f : X — S denote
by f(fet(1)) the homotopy theoretic fibre of the associated morphism fet (1) : Xet(I) — Set()
of [-completed étale homotopy types. Using the long exact homotopy sequence associated to the
fibre triple f(fet (1)) — Xet (1) — Set(1), Friedlander shows (see [Fri I|, Theorem 9):

Theorem 3.4: Let f : X — S be an elementary fibration of connected, normal, noetherian
schemes, pointed by a geometric point . Let I be a prime not occurring as a residue charac-
teristic of S. If R f«(Z/IZ) is a (S, Z)(l)-module and if m2(Se(l),Z) = 0, then the natural
maps (Xz)et = f(fer) and f(fer) = §(fa(l)) induce a g-isomorphism

(Xz)a(l) = F(fer(D))-
Consequently, 71 (f(fe(1))) is free, pro-l and

f(fa(1)) = K(m(f(fa(l))), 1)

is a -isomorphism.

In particular, under the assumptions of the above theorem, X is K (7, 1) with respect to [. Fried-
lander concludes the existence of K (7, 1)-neighborhoods in the following manner: By [SGA4],
Exp. XI, Proposition 3.3 any closed point Z of a smooth scheme over an algebraically closed
field k& has a basis of étale neighborhoods which are good Artin neighborhoods. Fix one such
good Artin neighborhood and write
X =x, 2% x, I Xy = Spec k

with elementary fibrations f; : X; — X; ;. The property that R(f;)«(Z/IZ) is a m1(X;_1,7)(1)-
module is étale local, so we can assume that it holds for all i. The condition that mo((X;_1)et (1), T)
is trivial holds for ¢ = 1. If it holds for i, Friedlander’s theorem asserts that X; is K (m,1) with
respect to [ and in particular 7o ((X;)et(l),Z) = 0. Therefore, by induction on i, X is K(m,1)
with respect to .

Let us now consider the arithmetic situation. The natural analogue of a good Artin neighborhood
is the following.
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Definition 3.5: An arithmetic good Artin neighborhood is an arithmetic scheme X /B such that
there exist B-schemes
X=X,,....Xo=1B

and elementary fibrations f; : X; — X;_1,i=1,...,n.

Note that the base scheme B is part of the datum of a good Artin neighborhood. If X /B is an
arithmetic scheme with geometric point Z, an étale neighborhood of Z is a commutative diagram

X — X

]

B —— B

such that X'/B’ is an aritmetic scheme and X’ — X is étale. We have to allow for a change of
the base scheme because we require the generic fibre of an arithmetic scheme to be geometrically
connected. Furthermore, if we hope to find étale neighborhoods that are arithmetic good Artin
neighborhoods, we have to admit that B can be replaced by an open subscheme in order to get
rid of unwanted singular fibres.

Fix a smooth arithmetic scheme X /B and a geometric point Z of X inducing a geometric point b
of B. Pick a prime [ different from the residue characteristic of Z. Suppose that B has a basis
of étale neighborhoods that are K(m,1) with respect to {. This is the case if B is a local or
global Dedekind scheme (see [Sch II| for the global case, the local case is easy). If T has a
basis of étale neighborhoods that are arithmetic good Artin neighborhoods, the same reasoning
as above shows that T has a basis of K(m,1)-neighborhoods with respect to I. Unfortunately,
bases of étale neighborhoods that are arithmetic good Artin neighborhoods do not exist for any
arithmetic scheme. In the remaining part of this chapter we explain why they do not exist. We
first treat the case of relative dimension one.

Lemma 3.6: Let B be a strictly henselian Dedekind scheme and X /B a proper, smooth arithmetic
surface with geometric point T over a closed point x of X. There is an étale neighborhood X' /B —
X /B of T such that any étale neighborhood X" /B" — X'/B’ of T is not an arithmetic good Artin
neighborhood.

Proof: Let Y — X be the blow-up in a closed point xy # z of X. The special fibre of Y /B
has two irreducible components C; and Cy. For i = 1,2 choose three closed points c},c?, ¢}
in C; different from z and different from the intersection point of Cy with Cy. For each (3, )
choose a horizontal divisor D; intersecting C; transversally at ¢]. Let Spec A €Y be an affine
open subscheme containing x, ¢}, D]. This is possible as Y /B is projective by |Lic|, Theorem 2.8.
Denote by pg,p.i,ppi the prime ideals corresponding to z,cl, D! respectively. Using prime
evasion (see Lemma 7.6 for a version that applies in our situation) we find f € A such that

feppi fori=1,2and j=1,2,3,
f¢p% fori=1,2and j=1,2,3,
[ & pa

In other words we have
div f = D! + D,
i,
where the support of D contains neither x nor c{ . Choose an integer m > 1 prime to the residue
characteristic of B. Let Y’ be the normalization of Y in the function field extension

KW R/ IEY).
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and Y’ — B’ — B the Stein factorization of Y’ — B. The morphism Y’ — Y is purely ramified
in the divisors D]. Therefore, the special fibre of Y’ has two irreducible components C; and C%
dominating C7 and Cs, respectively. Moreover, by the Hurwitz-formula C] and CY, as well as the
generic fibre of Y’ have genus at least one. The morphism Y’ — X is étale in a neighborhood
of z. We can thus find an open subscheme X’ € Y” such that X’/B’ is an étale neighborhood
of Z.

We claim that any étale neighborhood X”/B” — X'/B’ of Z is not an arithmetic good Artin
neighborhood. It suffices to show that X” does not posess a smooth compactification over B”.
Denote by Y” the normalization of Y’ in X”. Using resolution of singularities we find a regular
compactification X” of X”. It can be obtained from Y” by blowing up in the singular locus.
Since Y is normal, the singular locus is zero-dimensional. By the Hurwitz formula the strict
transforms of the irreducible components of the special fibre of X” are again curves of genus at
least one. By [Liu], Theorem 3.21 there exists a unique minimal model X”, of the generic fibre
of Y”. We have a birational morphism
X" — XI/:Iin

which is a successive blow-up in regular points. The exceptional fibres are thus rational. We
conclude that curves of genus at least one cannot be contracted. Hence, the special fibre
of X”. — B” has at least two components. In particular, X/ is not smooth over B”. Therefore,
there does not exist a smooth compactification of X”. O

Corollary 3.7: Let X /B be an arithmetic surface and T a geometric point above a closed point
of X. There is no basis of étale neighborhoods of T that are arithmetic good Artin neighborhoods.

Proof: Assume there is a basis of étale neighborhoods of Z that are arithmetic good Artin neigh-
borhoods. Its base change to the strict henselization of B at Z is again a basis of arithmetic good
Artin neighborhoods. Replacing X /B by an étale neighborhood we may assume that X/B is
itself a good Artin neighborhood. The same holds for its base change to the strict henselization
of B at z. By Lemma 3.6 this is not possible. O

Proposition 3.8: Let X/B be an arithmetic scheme and T a geometric point above a closed point
of X. There is no basis of étale neighborhoods of T that are arithmetic good Artin neighborhoods.

Proof: Suppose the contrary. In particular, there is an étale neighborhood X’/B’ of Z which
admits an elementary fibration X’ — S” over B’ such that S’ is regular. Denote by s the image
of Z in S’. Choose a curve C’ passing through s’ which is regular at s’ and flat over B’. The
strict henselization of C’ at T is a Dedekind scheme B” and the base change X” of X’ to B” is
an arithmetic surface which is an elementary fibration over B”. By assumption X has a basis of
étale neighborhoods of T that are arithmetic good Artin neighborhoods. Its pullback to B” is a
basis of étale neighborhoods of Z in X” that are arithmetic good Artin neighborhoods. But by
Corollary 3.7 such a basis of neighborhoods does not exist, a contradiction. O

The proof of Proposition 3.8 shows that the existence of arithmetic good Artin neighborhoods
fails already at the first step. It fails in such a way that we cannot even expect to find a basis of
étale neighborhoods with smooth compactifications over some regular scheme of one dimension
less. Even if the initial arithmetic scheme X /B is smooth and has a smooth compactification,
we cannot hope to work with smooth fibrations. This makes it hard to determine the homotopy
theoretic fibre in order to use the long exact homotopy sequence. Instead, we will pursue a
more explicit approach using the cohomological criterion for the K (m,1)-property provided by
Corollary 2.5.
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Chapter 4

Exceptional fibres

In this chapter we begin to work on the problem of constructing K (7, 1)-neighborhoods on
arithmetic surfaces. For an arithmetic surface X/B and a tidy divisor D € X we want to
investigate whether U = X — D is K(m,1) with respect to a given class of finite groups c¢. By
the cohomologial criterion for the K (m, 1)-property (see Corollary 2.5) we have to show that for
a geometric point T of U

lim H'(U,A) =0
U'-U

for i > 1 and A = Z/mZ with m € N(c). The limit runs over all pointed finite étale c-
coverings U’ — U. By Lemma 2.22 this amount to showing that

lim HY(X'—D',A) =0.
(X",D)eIx, D,z

Remember that the category Jx p s is the category of all desingularized c-coverings of (X, D)
together with a lift of the geometric point . The reason why we have to desingularize the c-
coverings of (X, D) is the following. Let (X1,D;) — (X, D) be a c-covering. Since X; — X
is étale over U, the open subscheme U; = X; — D; of X; has essentially the same regularity
properties as U. However, the covering X; — X can ramify outside of U. Therefore, the
divisor D1 might not be tidy and in particular, X; might not be regular at the points of D;.
With other words, new singularities arise when we replace (X, D) by (X1, D;). But in order to
calculate the cohomology groups of Uy, which is the task of Chapter 5 and Chapter 6, it would
be very helpful if the complement of U; were a tidy divisor.

At this point the reader might ask why we have to embed U in a bigger scheme at all. The reason
is that, in general, we do not have a base change theorem for the morphism U — B but we would
like to compute the cohomology of U via the Leray spectral sequence associated with U — B. We
circumvent this problem by first lifting comology classes on U to cohomology classes on a bigger
scheme X where base change holds. We could take for X a compactification of U but it turns
out to be more favorable to remove from the compactification of U a regular horizontal divisor in
order to obtain X. This makes X — B a non-smooth analogue of an elementary fibration with
the advantage that the general fibres are affine curves.

Let us return to the subject of this chapter. We consider a desingularized c-covering (X', D’) —
(X1,D1) — (X,D). In this thesis we only examine the case where all elements of N(c) are
invertible on X. Hence, the c¢-covering (X1, D1) — (X, D) is tame. We want to understand the
singularities of X; at the points in D;. This amounts to understanding the exceptional fibres
of X’ — X;. It turns out that only rational singularities can occur meaning that the exceptional
fibres of X’ — X are rational curves.
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4.1 The local structure of tame coverings

The local structure of a tame covering is described in [SGA1|, Exp. XIII, 5.3.0 by the generalized
Abhyankar lemma:

Theorem 4.1: Let Y be a strictly henselian, reqular, local scheme and D = 22:1 div f; a
normal crossing divisor on X. Then every connected tame covering of (Y, Z) is a quotient of a
tame covering of the form

Y1 =X[Ty,...,T.]/(T7" — f1,..., T — fr),

where n; are positive integers prime to the residue characteristic of Y.

In the two-dimensional situation we are interested in, there are three possibilities: Either D is
zero meaning that every tame covering of (X, D) is étale, i.e., trivial, or D = div a is a prime
divisor, or D = div a + div b has two irreducible components. In case D is a prime divisor the
situation is quite simple as in this case D is regular and we have:

Lemma 4.2: Let Y be a reqular, noetherian scheme and D < Y a divisor whose underlying
reduced scheme is reqular. Let (Y1, D1) — (Y, D) be a tame covering of (Y, D). Then Yy as well
as the underlying reduced subscheme of Dy in Yy are regular. If moreover (Y, D) is smooth over
some regular, noetherian scheme B, so is (Y1,(D1)red)

Proof: The problem is étale local so we may assume Y = Spec R with R a strictly henselian local
ring. In this setting the divisor D4 is either empty or given by a regular element u € R. In the
former case Y7 is étale over Y and thus regular. In the latter case, by the generalized Abhyankar
lemma Y7 is a disjoint union of schemes of the form Spec R[{/u] with d prime to the residue
characteristic of Y. We conclude that Y; and (D;)eq are regular.

Assume now that (Y, D) is smooth over some regular, noetherian scheme B. We may assume
that B is the spectrum of a strictly henselian ring A. Then Y is étale locally isomorphic to the
spectrum of A[T},...,T,] such that either D is empty or D = div T},. In the former case there
is nothing to prove and we thus assume D = div T),. By the generalized Abhyankar lemma Y7 is
a disjoint union of schemes of the form

Spec A[Ty,...,T,,T]/(T* —T,) = Spec A[T,...,Tp_1,T]
and the reduced scheme underlying D; is given by div T'. This proves the result. O

Let us return to the situation where X/B is a strictly henselian arithmetic surface. If D =
div a+div b and (X1, D;) — (X, D) is a tame covering, X; might be singular. By the generalized
Abhyankar lemma (Theorem 4.1) it is a quotient of

XO :X[Tl,Tg]/(Tlnl —CL,Tln2 —b)

with positive integers ni and no prime to the residue characteristic of X. It is quite complicated to
write down a general quotient of X explicitly. However, X; can be described as the normalization
of X in the function field extension K (X;)|K(X) and the subextensions of K(X)|K(X) are
determined by the following lemma.

Lemma 4.3: Let K be a field and d a positive integer prime to the characteristic of K. Suppose
that pg € K and let a,be K*. Any subextension of K(/a, ¥/b)|K is of the form K[ {/a, ¥/ arb]
with m,n|d, 0 < r,s <m—1 and ged(r,s,m) = 1.

Proof: Let K be a separable closure of K and denote by G the absolute Galois group of K.
Choose a primitive d*® root of unity. This provides us with an identification H'(Gr,pq) =
Hom(Gr,Z/dZ). Via the Kummer isomorphism

KX/(KX)d X KX/(KX)d > HY(Gx, pta X f1a)
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and the above identification the pair (a,b) corresponds to a surjection ¢ : Gx — Z/dZ x Z/dZ
such that K*"¢ = K({/a,/b). Let L be a subextension of K({/a, ¥/b)|K. Then there is a
quotient @ of Z/dZ x Z/dZ such that the image ¢¢ of ¢ under the map

Hom(Gk,Z/dZ x Z/dZ) — Hom(Gk, Q)
satisfies K*7%@ = L. By Lemma 4.4 below @ takes the form
Z/dZ x 7.)d7 — 7./nZ X Z/mZ
(zy) = (@rz+sy)

with m,n|d, 0 <r,s <m —1 and ged(r,s,m) = 1. Via Kummer theory the homomorphism ¢
thus corresponds to (a,a”b®) € K*/(K*)™ x K*/(K*)™. This proves the result. O

Lemma 4.4: Every quotient of Z/dZ x 7,/dZ takes the form
Z/dZ x T,)dZ —> T/nZ x T/mZ
(y) = (@rz+sy)
with m,n|d, 0 <r,s <m—1 and ged(r,s,m) = 1.
Proof: Let @ be a quotient of Z/dZ x Z/dZ. Consider the homomorphism

¢ 7/d7 0 7,)d7 x 7,)d7. > Q.
The image of ¢ is isomorphic to Z/nZ with n|d and generated by 7(1,0). The homomorphism
from Z/dZ x Z/dZ to the cokernel of ¢ factors through the second projection Z/dZ x Z/dZ —
Z/dZ. Hence, its cokernel is isomorphic to Z/mZ with m|d and generated by 7(r,s) with 0 <
r,s <m —1 and ged(r,s,m) = 1. O

As a direct corollary of the generalized Abhyankar lemma (Theorem 4.1) and Lemma 4.3 we
obtain:

Corollary 4.5: Let X /B be the strict henselization of an arithmetic surface at a geometric point
and D a tidy divisor on X with two irreducible components Zy = div g1 and Zs = div gs.
Let (X1,D1) — (X, D) be a connected tame covering. Then, X is the normalization of X in a

function field extension
K(X)[ %/g1, §/9795]| K (X)

with m,n prime to the residue characteristic, 0 < r,s < n —1 and ged(r,s,n) = 1.

Before concluding this section, we prove another result about desingularized tame covering. We
do not need the explicit description from the rest of this section. As the assertion also concerns
the shape of tame coverings, we state it here.

Lemma 4.6: Let Y — Y be a flat morphism of schemes which is locally of finite presentation.
Let Z be a closed subscheme of Y and denote by Z' its preimage in Y'. Then every connected
component of Z dominates a connected component of Z'.

Proof: By [EGAIV.2|, Théoréme 2.4.6, the morphism Y’ — Y is universally open. In partic-
ular, Z' — Z is open and thus Spec Oz ,» — Spec Oy . is surjective for every point 2z’ € Z’
mapping to z € Z. Suppose there is a connected component Z| of Z’ mapping nonsurjectively to
a connected component Zy of Z. Then there are irreducible components Z; and Z5 of Zy with
nontrivial intersection such that Z; is contained in the image of Zy and Z5 is not. Let z € Z; be a
point in the intersection of Z; and Z3 and 2’ € Z|) a preimage of z. This produces a contradiction
as Spec Oz ,» — Spec Oz, is not surjective. O

Corollary 4.7: Let X/B be an arithmetic surface and D < X a tidy divisor. Let (X1, D) —
(X, D) be a tame covering. Then every connected component of Dy dominates a connected com-
ponent of D.
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4.2 Rational Singularities and the dual graph

We are interested in the type of singularities that arise in tame coverings (X1, D;) — (X, D),
with an arithmetic surface X /B and a tidy divisor D. Since X is normal, the singular locus
is a finite set of closed points. In the following sections we examine the exceptional fibres of a
tidy desingularization of (X7, D1). The exceptional fibres are curves over the residue fields of the
respective singular points such that all irreducible components are regular and have normal cross-
ings with all other irreducible components. They are determined by their respective irreducible
components with multiplicity and their dual graph, which is defined as follows.

Definition 4.8: Let C' be a curve, i. e., a one-dimensional excellent scheme. The dual graph I'c
of C 1is the graph defined as follows. Fach vertex represents an irreducible component of C and
the number of edges between two vertices is given by the number of intersection points of the
corresponding irreducible components.

Lemma 4.9: Let Y be a normal surface, Z 'Y a proper closed subscheme, and ¢ : (X, D) —
(Y, Z) a tidy desingularization of (Y,Z). Let I'p denote the dual graph of D. Then m (T'p) is
independent of the chosen desingularization.

Proof: Let ¢' : (X', D') — (Y, Z) be another desingularization with dual graph T'p,. There is
a birational map X’ --» X over Y. Using elimination of indeterminacies, we find a regular
scheme X” over Y and birational morphisms ¢ : X” — X and ¢/ : X” — X' which are
isomorphisms over D and D', respectively, such that the following diagram commutes

The morphisms ¢ and )’ are consecutive blowups in closed points of D and D', respectively. It
thus suffices to prove that blowing up X in a closed point x of D leaves 1 (I'p) invariant. Assume
first that x is a regular point of D. Blowing up in x a vertex is added to I'p and connected with
the vertex corresponding to the irreducible component of D containing x. Now assume that x is
a singular point of D represented by an edge of the dual graph connecting the vertices a and b,
say. Then this edge is removed from the dual graph. A new vertex is added and connected with a
and with b. In both cases 71 (I'p) remains invariant. O

Definition 4.10: A projective (not necessarily integral) curve C over a field k is called rational
if HY(C,O¢) = 0. An arithmetic surface X /B has rational singularities if there is a desingular-
ization ¢ : X1 — X such that R'¢,Oc = 0.

Remark 4.11: (i) By flat base change a curve is rational if and only if its base change to the
algebraic closure of the base field is rational.

(ii) A curve C over an algebraically closed field k is rational if and only if all its irreducible
components are isomorphic to IP’}ﬂ and its dual graph is a tree (see [Deb], Definition 4.23).

(iii) If the geometric exceptional fibres of one desingularization of X are rational, the same
is true for any desingularization. Indeed, the exceptional fibres of two desingularizations
differ only by rational irreducible components and by Lemma 4.9, if the dual graph of one
desingularization is a tree, the same holds for the other one.

A particularly simple example of a rational curve is a chain of P!’s which we define as follows.
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Definition 4.12: Let C be a curve with irreducible components C1,...,C,. We say that C 1is
a chain of P'7s if Cy,...,C, are isomorphic to IP’,l€ for some field k, for i = 1,...,n — 1 the
curve C; intersects Cii1 in exactly one point, which is moreover k-rational, and C; N Cj; is empty
for i —j| = 2.

If C is a closed subscheme of another curve Cy, we say that C is a bridge of P*’s in Cqy if C is
a chain of P'’s and C intersects exactly two of the remaining irreducible components of Cy and
this intersection takes place in two k-rational points p1 € C1 and p, € C,,.

In particular, if C' is chain of P'’s, it is a rational curve over some field such that the dual graph
is of the form

Cl CQ Cn—l Cn
o—— — ——0

If moreover C' is a bridge of P!’s in Cp, the dual graph of Cy near C is of the form

Zr G O Cho1 C, 2,
° ° ° ° ° °

)

where Z; and Z,, denote the irreducible components of Cy intersecting C' but not contained in C'.

4.3 Explicit desingularizations

For this section we fix a henselian discrete valuation ring © with algebraically closed residue field k
and uniformizer 7. We denote the closed point of Spec © by s and the generic point by 1. Further-
more, let Z = Spec R/© be smooth of finite type of relative dimension 3 and fix a closed point z
of Z lying over the closed point s of Spec ©. We assume there are u, v, w € R such that div(ruvw)
is an snc-divisor such that the intersection of an arbitrary subset of {div 7, div u, div v,div w} is
irreducible and (7, u, v, w) is the maximal ideal corresponding to z. In particular, (7, u, v, w) is a
system of parameters of Oz .. Let j, k,l, m,r, s be non-negative integers such that j + k& +1 > 0,
m >0, r+ s> 0, and ged(m,r,s) = 1. Let a be a unit of R. We define

A = R/(uIv*w! — am, w™ — u"v®).

This is an integral domain as ged(m,r, s) = 1 and it is of relative dimension 1 over ©. We denote
its quotient field by K. The special fibre of Spec A has two irreducible components corresponding
to the prime ideals (u,w) and (v,w) except if k =1 =0o0r j =1=0. If k = = 0, the special
fibre has one component corresponding to the prime ideal (u,w) and if j = [ = 0, it has one
component corresponding to (v, w).

We want to desingularize Spec A. In particular, we are interested in the exceptional fibres of a
desingularization of Spec A. In general, Spec A is not even normal but if either » or s is zero,
the normalization of Spec A is already regular as the next lemma shows. Note that by relabeling
variables we may interchange r» and s. Therefore, it suffices to treat the case s = 0.

Lemma 4.13: Assume s = 0, i.e., A = R/(v/v*w! — ar,w™ —u"). Consider the ring homo-
morphism

R — R' = R[V]/(u™ — u,u"" — w).

Define

A = R//(u’mﬁrlvlC —ar).
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Then the above homomorphism induces an integral ring extension
o: A— A,

which is the normalization homomorphism of A. In particular, the normalization of A is reqular.
The support of the divisor div w < Spec A has only one irreducible component and the same
holds for div w < Spec A’. In particular, the dual graph of div w in Spec A’ coincides with the
one of div w in Spec A. If the support of div w < Spec A is vertical and isomorphic to A}, the
same holds for the support of div w in Spec A’. Moreover, div w S Spec A’ is tidy.

Proof: Write am + br = 1 with coprime integers a,b. In K the equation
XM —u

b

has the solution u®w®. It follows that v/, being the image of u®w?, is integral over A and thus

the ring homomorphism
A— A

constitutes an integral extension of A. Furthermore, A’ is a regular ring so the normalization
of A is regular. The induced map of the support of div w in Spec A’ to the support of div w
in Spec A is given by the ring homomorphism

R/rad(uiv*w' — am,u” w) — R /rad(u™ """ — am,w)
with
(v* —am,u,w) ifj=1=0,

rad(uiv*w' — am u” w) =
(7, u, w) else

and
(v* —amu) ifj=1=0,

rad(u™ P — am, w)
(m,u) else.

In both cases the support of div w in Spec A and in Spec A’ has only one irreducible component.
If the support of div w in Spec A is isomorphic to A}, it is not possible that j = [ = 0 (in which
case div w is horizontal). We thus have

R/rad(uiv*w' — ar,u" w) = R/(r,u,w) = k[T
and
R /rad(u™*"WF — ar,w) = R'/(7,u') = R[W]/(m,u, w,v) = k[T,u']/(«') = k[T].
O

In general, if r and s are both positive, it is quite complicated to write down the normalization
of Spec A explicitly. However, we can take one step towards the normalization of Spec A:

Lemma 4.14: Assume that r and s are positive. Set

g1 = QCd(ma 8)7 g2 = ng(m7 T)’
and
, m
m = —.
9192
Write
— =am’ +1", — =bm’' +5"
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with non-negative integers a,b,r”,s” such that r",s" < m'. If m’ = 1, set g3 = 1 and other-
wise g3 = ged(r”, s") and define

j'=q1j +al, k' = gok + 0L, ' = gsl.
Consider the extension

R — R = R[u,v,w']/(u/?" — u,v'9? — v,/ "v"w'% —w)

and define
A= R//(u’j/v’k,w’l/ —am,w™ — u”’v’sl).
Then the above homomorphism R — R’ induces an integral ring extension
p:A— A

and the dual graphs of div w in Spec A and div w' in Spec A’ coincide. Furthermore, if a
vertical irreducible component of div w < Spec A is isomorphic to A,lg, the same holds for the
corresponding component of div w' < Spec A’. If m' =1, A" is reqular and ¢ is a normalization
homomorphism of A. In particular, in this case the normalization of A is reqular and div w <
Spec A’ is tidy.

Proof: One checks that ¢ is well defined and injective. There is exactly one point z’ of Spec A’
lying above z € Spec A. The induced map of function fields

¢ K —> K’
is an isomorphism. Indeed, write
1=cir+dig, 1 = cos + daga, 1 =c3m + dzgs
with integers ¢; and d;. Identifying K with its image in K’ we have

d1 v/:u

W = ulfdgaU/fd3buc&qzr/v%gls'wdg7

!’ ! 7
u/ S v—cl(bm +g3s )wclggm ,

I ! !’
—c2(am’+g3r’), d2,cag1m ’

and thus K = K’. Moreover, u',v" and w’ are integral over A being roots of the normalized
polynomials in A[X]

’ ’
X9 —u, X9 — v, and XM — 92" 9918

respectively.

Let us show the assertion concerning the dual graph. One checks that the support of div w’
in Spec A’ coincides with the support of div w in Spec A’. In order to see that the dual graphs
of div w < Spec A and div w < Spec A’ coincide we examine the induced morphism of the
underlying reduced subschemes. It is given by

. / v ’ ’ ’ ’
Rirad(vivFw' — am, u"v®,w) — B frad(u? v'* w" — am, 0™ — o7 0" 4/ Pw'9%)
with
(v — am,uv,w) case 1: k=1=0,
rad(uwvFw' — am u"v* w) = { (vVF — am uv,w) case 2: j =1 =0,

(70, uv, w) case 3: else,
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(W99 — am,u'v',w') case 1 and m/ > 1,
(v'92F — ar u'v' W) case 2 and m' > 1,
(m,u'v' w') case 3 and m’ > 1,
md(u'j/v'k/w’l —amw™ — "' w/ " w') = 4

(w9 — am, /v, w' —1) case 1 and m' = 1,
(v'92F — ar w'v',w' — 1) case 2 and m’ = 1,

[ (m,u'v',w" — 1) case 3 and m’' =
Assume first that m’ > 1. In case 1 the above morphism becomes

R/(v/ — am,uv,w) — R'/(u'9 — am,u'v',w') = (R/(u! — am, wv, w)) [W'V' /(W9 — u, v —v).

By our assumptions on div(muvw) the spectrum of R/(u?! — am, uv,w) has two irreducible com-
ponents, one irreducible, smooth curve over k£ with parameter u at z and one regular horizontal

component. The same holds for (B/(v’ — am, uv, w))[v']/(v'9 — v), where the vertical prime di-
visor has parameter v’ at z’. We conclude that the dual graphs coincide. If the vertical irreducible
component of Spec R/(u! — am,uv,w) is isomorphic to A}, i.e., R/(m, u,w) = k[v], we have

(B/(m,u,w))[V']) (09 — v) = k[v,0']/(V' —v) = k[v]

and thus also the vertical component of (R/(v’ — am, uv,w))[v']/(w/9" — u /9 — v is isomorphic
to A}c. Cases 2 and 3 are analogous, as well as the case where m' = 1. O

After the construction in Lemma 4.14 we are now ready to examine a desingularization of Spec A:

Lemma 4.15: Assume that m > r,s > 0 and that m,r and s are pairwise coprime. Let A’
be the normalization of A. Then the dual graphs of the special fibre of Spec A and of Spec A’
coincide and if an irreducible component of (Spec A)s is isomorphic to Ai, the same holds for the
corresponding component of (Spec A')s. Furthermore, there is a desingularization X — Spec A’
such that div w < X is tidy and the exceptional fibre E of X — Spec A’ is a bridge of P'’s
in div w € X and the dual graph of div w has the form

u : : v
Proof: We use induction on (m,r + s) given the lexicographical ordering (note that 2 < r + s <

2m — 2). The ring A is a noetherian ring of dimension 2 and it is singular at the maximal ideal
generated by u, v, and w.

Let us first examine div w S Spec A. It is the subscheme of Spec A determined by the ideal (w):
A(w) = B)(wvFw! — am,u"v®, w).
The underlying reduced scheme is given by

(W — am,uv,w) casel: k=1=0,
rad(u/vFw' — am u"vt w) = { (vF — am,uv,w) case 2: j =1 =0,

(7, uv, w) case 3: else.

In case 1 div w has one horizontal component Z, corresponding to the prime ideal (u/ —am, v, w)
and one vertical component Z,, corresponding to (7, u, w). In case 2 it has one horizontal compo-
nent Z, corresponding to (v¥—am, u, w) and one vertical component Z, corresponding to (7, v, w).
In case 3 it has two vertical components Z,, and Z, corresponding to (7, v,w) and (m,u,w).
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Consider the blowup Y of Spec A in z. Let Y’ denote the normalization of Y. The morphism Y’ —
Y factors through Y x 4 Spec A’ — Y as the latter is finite birational. We thus have the following
diagram:

Spec A «+—— Y

T !

Spec A’ +——Y x4 Spec A’

N

Y.

The morphism Y’ — Spec A’ is a birational morphism of normal surfaces with exceptional
locus 2z’ € Spec A’. Let us calculate Y. By [Liu|, Lemma 8.1.2(¢), Y can be covered by 3 affine
open subschemes Spec B, Spec B, and Spec B,,, where

L, Be=A[%Y], B, =4[

u w u
- — —
u u v v w

Bu:fl[ﬂyg 3 ]

g|e

considered as subrings of the quotient field of A. More precisely, define

R, = R[vy, w,]/(veu — v, wyu — w),
R, = Rluy, w,]/(upv — u, wyv — w),

Ry = Ry, vy |/ (Uww — u, vyw — v).
Then Spec R,,, Spec R,, and Spec R,, are smooth and of finite type over © and

B, = R,/I,,
(u Rkl — am wmumTTm8 —03)  if m o>+ s,

I, = { (W Hokwl — am wits —v3) ifm=r+s,

(wHFHpkwl — am w™ —urtsTmes)  if m <1+ s,

B, = Rv/Im
j oy +E+1, 1 m,m—r—s r ;
(w I Tl — am wmo —ul) fm>r+s,
— i oy +k+1, 0 ] T ; —
I, = < (woIt it — am, whts —ul) ifm=r+s,
l

j 0y J+k+1 m T r+s—m :
(Wl v TR+l — am w™ — ulv ) ifm<r+s,

By = Ry/ Ly,
(w oF Wtk —qm w™TTTS — T vd) i mo>r o+,
I, = { (ul vFwit*+ —ar 1 —ulvd) ifm=r+s,

i 0k T K+ T 08 o THS—m ;
(ud, v w? —am 1 —ulviw ) ifm<r+s

Let us first treat the case where m = r + s. Since u,v, € B, are invertible, B, and B,
are subrings of B,, and thus Spec B,, S Spec B, n Spec B,. We can therefore omit B,,. By
Lemma 4.13 the morphisms

B, — B!, := R[z]/(uJ Th+lghCr+a)+ls _ qp am+sy — o, 2%u — w),
Uy > $7‘+S

Wy, — T°

B, — B!, = Rlyl/(v/Hh+lydr+9+r _ e yr+sy — a0 — w)
r+S
Uy > Y

Wy — Y~
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constitute a normalization Y’ of Y, where in the quotient field K of A we have z = y~!. Since Y’
is regular, it is already a desingularization of Spec A’. The divisor div w € Y’ is given by

div w n Spec B!, = Spec Buj(w) = Spec Rlz]/(u/TF+ighr+)+s _ an g5, v, w),
div w ~ Spec B, = Spec Buj(w) = Spec RlYl/(vItF+ydr+9+ _ op vy u,w),

and its underlying reduced subscheme by

(div w O Spec BL) g — Spec R[x]/(u”k” —amuz,v,w) ifk=1=0,
Spec R[x]/(ﬂ', Uz, v, W) else,
(div w N Spec By)req = Spec Rlyl/(v/ ! — am vy, u,w) if j =1=0,
Spec BlY)/(x, vy, u,w) else.
The divisor div w N Spec B, has two irreducible components. The first one is given by the
prime ideals (7, u,v,w) of R[x] and the second one by (m,v,w,z) or (W*k*! — am v, w,z), re-
spectively. The component corresponding to (, u, v, w) is isomorphic to A,ﬁ and the component
corresponding to (7, v, w, ), respectively (uw/**+! —am, uz,v,w), is isomorphic to the irreducible
component Z, of (Spec A)s. Analogously, div w n Spec Bl has two irreducible components,
one of them isomorphic to A} and the other one isomorphic to the irreducible component Z,
of (Spec A)s. We readily check that the irreducible components of div w intersect transversally
implying that div w is tidy. The components of div w n Spec B], and div w n Spec B, that
are isomorphic to A,lﬂ patch together to form the exceptional fibre ' =~ IP’,lC of Y/ — Spec A'.
Furthermore, we read off that the dual graph of the special fibre looks as follows:

Zy E 4y
o—eo o .

Assume next that » + s > m. By the same reason as before we can omit B,. Let us deter-
mine div w.
div w N Spec B, = Spec Bu/(w)
= Spec Bvu, wu]/(wTF+yky
div w N Spec B, = Spec Bu/(w)

— Spec Rlww, wol/(ul o7 F !, — am, w — ulv™ T wyv — u, wev, w).

l m r+s—m, s
W — Qm Wt —u VS VU — U, Wy, W),

The underlying reduced scheme is given by

VAL

Spec R[v.] —am,uvy,v,w) ifk=101=0,
]

. [
(div w N Spec By)red = {Spec R[va

[

[

/
/(7, uvy, v, w) else,
Spec Rluv]/

Spec R uv]/ T, UV, Uy W) else.

—am,uyv,u,w) if j =1=0,

(
(
(div w N Spec By)rea = { EUHkH

Again, the exceptional fibre E is isomorphic to P} and we read off the dual graph of the special
fibre:

Zu E 2y
o—eo o
By Lemma 4.14 we can replace B, by
/(l‘ y Z — o, Z/m' _ x/r’y/s')

with L
Ry = Rl 0 2 (@9, — v, a2 — ),
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where we use r + s — m instead of » and j + k + [ instead of j and similarly for B,. The
integers m/, j', k', I',7',s', 91,92 and g3 are defined as in Lemma 4.14. Note that Spec R], is
smooth and of finite type over ©. Since s and m are coprime, we have that m’ > 1 and ', s’ > 0.
Furthermore, (m/,r" + ') < (m,(r + s —m) +s) < (m,r + s) in the lexicographical ordering
as m > s. Hence, the induction hypothesis states that there is a desingularization X, of the
normalization Y, of Spec B;, (which coincides with the preimage of Spec B,, in Y”) such that div 2’
is tidy, the exceptional fibre G, of X,, — Y/ is a bridge of P!’s in div 2’ and the dual graph

of div 2’ has the form
Ly : j E

We check that on Spec B, the divisors div w and div 2z’ have the same support implying that
their dual graphs coincide.

Analogously, there is a desingularization X, of the normalization Y, of Spec B;, such that div w S
X, is tidy, the exceptional fibre G, of X, — Y is a bridge of P!’s in div w and the dual graph
of div w < X, has the form

E Z’U'

Since Y’ has only isolated singularities, the desingularizations X,, — Spec B,, and X, — Spec B,
can be patched together to a desingularization X — Y’. Combining the dual graphs of div w
in Spec B, and Spec B, we obtain

Zu @ FE @ Zv-
Since G, and G, are bridges of P'’s by induction, the whole exceptional fibre is a bridge of P!’s

and the assertion is proven for m < r + s.

Let us finally treat the case where m > r + s. We have

Spec R[wu]/(uj+k+l — am,uwy,,v,w) ifk=1=0,
di NS By)red =
(div w n Spec Bu)red {Spec Rlwu/(7, uw,,, v, w) else,
R Wy J+k+l e ] —
(div w A Spec By)yes = Spec B[ ]/(v am, w,v,u,w) if j=1=0,
Spec R[wv]/(w, Wy, Uy W) else,
(div w N Spec By )reqa = Spec Rl Uw]/(ﬂ', Uy Vo, Uy U, W).

We read off the dual graph of the special fibre:

Zy Ey E, Z,
@ L L L ]

)

where F, and F, are rational. By Lemma 4.14 we can replace B,, by

B R;U/(x/j’y/k’zll’ _ Om_,z/m’ _ x/r’y/s’)

w =

with

R/w = Ru) [.fl?/, y/7 Z/]/(:L‘/gl — Uy, y/92 — Uy, 1'/ay/b2/93 _ ’LU)
using j + k + [ instead of [ and m — r — s instead of m. If m’ = 1, which happens if m —r — s
divides rs, B, is regular and div w < Spec B, is tidy. Otherwise, since (m/,r" +s") < (m,r+s),
the induction hypothesis states that there is a desingularization X,, — Y, such that div 2’ is tidy,
the exceptional fibre G, of X,, — Y/ is a bridge of P'’s in div 2’, and the dual graph of div 2’
has the form
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igj
e

Again, the dual graphs of div 2’ and of div w coincide.

By analogous considerations for B,, and B, we obtain: The normalization Y, of Spec B, is regular
if s divides m — r — s. Otherwise, there is a desingularization X,, — Y}, such that div w € X, is
tidy, the exceptional fibre G,, is a bridge of P!’s in div w and the dual graph of div w n X, has
the form

?N
S

Similarly, the normalization Y, of Spec B, is regular if r divides m — r — s. Otherwise, there is
a desingularization X, — Y, such that div w € X, is tidy, the exceptional fibre G, is a bridge
of P’s in div w and the dual graph of div w n X, has the form

v

im
N

As in the case r + s > m, the desingularizations X,, X, and X, patch together to a desingu-
larization X — Y’. Putting the pieces of the dual graphs together, we check that in any case
(s|m —r — s or not etc.) the exceptional fibre of X — Spec A’ is a bridge of P!’s in div w and
the dual graph of div w is of the form as stated in the lemma. For instance, if r|m —r — s we

have
O OR
This completes the proof in the case m > r + s. O

We just proved that there exists a desingularization of Spec A’ such that the exceptional fibres
are bridges of P'’s in div w. In order to show that this is true for any tidy desingularization
of (Spec A, div w) we need the following lemma.

Lemma 4.16: Let X/B be an arithmetic surface and D S X a tidy divisor. Let E be an
irreducible component of D which is a —1-curve with field of definition k (i. e., a vertical prime
diwisor with self-intersection —[k : k(b)], where b is the image point of E in B). Suppose that E
intersects each vertical divisor and each irreducible component of D in at most one point such
that all intersection points are k-rational and the total number of intersection points is at most 2.
Then the push-forward D' of D to the contraction m : X — X' of E is a tidy divisor.

Proof: The contraction X — X’ exists and is regular at the image point p of E by Castelnuovo’s
criterion as F is a —1-curve (see [Liu|, Chapter 9, Theorem 3.8). We have to show that D’ is tidy
at p. Let W’ be either an irreducible component of D’ or a vertical prime divisor passing through p.
Denote by W its strict transform in X. Then W is either an irreducible component of D or a
vertical prime divisor and intersects E transversally at a k-rational point, i.e., E-W = [k : k(b)].
Since X' is regular at p, we have

(W) = W + my(W') - B,

where m,(W’) denotes the multiplicity of W’ in p, i.e., the maximal power of the maximal ideal
corresponding to p which contains the ideal sheaf at p corresponding to W’. By the projection
formula

0=FE-n*(W') =E-(W+my(W’)- E) = [k: k(b)](1 —my(W)),
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and thus m,(W') =1, i.e., W’ is regular at p. If W’ is the only prime divisor passing through p
which is either vertical or contained in D, we are done. If not, there is exactly one other such
prime divisor Z’, which is regular at p by the same reason as W’'. We have to show that Z’
intersects W' transversally at p. Since the problem is local on X’, we may assume that p is the
only intersection point of Z’ and W’. Hence, Z and W do not intersect and

Z' W' =g*(Z") - 7*(W)=(Z+ E)-(W+E) = [k: k)],
which is equivalent to saying that Z’ and W' intersect transversally at p. O

Corollary 4.17: In the situation of Lemma 4.15 let X' — Spec A’ be the minimal desingular-
ization of Spec A’. Then div w S X' is tidy, the exceptional fibre is a bridge of P'’s in div w
and the dual graph of div w has the form

Proof: If the desingularization X — Spec A’ constructed in Lemma 4.15 is not the minimal
desingularization of Spec A’, there is an irreducible component E of the exceptional fibre which
is a —1-curve. Using that the exceptional fibre of X — Spec A’ is a bridge of P'’s in div w we
verify that the assumptions on F in Lemma 4.16 are satisfied. Contracting £ we obtain another
desingularization of Spec A’ with the required properties and with one irreducible component

less. Having contracted all —1-curves we arrive at the minimal desingularization of Spec A’,
which is thus of the desired form. O

Corollary 4.18: In the situation of Lemma 4.15, for any tidy desingularization of Spec A’ the
exceptional fibre is a bridge of P'’s in div w and the dual graph of div w has the form

u : : v
Proof: By Lemma 4.17 the minimal desingularization X — Spec A’ has the asserted properties.
Any other tidy desingularization evolves from X by successively blowing up special points of D.

In our situation the special points coincide with the singular points of D. After blowing up a
singular point of D the exceptional fibre still has the above described form. O

4.4 The generalized exceptional fibre of a desingularized tame
covering

In this section we describe the singularities arising in a tame covering (X1, D1) — (X, D) of an
arithmetic surface X /B with tidy divisor D. It turns out that the singularities of X; are locally
of the form Spec A, where A is the ring defined in the previous section. More precisely, we have
the following result.

Proposition 4.19: Let X /B be an arithmetic surface and D S X a tidy divisor. Let (X1, D) —
(X, D) be a tame covering of (X, D) and (X! .., D} ..) — (X1, D1) the minimal desingularization

min
of (X1,D1). Then D, . is a tidy divisor and the exceptional fibres of X! .. — X1 are bridges
of PY’s in D! ... In particular, (X! .., Dhin) — (X, D) is a tidy desingularization of (X, D).
Moreover, for any other desingularized tame covering (X', D) — (X, D) the generalized excep-

tional fibres are bridges of P'’s in D', as well.

Proof: The assertions of the proposition are étale local. Indeed, let (Y,Z) — (X, D) be an étale
cover. We obtain a cartesian diagram
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Y",z) — WN1,2) —— (Y, 2)

| | |

D’ ) E—d (Xl,Dl) e (X, D)

min

(X;m'n?
The upper row defines a desingularized c¢-covering of (Y, Z). The exceptional fibre E,, of a closed
point y; € Y7 is the base change of the exceptional fibre E,, of the image point z; € X; to the
residue field of y;. If E,, is a bridge of P'’s, the same holds for its base change to k(y1). Suppose
that E,, is a bridge of P'’s with dual graph

Al Ey Es En,1 E, An
@ L @ @ L L ]

where Ay and A,, denote the irreducible components of Z; passing through y;. The images
of A1 and A, in D; are two distinct irreducible components By and B, of D; intersecting
in x;. The exceptional fibre F,, connects the strict transforms of By and B,,. Each irreducible
component of £, has at most two intersection points because otherwise there would be irreducible
components of I, with more than two intersection points. With these restrictions the dual graph
of E,, has to be of the form

B, P Fn1 F, B,
° ° ° ° ° °

with m < n. Furthermore, the intersection point of the strict transform of B,, with F,, is k(x1)-
rational. Hence, the field of definition of F,, is k(z;) and thus F), is isomorphic to IP’,IC(M)
and F, equals the base change of F,,, to k(y;). The intersection point of F,, with F,,_; also
has to be k(x;)-rational because otherwise F,, would have more than two intersection points.
Continuing this process, we obtain by induction on n that E,, is a bridge of P!’s. By the same
reasoning as in proposition 4.17 we obtain the statement about the minimal desingularization
of (Y1, Z1) and as in Corollary 4.18 we conclude that the generalized exceptional fibres are bridges
of PV’s for any tidy desingularization of (Y1, Dy).

Since X7 is normal, it has only isolated singularities. Let = be a singular point of X lying over a
closed point b € B. By Lemma 2.11 there is a smooth, connected scheme of finite type Z over B of
relative dimension 2, a closed point z € Z3, and a surjective homomorphism Oz , — Ox , whose
kernel is generated by an element I’ € Oz , which takes the following form: There is a system of
parameters (m,u,v) of Oz ., a unit o € (922, and non-negative integers j, k with j + k > 0 such
that

F = vk — am.
Furthermore, if we denote by @ and ¢ the image of v and v in Spec Ox ,, we have either
(Dox.,)rea = div a+div 0 or (Do, )red = div .

Shrinking Z we may assume that Z = Spec R is affine and that « and v are contained in R such
that div (muv) is an snc divisor and the intersection of an arbitrary subset of {div 7, div u, div v}
is irreducible and (7, u,v) is the maximal ideal corresponding to z. We may then replace X
by Spec R/F and D by div(uv) or div(u), respectively. By Lemma 4.2 it suffices to treat the
case where D is singular, i.e., D = div(uv).

Let 1 € X1 be a point in the preimage of x. By Corollary 4.5 the strict henselization (Xl);’;‘
of X at z; is the normalization of X;h in a function field extension

KX [{/u, Vuros] | K (X

with m,n prime to the residue characteristic, 0 < r,s < m — 1 and ged(r,s,m) = 1. Since the
assertions of the proposition are étale local by the first paragraph of the proof, we may assume
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that u,, and u, are constant sheaves on X. Then, étale locally at x, the tame covering X; — X
is the normalization of X in the function field extension

K(X)[{/u, Vurv ]| K(X).

The normalization X of X in K (X)[{/u] ramifies only in div u, which is regular. Lemma 4.2
thus implies that X5 is regular. So without loss of generality we may replace X with X, and
assume that X7 is the normalization of X in K(X)[ ¥/u"v*]. Hence, X; is isomorphic to the
normalization of

Spec Rlw]/(w/oF — ar,w™ — u"v®).

Replacing X by an open subscheme we may assume that the assumptions on R[w] from the
beginning of section 4.3 are satisfied: The divisor div(muvw) of Spec R[w] is an snc-divisor
such that the intersection of an arbitrary subset of {div ,div wu,div v,div w} is irreducible.
Moreover, by construction, (m,u,v,w) is the maximal ideal corresponding to the image point
of z1 in Spec R[w]. The assertions now follow from Corollary 4.17 and Corollary 4.18. O

Corollary 4.20: Let X /B be an arithmetic surface and D € X a tidy divisor. Let (X1, Dq) —
(X, D) be a tame covering of (X, D) and (X', D) — (X1, D1) a desingularization of (X1, D).
Assume that every irreducible component of an exceptional fibre of (X', D') — (X1, D1) intersects
the other irreducible components of D’ in at least two points. Then (X', D') — (X1, D1) is a tidy
desingularization.

Proof: We can factor (X', D) — (X1, D) as
(leD/) = (X(/)’Dé)) - (Xilel) ERGEE R (X’:ND;) - (X1>D1)7

where (X!, D!) — (X1,D;) is the minimal desingularization of (X, D;) and for ¢ = 1,...,n
the morphism (X! ,,D. ;) — (X, D)) is the blowup of X/ in a closed point p; of D,. By
proposition 4.19 the minimal desingularization (X}, D) — (X1, D1) is a tidy desingularization.
Moreover, blowing up in closed points does not destroy the tidiness of a divisor. Hence, D, is a tidy
divisor of X/ for all¢ = 0,...n. Suppose that (X', D’) — (X1, D1) is not a tidy desingularization.

Then there is an index ¢ such that p; is not a special point of D, i.e., p; is a regular point of D;.

Let ig be the smallest such index. Then the exceptional fibre of (X; _;,Dj ;) — (X ,Dj ) has
only one intersection point with the other irreducible components of D] ;. This does not change
by blowing up Dj _; in special points. We thus obtain a contradiction. O

Our knowledge of the local structure of desingularized tame coverings now puts us in the position
of proving Lemma 2.21 from the previous chapter. For the convenience of the reader we restate
it here:

Lemma: The following assertions hold:
(i) If (X',D") - (X,D) and (X",D") — (X', D') are both desingularized c-coverings, the
composite (X", D") — (X, D) is again a desingularized c-covering.
(ii) If (X',D') — (X,D) and (X",D") — (X, D) are desingularized c-coverings, there is a

commutative diagram of desingularized c-coverings

(X', D")

/

(X/”, DI//)

.

(X, D).

\_/

(X”, D”)
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(iii) Let X'/B’ be another arithmetic surface with tidy divisor D' € X'. Let & — (X' — D’) be
a geometric point. There is at most one desingularized tame covering (X', D’) — (X, D)
such that T — (X' — D') — (X — D) coincides with the fized geometric point © — (X — D).

Proof: (i). Let X; be the normalization of X in K(X’) and X» its normalization in K(X").
Furthermore, denote by X the normalization of X’ in K(X”). We obtain a cartesian diagram

D" Dy D
X" Xo X.

Since U’ = X' — D’ is the normalization of U = X — D in K(X’) and U” = X” — D" is the
normalization of U’ in K(X”), U” is also the normalization of U in K(X”). It is thus an open
subscheme of X5 and U” — U is a finite étale c-covering as finite étale c-coverings are stable under
composition. Hence, X” — Xs is birational and an isomorphism on U”. Moreover, D" < X" is
a tidy divisor. The only remaining question is whether X” — Xs is obtained from the minimal
desingularization of (X3, D3) by successively blowing up in special points. By Corollary 4.20 it
suffices to show that every irreducible component of an exceptional fibre of X” — X5 meets the
other irreducible components of D” in at least two points. The morphisms X” — X’ and X’ — X
factor as

(X" D)= (Yo, Z0) = .. — (Yo, Z0) = (X}, Di)— (X', D),
(leD/) = (YTL+17Z7L+1)_) el T (YT/HZm): (leDl)—> (X7D)7

where (Y,,,Z,) — (X1,D}) and (Y, Zn) — (X1,D1) represent the minimal desingulariza-
tions of (X7, D) and (Xi,D;), respectively, and for ¢ = 1,...,n and i = n + 2,...,m the
morphism (Y;_1,Z; 1) — (Y3, Z;) is the blowup of Y; in a special point p; of Z;. Let E be an
irreducible component of an exceptional fibre of X” — X5. Thereisi e {1,...,n}u{n+2,...m}
such that the image of E in Y;_; is one-dimensional and its image in Y; is a closed point. This
closed point is precisely the point p; and we obtain a finite morphism from F to the exceptional
fibre of Y;_1 — Y; in X”. Since X;_; — X; is the blowup of X; in p; and p; is a special point,
its exceptional fibre intersects the other irreducible components of Z;_; in two points. The in-
tersection points of E contain the preimages of these two points and thus there are at least two
intersection points.

(ii). Let K" be the compositum of K (X’) and K (X”) and X3 the normalization of X in K. This
defines a c-covering (X3, D3) — (X, D). We obtain rational maps X3 --» X’ and X3 --» X,
which, restricted to Us = X3 — Ds, are finite étale c-coverings of U’ = X' — D" and U" = X" — D",
respectively. Using elimination of indeterminacies and the existence of tidy desingularizations we
find a desingularization (X", D") — (X3, D3) dominating (X', D) and (X", D”) such that D"
is tidy. Suppose there is an irreducible component E of an exceptional fibre of X" with only one
intersection point with the other irreducible components of D”. By similar arguments as in the
proof of part (i) the image of E in X’ as well as in X” is a point. Let us write

(X”/, D///) _ (X(/)//,Dg/) — ... — (X;:/’D;/L/) — (XS, D3)7

where (X, DY) — (X3, D3) is the minimal desingularization of (X3, D3) and for i = 1,...,n
the morphism X/, — X is the blowup of X!” in a closed point p; € D!". Thereisi € {1,...,n

such that the image of E' is the point p; and the image of E in X", is the exceptional fibre E;
of X", — X/". Since E has only one intersection point, the same holds for E;. Furthermore, the
blowup points py for k = 1,...,7—1 must not lie above E; except possibly above the intersection
point ¢; of E; with the other irreducible components. One checks that after blowing up in g; the
strict transform of F; is still a —1-curve. Therefore, we can contract E. Moreover, by similar
arguments as in the proof of part (i) the image of E in X’ as well as in X” is a point. Hence,

the contraction still factors through X’ — X and X” — X. After finitely many contractions we
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may assume that all irreducible components of exceptional fibres of X" — X3 have at least two
intersection points. Then the same holds for the generalized exceptional fibres of X" — X’ and
of X" — X" as these are contained in the exceptional fibres of X” — Xj3. The assertion now
follows from Lemma 4.20.

(iii). Set U = X — D and U’ = X' — D'. Denote by 2’ the image of the geometric point Z in X".
There is at most one étale covering U’ — U which induces 2’ — x and a morphism X' — X is
completely determined by its restriction to a dense open subset. O

4.5 Multiplicities of the exceptional divisors

Given an arithmetic surface X/B, a tidy divisor D < X on X, and a desingularized tame
covering (X', D') — (X, D), we have determined in the preceding sections the structure of the
support of D’. However, we have not yet dealt with the multiplicities in D’ of the irreducible
components of the generalized exceptional fibres. More precisely, we are interested in the pullback
of an irreducible component of D to X'.

Definition 4.21: Let X/B be an arithmetic surface and D < X a Cartier diwisor. Let f :
(X', D') — (X, D) be a morphism such that pullback of Cartier divisors is defined (e. g. birational
or flat). Let ' € D' be a closed point and denote by x € D the image of ' in X. Let us
call Dy, ..., Dy, the irreducible components of D passing through x and DY, ..., D, the irreducible
components of D' passing through x'. Restricting [ to a suitable neighborhood of x’, the pullback
of Cartier divisors via f induces a homomorphism

QD:i®..6Q- D, - Q-D|®...®Q-Dy,.

We call this morphism multiplicity homomorphism at x' and its transformation matriz with respect
to the above bases multiplicity matriz at ©’.

In particular, the multiplicity homomorphisms are defined for a tidy divisor D and a desingular-
ized tame covering (X', D’) — (X, D). Moreover, multiplicity homomorphisms are compatible
with composition. If (X", D") — (X', D’) is another morphism as above and z” a closed point
of D" mapping to ' € D’, the multiplicity homomorphism of (X”, D”) — (X', D’) at 2" is the
composition of the multiplicity homomorphism of (X”, D”) — (X', D) at 2” and the multiplicity
homomorphism of (X', D') — (X, D) at «'.

Lemma 4.22: Let X/B be an arithmetic surface and D < X a tidy divisor. Let (X',D') —
(X, D) be the blowup of X in a singular point p of D. Then all multiplicity homomorphisms are
surjective.

Proof: Denote by Dy and Ds the irreducible components of D passing through p and by D]
and DY their strict transforms in X’. Furthermore, let E' denote the singular fibre of X’ — X.
On E < D' there are two points p} and p, where D’ is singular, namely the respective intersection
points with D} and Dj5. The pullback of D; is given by D; + E. Hence, the intersection matrix
at p) as well as at p, (with respect to the bases {(D1, D2), (D}, E)} and {(D1,D2),(E, D})},

respectively) is
10
1 1)°

which is invertible. If p’ € F is a nonsingular point of D’; its multiplicity matrix is

(1 1),

which is nonzero and thus its multiplicity homomorphism is surjective. The intersection homo-
morphism at any other closed point of D’ is the identity. O
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Lemma 4.23: Let X /B be the localization of an arithmetic surface at a closed point x of codi-
mension 2 and D € X a tidy divisor. Let w: (X', D) — (X1, D1) — (X, D) be a desingularized
tame covering such that (X1, D1) is local with closed point x1 and (X', D') — (Xy,Dy) is the
minimal desingularization of (X1, D1). Suppose that X, is singular, i. e., that X' — X1 is not
the identity. Let Z be an irreducible component of D. Then, there is exactly one irreducible
component Zy of Dy lying above Z and the exceptional fibre E of X' — X, is a chain of P'’s
with dual graph

E,  Es E..1 B,

Moreover, E intersects the strict transform Z' of Zy in one point p € Eq and the pullback w* 72
of Z to X' takes the form

aoZ' + a1 E1 + ...anE,
with ag > a1 > ... > a, > 0.

Proof: All assertions except the one about the coefficients ayg, ..., a, follow from Corollary 4.17.
Denote by b the image of z in B. In order to simplify notation, we set Fy := Z’. By the projection
formula we have

0=7*2-E, = (aoEo + a1E1 + ...a,E,) - E, = [k(2) : k(0)](an_1 + an E?).

Since the desingularization X’ — X7 is minimal, E,, cannot be a —1l-curve and thus E? < —1.
(The self-intersection of E,, has to be negative by [Liu|, chapter 9, Theorem 1.27.) Hence,

Ap_1 = —anEZ > ap.

By induction we may assume that a;; 1 < a; for 0 < k < i < n. Again by the projection formula
we obtain

0=7n*2Z -E, = [k(iL') : k(b)](ak_1 + ak.E,% + ak+1).

By induction and using E7 < —2 we conclude that
ag—1 = —Qk+1 — akE]% > —apy1 + 20, > ag.
O

Lemma 4.24: Let X/B be an arithmetic surface and D € X a tidy diwisor. Let w: (X', D") —
(X1,D1) — (X, D) be a desingularized tame covering. Then all multiplicity homomorphisms are
surjective.

Proof: By Lemma 4.22 we may assume that X’ — X; is the minimal desingularization of Xj.
Let 2’ € D' be a closed point and denote by z1 and z the image of 2’ in X; and X, respectively.
Without loss of generality we may replace X by its localization at x and X; by its localization
at z1 and X' by its base change to the localization of X7 at x1. If 2’ is a regular point of D', there is
only one irreducible component of D’ passing through z’. Hence, the multiplicity homomorphism
at o’ is surjective if and only if it is nonzero, which is clear by taking the pullback of any irreducible
component of D passing through x.

Suppose that 2’ is a singular point of D’. Then also 21 and x are singular points of D; and D,
respectively. There are two irreducible components Z; and W; of Dy passing through x; mapping
to the irreducible components W and Z of D passing through x. Assume first that x; is a regular
point of X;. Then X; = X’ and

7 = aZ; and *W = bW,
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with positive integers a and b. Hence, the multiplicity matrix is

(5 3)

which is invertible. If z; is a singular point of X7, we are in the situation of Lemma 4.23. Using
the notation of this lemma we have

7 = aoZ' + a1 By + ...anE,
with ag > a1 > ...a, > 0 and
W*W = b1E1 + ... bnEn + bn+1W,

with by < ... < b, < b,,1 and where W’ denotes the strict transform of W7 in X’. Setting Eq :=
7' and E,y1 := W’ we know that there is an integer i with 0 < i < m such that 2’ is the
intersection point of E; with E;,;. The intersection matrix at z’ is

a; bl
aiy1 biy1

det ( i bl ) = aibi+1 — a7;+1bi > aibi — (J,Z‘bi =0

aiy1 biy1

and

as a;11 < a; and b; 1 > b;. Therefore, also in this case the multiplicity homomorphism is
surjective. O
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Chapter 5

Cohomology with support

Given an arithmetic surface X /B, a tidy divisor D € X and a full class of finite groups ¢ we want
to lift, in the limit over all desingularized c-coverings, cohomology classes on U to cohomology
classes on X. Via the excision sequence associated with D < X this amounts to showing the
vanishing in the limit over Jx p z of the cohomology groups with support

HY(X,Z/mZ)

for m € N(c). Assuming all integers in N(c) are invertible on X, we can apply absolute coho-
mological purity to compute these cohomology groups. Since in general, D is not regular (it
is singular in the special points S), we have to divide this task in two steps making use of the
excision sequences associated with D — S <€ X — S and S € X.

5.1 Absolute cohomological purity

Definition 5.1: Let ¢ be a non-negative integer. A regular pair of codimension ¢ is a pair (X, Z)
where X is a noetherian reqular scheme and Z is a closed subscheme of X of pure codimension c
whose underlying reduced scheme is reqular. A morphism of reqular pairs (X', Z') — (X, Z) is a
cartesian diagram

7 — X'

|

7 —— X.

Remark 5.2: At first sight it seems more natural to require Z in the definition of a requ-
lar pair (X,Z) to be regular, not only its underlying reduced subscheme. However, we want

tame coverings of a reqular pair (X, Z) to be morphisms of reqular pairs. But if a tame cover-
ing (X',2") — (X, Z) ramifies in Z, Z' cannot be reduced.

For non-negative integers n and r we write Z/nZ(r) for the r-fold tensor product of u,, with itself
and define Z/nZ(—r) = #Hom(Z/nZ(r),Z/nZ). The following theorem by Gabber (see [Fuj]) is
known as absolute cohomological purity.

Theorem 5.3: Let (X, Z) be a regular pair of codimension ¢ and n a positive integer invertible
on X. Set A =7Z/nZ. Then

0 for q # 2c¢
Az(—c) for q=2c.

Hy(A) = {
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Remark 5.4: In [Fuj] it is required that Z be regular. But the étale sites of Z and Z,.q are
equivalent and hence, the statement also holds if only Z,.q is reqular.

Proposition 5.5: Let f: (X', Z') — (X,Z) be a morphism of regular pairs of codimension c.
Suppose that Z and Z' are irreducible and as cycles we have f*Z,.q = e - Z! , with a positive

integer e (the ramification index). Then, for any n € N invertible on X the following diagram
commautes

HY(X,2/n2) = H™(Z,7,/n(~c))

|

H=2(Z" 7/nZ(—c))

[«

HY (X', Z/nZ) = H%(Z', 2/nZ(—c)).

purs

Proof: Set A := Z/nZ and for any scheme Y denote by Ay the constant sheaf on Y with stalks A.
Consider the following diagram of sheaves on Z

f*HY (Ax(c)) «—— f*Ay

!

AZ’
EQZC/(AX/(C)) — AZ/.

The horizontal maps are induced by the cycle maps which map 1 € A to the fundamental
class sz,,/x and sz /x/, respectively. We want to show that the diagram commutes. It suffices
to do so for global sections as all sheaves involved are constant. Under the composition

f*Az = Az 5 Ay — HE(X' Ax/(c))
the element 1 € A is mapped to e - s Z X and under the composition
f*Az — [*HZ(X,Ax(c)) — HZ (X', Ax(c))

it is mapped to f*sz,,/x, which equals e - sz x: because f*Z,.q = e Z, ;. Twisting by (—c)
and taking cohomology we obtain the commutative diagram

H=2¢(Z, HF (X, A)) «—=— H'2¢(Z, A(—c))

|

Hi=2¢(2' A(~c))

Le

H'=2(Z'\ H7(X',N)) «—— H'=2(Z',A(—c)).

By Theorem 5.3 the cohomology groups on the left are canonically isomorphic to HY (X, A)
and HY, (X', A) respectively. This proves the result. O

Corollary 5.6: Let X be a noetherian, reqular scheme and f : X' — X a tamely ramified
covering such that the branch locus D S X 1is reqular. Let Z be an irreducible component of D

and let Z' denote its preimage in X'. Then, for any integer n dividing the ramification index of
each irreducible component of Z', the canonical map
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H(X,A) — Hy (X', A)

is the zero map for all i € N.

Proof: By Lemma 4.2, X’ and the underlying reduced subscheme of Z’ are regular because the
branch locus D is regular. Denote by Z,, k = 1,...,r the irreducible components of Z’. For
each k we can now apply proposition 5.5 to the morphism

X' -z -x
itk
to conclude that
Hy(X,A) — Hy (X' — | ] 7}, 0)
i+k
is the zero map. But
Hy (X', A) = @ Hy (X' =] Z.0),
k i#k

and the corollary follows. O

Lemma 5.7: Let (X, Z) be a regular pair of codimension ¢ and set U = X —Z. Letm: X —>Y
be a proper morphism such that Z is flat over Y. Set A = Z/nZ for an integer n prime to
the residue characteristics of X. Then for any closed y € Y and any integer d the base change
morphisms

(R (mv)«A(d))y — H*(Uy, A(d))
are isomorphisms for any q = 0.

Proof: Without loss of generality we may assume Y is the spectrum of a strictly henselian local
ring with closed point y. Then, u, = Z/nZ on X and it suffices to prove the lemma for d = 0.
We may further assume that Z is reduced. We need to show that

HYU,A\) - HY(Uy, A)
is an isomorphism. Consider the following diagram of excision sequences

co. —— HI(X,A) —— HYX,A) —— HYU,A) —— ....

! ! |

o — HY (X, A) —— HI(Xy,A) —— HY(Uy,A) — ...

The homomorphisms H9(X,A) — H?(X,,A) are isomorphisms due to proper base change. By
flatness the morphism (X, Z,) — (X, Z) is a morphism of regular pairs of codimension ¢ yielding
a commutative diagram

HL(X,A) —— HT2(Z,A(—d)).

| |

Hgy (va A) — Hqi%(Zya A(_d))

The horizontal maps are purity isomorphisms and the vertical map on the right is an isomorphism
by proper base change. Hence, the vertical map on the left is an isomorphism and the lemma
follows by applying the five lemma to the above diagram of exact sequences. O
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5.2 Cohomology and dual graphs

Let X /B be an arithmetic surface and D X a tidy divisor In this section we relate the homology
of the dual graph of D with the cohomology of X with support in D. Later, we will apply this
in the situation where D is an exceptional fibre of a desingularized tame covering.

Proposition 5.8: Let C' be a projective curve over an algebraically closed field k with only
ordinary double points and let I'c denote its dual graph. Let S < C be a finite set of closed
points containing the set Cying of singular points of C. Define Cy := [ [, C;, where C; are the
normalizations of the irreducible components of C. Set Sy = S x¢ Cn. For n € N prime to the
characteristic of k consider the homomorphisms of cohomology groups with coefficients in Z/nZ

HY(C—S)=H'(Cn — Sy) —*—= H3 (Cn) <—— HO(SN)(=1) 5mw H(S)(-1),

purity norm

B

where « is the connecting homomorphism of the excision sequence associated to (Cn, Sy). Then

ker(53)
ker(a)

~ H(T¢,Z/nZ), coker(8) = Hy(T¢,Z/nZ),

where H;(T¢,Z/nZ) denotes singular homology with coefficients in Z/nZ and such that for
each s € S the canonical map

HY(s)(—=1) — H°(S)(—=1) — coker(p)

is identified with the inclusion of the direct summand of Ho(Lc,Z/nZ) corresponding to the
connected component of I'c containing s.

Proof: The group H(I'c,Z/nZ) can be calculated using a cellular chain complex. The zero-
skeleton (I'¢)o consists of the nodes of the graph which correspond to the irreducible compo-
nents C; and the one-skeleton (I'¢); is all of I'c. Thus, the one-cells are the edges of the graph,
which correspond to the singular points in Cj;,,. We give each edge s a direction by choosing
an initial node C1(s) and an end node Cy(s). Then H;(I'c,Z/nZ) is the i'" homology of the
sequence

d
0— Hl((rc)l, (Fc)o,Z/nZ) - H()((Fc)(),Z/TLZ) — 0
and the map d can be identified with

@ z/nZ-s— PL/nk-C.

5€C5ing i

s — Cy(s) — C1(s)
We conclude that
H\(T¢,Z/nZ) = ker( @@ Z/nZ-s — PZL/nZ-C;)

5€C5sing i
Ho(Te, Z/nZ) = coker( @) Z/nZ-s — PZL/nL-C;).
5€Cing i

Let us first compute ker(3)/ker(a).

ker(B) o H'(C —5S) Oy
ker(a) =k < ker(a) HE(S)( 1)>

= ker(Im(a) — HO(S)(—l))
= ker(ker(Hg, (Cn) — H*(Cy)) — H°(S)(-1))
= ker(H (Cn) — H*(Cn)) nker(HZ (Cn) — H°(S)(-1)).
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Via the purity isomorphism H®(Sy)(—1) — H3 (Cy), the cohomology group HZ (Cy) is

identified with
@ Z/nZ *SN
SNESN
by mapping sy € @SN’GSN’ Z/nZ - sy+ to the fundamental class sg,/c,. Let us first exam-
ine (H3 (Cy) — H?*(Cy)). We identify H?(Cy) with

@ z/nz-C;

via the degree maps H 2(C’i) = Z/nZ of the components C;. For each component C; of Cy and
each sy € C; n Sy the images of the fundamental classes sg, /0, in HQ(Ci) are the same. With
these identifications the map Hg (Cn) — H?*(Cy) is identified with

@ zZ/nZ-sy > PZ/nZ-C;,

SNESN %

SN /> C(SN)

where C(sy) is the component of Cy which contains sy. Next we consider the map H gN (Cn) —
H°(S)(—1), which is induced by the norm map H°(Sy) — H°(S). Via the above identifications
it takes the form

P Z/nZ-sy > PZ/n- s, (5.1)

SNESN seS

sN — s(sn) (5.2)

where s(sy) is the image of sy in S. The kernel of this map is generated by (sy)2(s) — (sn)1(s)
where (sn);(s) € Cj(s) are the two preimages in Sy of a point s € Cyng. We thus get an
isomorphism

@ Z/nZ-s—ker( P Z/nZ-sy — PZL/nZ-s).
5€Cing SNESN seS
s (sn)2(s) — (sw)1(s)
Therefore, ker(f8)/ker(«) is isomorphic to the kernel of the composition

(—D Z/nZ - s — (—B Z/nZ-sNHC—BZ/nZ'C&,

SECS”,,Q SNGSN 7

which maps s € Cyng to Ca(s) — Cy(s). Comparing with the calculation of Hy(I'c,Z/nZ) at the
beginning of the proof we see that

ker(53)
ker(a)

~ H,(Tc,Z/nZ).

Next we compute coker(3). In the above notation the image of « is given by

{ZastNe @ Z/nZ-sy| Z asy =0 Vi}.

SNESN sNeC;

It is generated by all elements of the form (sy); — (sy)2 with (sy)1 and (sy)2 lying on the
same component of Cy. The image of § is the image of this set under the map (5.1), i.e., it
is the subgroup of (—Dse S Z/nZ - s generated by s; — sy with s; and sy on the same irreducible
component of C'. This subgroup coincides with the subgroup generated by s; — so with s; and s
on the same connected component of C', which equals

{Z ass € P Z/nZ - 5| Z as = 0YZ < C connected component}.
seS SEZ

Hence, coker() is the direct sum of a copy of Z/nZ for each connected component and the result
follows. -
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Proposition 5.9: Let X/B be an arithmetic surface and D < X an snc-divisor. Let S < D
be a set of closed points containing the set Dging of singular points of D. Denote by Dy the
normalization of D and set Sy = S Xp Dy. Then the following diagram of cohomology groups
with coefficients in A = Z/nZ (n prime to the residue characteristics of X ) commutes

é

T

H} (X —S,A) —— H3(X —S,A) —2— HL(X,A)

purityT~ purityT~

HY(D — 8,A(~1)) HY(S, A(-2))

‘ ‘ normT

HY(Dy — Sy, A(—1)) —>— HZ_(Dy,A(-1)) «>— H(Sy,A(-2)).

purity

All maps 6 denote connecting homomorphisms of excision sequences.

Proof: Denote by D;, i = 1,...r the irreducible components of D. Since

Hp_s(X = 8,A) = @ Hp,_5(X = $,A),

it suffices to prove the proposition for each component D; separately. We may thus assume
without loss of generality that D is a regular irreducible curve. In this case the above diagram
reduces to

5

Ty

H3 (X —S,A) — H3(X —S,A) —>— HL(X,A)

purityT«« purityT~

HY(D — S,A(~1)) —— H2(D,A(-1)) +=— H°(S,A(-2)).

purity

Consider the commutative diagram

H}_s(X = S,A) 2 HL(X,A)

~ ~

HI(D_Svﬂ%—S(X_SvA)) 2 HE<D7£2D(XVA))

~ ~

HY(D — 8,A(-1)) ® Hp_g(X — S, A(1)) 225 H2(D, A(~1)) ® H (X, A(1))

~|®sp-s/x—s ~|®sp/x

HY (D — S,A(-1)) u H2(D,A(-1)).

The restriction
res: H%(X7A<1)> - H%—S(X - SaA(l))

is an isomorphism which maps the fundamental class sp/x to sp-s;x_s. For this reason, the
homomorphism § ® res™! in the third line of the diagram is well defined and the lowermost
square commutes. Commutativity of the middle square follows because H,(X) is a free sheaf
which restricts to Hp,_¢(X —S) on D — S. The upper square commutes due to compatibility of
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the spectral sequences

H§(D, H},(X,A)) = Hg7 (X, A),
HY(D — S, H), (X —S,A) = Hy7 (X — S, A).

Furthermore, by [Fuj|, Proposition 1.2.1 the following diagram commutes

H§(X, A)

H3(D,H},(X, A))

purity

Hg(D7A(_1)) ® H%)(X> A(l))

~|®sp/x
HE’(DaA(_l)) pu:ity HO(SvA(_Q))
Putting the two diagrams together, the assertion of the proposition follows. O

5.3 Killing cohomology with support

For this section fix a proper arithmetic surface X /B with geometric point # — X lying over a
closed point x € X. We assume that the residue fields of B are either finite or algebraic closures
of finite fields. Let D < X be a tidy divisor whose support does not contain z. Let Dj, be the
maximal subdivisor of D with support on the isolated horizontal components of D, i.e., on the
horizontal components which do not intersect any other component. Set X = X — Dy, and U =
X — D and denote by D € X the restriction of D to X. We write D, for the maximal vertical
subdivisor of D and D;, for the maximal horizontal subdivisor, such that D = D, + D;,. Notice
that by construction D, is also the maximal vertical subdivisor of D and the maximal horizontal
subdivisor of D is given by Dy, + Dj. Let W denote the union of all vertical prime divisors which
are contained in a singular fibre of X — B but not contained in D. Put differently, W is the
Zariski closure of the union of all reduced fibres (Up)req such that X, is singular. Denote by S
the finite set of special points of D, i.e., the set of singular points of D,.4.

Furthermore, we fix a full class of finite groups ¢ such that all elements of N(c) are invertible
on X and for all prime numbers [ € N(c¢) we have y; = Z/IZ on X. We choose an integer n € N(c)
and set A = Z/nZ.

We denote by Jx p ; the category of all pointed desingularized c-coverings of (X, D) as defined
in Section 2.3. Viewing Z as geometric point of B we write Jp ; for the category of pointed finite
étale c-coverings of B. By

(B— B)— (X xg B',D xg B') - (X,D))
Jp,z becomes a subcategory of J¢ p .
For (X/, D/) — (X,D) in jX,D,i let
X' -B - B
be the Stein factorization of X ' X — B. Then X' is an arithmetic surface over B’. We use
analogous notation for (X’,D’) as for (X,D): We write U’ for X’ — D, Dj, for the maximal

subdivisor of D’ with support on the isolated horizontal components of D and so on. Moreover,
we write E’ for the generalized exceptional divisor of (X', D') — (X, D).
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By Lemma 4.2 the preimage of Dy, under a desingularized c-covering (X', D) — (X, D) is D}, and
thus the preimage of X is X’. Furthermore, the preimage of D, is D). Note that the preimage
of Dy, is the sum of Dj and a divisor with support in E’.

We want to investigate whether U has the K (m, 1) property with respect to ¢, i.e., whether

lim HY(U',A) = 0.
(X',D)eJx bz

for all A = Z/nZ with n € N(c). In this section we show that

lim H'(X',A) — lim H'(U',A)
I%,b.x J9%,b,s

is surjective for ¢ > 2. To this end we examine the vanishing of the cohomology groups with
support Hp, (X, A) in the limit over Jg p ;.

Lemma 5.10: Let ¢ be a full class of finite groups and M € ¢ a finite abelian group with an
operation of Z. Then HY(Z,M) = 0 for ¢ = 2 and there is an open subgroup H 7 of index
in N(c) such that the restriction map

HY(Z,M) — H'(H, M)
is the zero map.

Proof: By the example after Corollary 3.3.4 in [NSW] the cohomological dimension of 7 is one.
In order to show the statement concerning the first cohomology group, we write Z = G; x Go

with
G1 = 1_[ Zl and G2 = 1_[ Zl.
leN(c) 1¢N(c)

By [NSW], Proposition 1.6.2 the cohomology groups H'(Ga, M) vanish for i > 1 and thus by the

Hochschild-Serre spectral sequence associated to Go S Z we have
HY(Z,M) = HY (G, M%?).

There is an open subgroup H; of G such that the restriction map H'(G1, MGQ) — H(H,, MGQ)
is the zero map and the lemma follows by setting H = H; X Gs. O

Remark 5.11: The statement about the first cohomology of Z is a consequence of the fact that Z
is a good group with respect to ¢. Here, a profinite group G is said to be good with respect to a
full class of finite groups ¢ if for all G-modules M € ¢ and all ¢ = 0 the inflation

Hq(G(c),Mker(GﬁG(c))) N Hq(G, M)
is an isomorphism.

Corollary 5.12: Let B be a Dedekind scheme with finite residue fields at closed points, b — B
a geometric point above a closed point b and ¢ a full class of finite groups. Suppose that

m1(b,b)(c) — m1(B,b)(c)

is injective. Then for any finite Galy)-module M in ¢ the cohomology groups Hi(k(b), M) vanish
for q = 2 and there is a finite étale c-covering B’ — B such that

H*(b,M) — H'(b xp B', M)

is the zero map.
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Proof: Since Galy ) = Z, the corollary follows from Lemma 5.10 noting that by assumption any
finite Galois c-extension &’|k(b) is globally realized by a finite Galois covering B’ — B. O

Proposition 5.13: Let Z < D, be a rational subdivisor (i.e., Z is a rational curve) and let V'
be an open subscheme of X. Suppose that for every geometric point b above a closed point b € B
the natural map

71(b,b)(¢) — m1(B,b)(c)
s injective. Then the cokernel of
H*(V —S,A) —» H*(V — Z,\)
vanishes in the limit over Jp z for all m € N(c). (Remember that S is the set of special points
of D.)
Proof: Without loss of generality we may assume that V n Z is dense in Z. Otherwise, Z has
irreducible components in the complement of V', which we can remove without changing the

above cohomology groups. Denote by T the union of S with the finite set of closed points Z — V.
Then V — S =V —T. By proposition 5.9 we have the following commutative diagram

.—— H*(V—-Z,A) —— H} ;(V—-T,A) —— H3V —T,A) —— ...

g !

HY(Z —T,A(-1)) 255 go(1,A(~2)),

where 5(—1) is the (—1)-twist of the map /3 defined in proposition 5.8. It thus suffices to show
that the kernel of 8 vanishes in the limit over Jp z. Without loss of generality we may assume
that Z is contained in a single closed fibre of X — B over some point b € B with residue field k(b).

Let k(b) be an algebraic closure of k(b) and denote by Z and T the base change of Z and T,
respectively, to k(b). Moreover, write Zy for the normalization of Z and Zy for its base change

to k(b). Consider the diagram of cohomology groups with coefficients in A
0 0

0 —— HY(Zy)Gre) —— HY(Z —T)Gxw —2y {O(T)(—1)Cre)

1

00— H'(Zy) ——— H'(Z-T) — L HOT)(-1),

H (kb)) ——— H'(k(b))?

0 0

where d is the number of components of Zx. The vertical sequences are exact sequences induced
by the Hochschild-Serre spectral sequences

H'(k(b), H (Zn),A) = H"™(Zn, A),
H(k(b),H (Zy — TN, M) = H(Zx — Ty, A).
The upper horizontal sequence is exact by the following reason: According to proposition 5.8, the
first homology group Hy(I'z,Z/nZ) of the dual graph 'y of Z is isomorphic to ker(3)/ker(a),
where & denotes the connecting homomorphism of the excision sequence associated to Ty — Zy.

Since we assumed Z to be rational, I'z is a tree, and thus its first homology group vanishes. It
follows that the kernel of 8 equals the image of the map

’YZHl(ZN,A) ;)Hl(ZN—TN,A) = HI(Z—T,A)
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Taking G, (py-invariants we obtain the upper sequence of the above diagram which is therefore
exact. A diagram chase now shows the exactness of the lower horizontal sequence.

Again by the rationality assumption on Z, the cohomology group H'(Zy) vanishes. The above
diagram shows that the kernel of 3 equals H'(k(b))4. By Corollary 5.12 this group vanishes in
the limit over Jp z. O

Definition 5.14: Let Y /B be an arithmetic surface and Z 'Y a tidy divisor. We say that (Y, Z)
has enough tame coverings at a closed point p of Z if for every irreducible component C of Z
passing through p there is f € K(Y)* with support in Z such that degc(f) > 0 and degw (f) =0
for any other prime divisor W passing through p. We say that (Y, Z) has enough tame coverings
if it has enough tame coverings at every closed point of Z.

The following lemma sheds some light on this definition.

Lemma 5.15: Assume that (X, D) has enough tame coverings. Let y be a geometric point
of X. Denote by Xgh the strict henselization of X at § and by D;h the restriction of D

to X5 Let (Xy,Dy) — (X5", D) be a tame covering such that X{ is local. Then there

is a tame _covering_()?’,_D’) — (X, D) whose strict henselization at any lift §' of i coincides
with (X4, Dy) — (X", D).

Proof: If  does not lie above a point of D, the restriction Dgh is empty. In this case there are
no nontrivial tame coverings of (Xgh, Dgh) and we can take X’ — X to be the identity. Suppose
now that g lies above a singular point y of D, i.e., there are two irreducible components D,
and Dy of D intersecting each other at y. Since (X, D) has enough tame coverings, there are f;

and fo in K(X)* with support in D such that

deng(fl) =mq > 0, degp, (fz) =0,
degp, (f2) = 0, degp, (f2) = ma > 0.

Let hy and hy be functions in K (X3")* such that div h; = (Di))’(gh for i = 1,2 on X3". Then

on Xgh we have
div fi =m; - div hz

By Corollary 4.5 the strictly henselian arithmetic surface X}, is the normalization of X’gh in a
function field extension of the form

K(XM[/ha, R/BTR3]IK (X ")

with m,n prime to the residue characteristic, 0 < r,s < m — 1 and ged(r,s,m) = 1. For i = 1,2
write
a;m; + b;m = g; = ged(m;,m)

with integers a;, b; and similarly,
amy + bn = g = ged(mq,n)

with integers a,b. Note that in particular, g; and g are prime to the residue characteristic of y.
Then, on X;h we have the equalities

g-div hy =a-div fi +bn - div hy

Therefore,

KOG/, 3/RRE] = KOG/, /77 57
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Hence, we can take X’ to be the normalization of X in the function field extension

a mgig 7‘92a1 591‘12
[/ff R/ [ 7] K (X
]

Lemma 5.16: Let Y be a regular, noetherian scheme such that all elements in N(c) are invertible
onY. Choose a € K(Y) and set Z = supp a. For an integer d € N(c) consider the extension
of function fields Lq = K(Y)(¥/a, pq)|K(Y). Let Yy denote the normalization of Y in Ly and
define Zy to be the preimage of Z in Yy. Then, for any n € N(c), there is M € N(c) such that
for all d € N(¢) with M|d the ramification index of each irreducible component of Zg is divisible
by n.

Proof: The morphism Y; — Y is tamely ramified as d is prime to the residue characteristics
of Y. It is at most ramified in Z. Write div a = ), a;Z; with a; # 0. Then Z = | J, Z; and the
ramification index in Z; is

_d
ged(aq,d)

We set M’ = n - [],a; and define M to be the maximal factor of M’ lying in N(c). If M|d,
we claim that n|e; for all 7. It suffices to check this for d = M because the ramification indices
for M|d are multiples of the ramification indices for d = M. Writing aj for the maximal factor
of a; contained in N(c) we have M =n - ]_L. a; and

gcd a;, M - H i

j#

which is divisible by n. O

€, =

The lemma shows that if (Y, Z) has enough tame coverings, for all n € N(c¢) we can find a
tame c-covering of (Y, Z) such that n divides all ramification indices.

Proposition 5.17: Suppose that (X, D) has enough tame coverings. Suppose that for every
geometric point b above a closed point b € B the natural map

m1(b,)(c) = m1(B,b)(c)
is injective. Then the cokernel of the restriction
H*(X,A) — H*(U,A)
vanishes in the limit over Jx p ;.

Proof: Since (X, D) has enough tame coverings, we can use Lemma 5.16 in order to find a
desingularized c-covering
(XlﬂD,) - (leDl) - (XvD)7

such that m divides the ramification index of each irreducible component of D;. We have the
following cartesian diagram

X' —-D =U - X' > D > S E
| L |

X1 —Dy=U - X3 > Dy > S
| | |

X-D=U X D > S.

It induces the following commutative diagram of excision sequences with coefficients in A = Z/nZ:
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. ——— H*(X—-8) ——— H*(U) ——— H} (X —-8) — ...

| J !

—— H} (X' —(S'VE)) —— H?>(U) —— H}, (X' —(S'UE)) — ...

Let ¢ be an element of H?(U,A) and let ¢ be its image in H2(U’, A). By proposition 5.6 ¢’ is
mapped to zero in Hy, o (X'—(S"UE’),A). Hence, there is ¢} € H*(X'— (S’ U E’), A) mapping
to ¢’. Since E’ is rational by Proposition 4.19, we can apply Proposition 5.13 with V' = X’ — §’
and Z = FE’ to obtain a finite étale c-covering B” — B’ and thus via base change a finite
étale c-covering X” — X'’ such that the image of ¢} in H?(X” — (S” U E’), A) lies in the image
of

H2(X// _ S//,A) _ HQ(X// — 8"y E//,A).

and thus can be lifted to an element ¢4 € H*(X” — S”,A). Taking into account that HZ,(X")
vanishes by purity (see 5.3), the excision sequence associated to (X", S”) shows that the restriction
map

HQ(X”,A) N HQ(X// _ S”,A)

is surjective. Hence, ¢4 lifts to H2(X"”, A). We have thus constructed a lift to H?(X”,A) of the
image of ¢ in H2(U”, A). O]

Lemma 5.18: Let C be an integral projective curve over an algebraically closed field k. Let f :
C" — C be a (possibly ramified) covering of degree d. Then for any integer n prime to the residue
characteristic of k the following diagram commutes.

H2(07 Mn> - HQ(C/hun)

trlN trl“’

Z/nl —2— 7/nZ.

Proof: The trace map is induced by the degree map
Pic(C) - Z
via the surjection
Pic(C) =~ HY(C,0*) —— H?(C, ji,).
For a Cartier divisor D on C representing a class in Pic(C) we have
deg(f*D) = d - deg(D).
This accounts for the factor d occurring in the statement of the lemma. O

Proposition 5.19: Suppose that the following conditions are satisfied:

(i) (X, D) has enough tame coverings.
(i) Every connected component of D has at least one horizontal component.
(11i) For every geometric point b above a closed point b € B the natural map
71 (b,b)(c) — m1(B,b)(c)

18 injective.
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Then the cokernel of
H3*(X,A) — H*(U,A)

vanishes in the limit over Jx p 5

Proof: Since (X, D) has enough tame coverings, we can use Lemma 5.16 to find a desingular-

ized ¢-covering (X', D') — (X, D) such that m divides the ramification indices of all irreducible
components of Dy,. Denoting by E' € X the union of all generalized exceptional fibres of X’ — X,
we obtain the following diagram of excision sequences with coefficients in A

. —— H¥X -D,) —— H3(U) —— H}, _o(X —D,) —— ...

| | !

. —— H3X' - D)) —— H3(U') — Hjé;l_S,(X’—D;) —

Let ¢ be an element of H3(U,A) and denote by ¢’ its image in H3(U’,A). By Corollary 5.6 ¢’
maps to 0 in H4; (X’ =D, A) and thus can be lifted to an element ¢j € H*(X' — D), A).
Since X’ satisfies the same conditions as X (see Lemma 7.2), we can replace X with X’ and
assume ¢ lifts to ¢ € H3(X — D, A).

Next consider the excision sequence
.= H*(X = S,A) > H*(X — D,,,A) > H}, _g(X —S,A) —

By purity we have
H}, _g(X = S,A) = H*(D, — S,A(-1)).

For each component Z; of D, lying over a closed point b; € B with geometric point b; consider
the Hochschild-Serre spectral sequence

H"(bi, H*(Z; 5, — S3,,\)) = H™"*(Z; — S, ).
Since H7(Z; 5, — S;,,A) = 0 for j > 2 as Z; 3, — Sj, is an affine curve over an algebraically closed
field, we conclude that
(bszl( b _Sba ));HQ(Zz_SaA)

By Corollary 5.12 there is a finite étale c-covering B; — B and thus via base change a finite
étale c-covering X; — X such that

H'(bi, H'(Z; 3, — Sp,,A)) — H'(bi x5 Bj, H'(Z; 3, — Sp,, A))

is the zero map. Let B’ be the compositum of all extensions B;. By compatibility with the
Hochschild-Serre spectral sequence and the purity isomorphism we conclude that ¢; maps to 0
in Hf, (X" — S, A). As before we replace X by X’ and may assume that ¢; maps to 0

in Hj, _q(X —S,A). Hence, ¢y lifts to ¢ € H*(X — S, A).
Now consider the following excision sequence:
. —— H3(X,\) —— H3(X — S,A) —— H&(X,A) —

The cohomology group H&(X, A) is the direct sum over the finitely many elements s € S (which
are closed points of X) of the cohomology groups H2(X,A). For s € S choose an irreducible
component D, of D passing through s. Since (X, D) has enough tame coverings, we find a desin-
gularized c-covering (X', D') — (X, D;) — (X, D) such that m divides the ramification indices
of all irreducible components of D; lying over D, and is unramified in all other prime divisors

passing through s. By Lemma 4.2 the scheme X; is regular at all preimage points s/,...,s".
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of s. Hence, we may assume that X’ — X is an isomorphism in a neighborhood of s}, ..., s..
Therefore, by Proposition 5.5, the homomorphism

H{(X,A) @H4 (X', A
is the zero map. Take a desingularized c-covering (X”,D") — (X, D) dominating the cover-
ings (X', D’) — (X, D) constructed for each s € S. We obtain a diagram of excision sequences

S H3(XA) —— 5 H3(X — S, A) ——— HAX,A) —— ..

| | |

—— H3(X" A) —— H3(X" — (S" UE"),A) —— H&  p(X",A) — ...,

where E” denotes the union of all generalized exceptional fibres of X” — X. The homomorphism
HE(X,A) — Hé pn(X",A)

is the zero map and thus ¢ € H3(X — S,A) lifts to H3(X”,A). In total we obtain a lift
of p € H3(U,A) to H3*(X"”,A) and we are done. O

Proposition 5.20: Assume that for every geometric point b above a closed point b € B the
natural map

m1(b,0)(c) — m1(B,b)(c)

is injective and that (X, D) has enough tame coverings. Then for q > 4 the cokernel of
HY(X,A) — HI(U,A)
vanishes in the limit over Jx p 7.

Proof: Let ¢ = 4 and take an element ¢ of H?(U, A). By the same reasoning as in the beginning
of the proof of 5.19, we may assume that ¢ lifts to ¢; € HY(X — D,,,A). Consider the excision
sequence

. —— HY(X = S,A) —— HY(X — Dy,A) —— HH L g(X — S, A) —

By purity and since D, — S is a union of affine curves over a finite field (which has cohomological
dimension 1), we have

HE L (X = S,A) = H7H(D, — S,A(—1)) = 0.

We conclude that
HY(X —S,A) - HY{(X — D,,A)

is surjective and thus ¢y lifts to ¢ € H9(X — S, A). Next consider the excision sequence
. —— HY(X,A) —— HY(X —S,A) —— HI'(X,A) ——
By purity we have
HEN (X, A) = HT73(S,A(-2)).
The finite set of closed points S has cohomological dimension 1 implying that
HIN(X,A) =0
for ¢ = 5. We conclude that in this case the restriction
HY(X,A) > HY(X — S,A)

is surjective and thus ¢, lifts to H7(X, A). Assume that ¢ = 4. By Corollary 5.12 there is a finite
étale c-covering B’ — B such that

H3(X,A) = H3(X xp B, A)

is the zero map and the result follows. O
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Chapter 6

Higher direct Images

We stick to the notation of paragraph 5.3: X/B is a proper arithmetic surface with geometric
point Z — X lying over a closed point # € X. We assume that X — z is regular. Furthermore,
we fix a tidy divisor D < X not containing x. We define X, U, Dy, Dy, D,, W and S as in
paragraph 5.3.

We further take a full class of finite groups ¢ such that all integers in N(c) are invertible on X
and p; = Z/1Z on X for all prime numbers [ € ¢. Fix a positive integer n € N(c). We set A = Z/nZ
and also denote the corresponding constant sheaf on any scheme by A.

We add one more piece of notation to the general setup: Namely, we denote by n the generic
point of B and choose a geometric point 77 above 7. The absolute Galois group Gal(7|n) of n will
be denoted @,,. For a geometric point b of B we write I © Gy for the inertia group of ¢, at b. It
can also be interpreted as the fundamental group m (nl—fh, 7) of the generic point nl—fh of the strict
henselization of B at b.

Our final goal is to show that the limit over I p ; of H4(U’, A) vanishes for ¢ > 2 (for ¢ = 1 this
is automatically true). In section 5.3 we showed that, under certain hypotheses on X, for ¢ > 2
the cokernel of

HY(X,A) — HYU,A)
vanishes in the limit over the category Jg p ;. This breaks down to the existence of a desingu-
larized c-covering (X, D') — (X, D) such that the image of each cohomology class ¢ € H4(U, A)

in HY(U',A) lifts to H4(X’,A). It remains to prove that H?(X’, A) vanishes in the limit. In
case ¢ = 2 we will only show that the cokernel of

H?/(X',A) — H*(X',A)
vanishes in the limit, which is sufficient. Indeed, the excision sequence
o= HY (X', A) — H*(X',A) » H*(U',A) — ...
induces an injection
coker(H?, (X', A) — H*(X',\)) — H*(U',A),

and we have to show the vanishing in the limit of precisely the cohomology classes lying in the
image.

Since the assumptions made so far on X are also satisfied by X', we can change notation and
henceforth seek to prove the vanishing in the limit over Jg 5, of HY(X,A) for ¢ > 3 and
of coker(H%(X,A) — H?*(X,A)).
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6.1 The Leray Spectral Sequence

Let &,,, denote the category whose objects are first quadrant F,,-spectral sequences
EP4 = ppPta
and whose morphisms B ~
¢: (BP9 = EPTY) — (BP9 = EPHY)
are collections (¢P-9, ¢™) where ¢P-4 : EP:9 — EP-9 constitute a map of spectral sequences and ¢™ :
E"™ — E™ are homomorphisms which are compatible with ¢2'¢ in the sense that
¢"(FPE™) € FPE"

and that the induced maps of associated graded groups

gr E™ — gr E"
are induced from the maps ¢P9.

Lemma 6.1: Let s < n and m be positive integers. Let C be a cofiltered category and ® : C — S,
a contravariant functor. Suppose that

: P,q _
lim 29 = 0
e

for all integers p,q such that p+q=n and p = s. Then

lim F°E™ = 0.
—
e
Proof: Let C' be an object of C and let EE;% = EP*? be the spectral sequence corresponding
to ®(C). Let z € F*E™ be nontrivial and denote by p > s the natural number such that 2 € FPE"
but x ¢ Fp+1E”_. It follows that z lifts to some y € EP:? where ¢ = n — p. By assumption, there
is a morphism C' — C in C with associated map of spectral sequences

(61%,6") s (B3 = E7*0) — (Bpt = ),

such that ¢hf9(y) = 0. By compatibility of ¢" with ¢27 it follows that ¢™(x) is contained
in FP*1En, The assertion now follows by induction on p noting that FPE™ = 0 for p > n for all
spectral sequences in &,,. O]

Corollary 6.2: Suppose that ‘ ‘
lim H' (B, R7,A) =0
J%.b.z
for all integers i, j such that i+ j = 3 and for all integers i,j such thati+j =2 andi > 1. Then
lim H"(X',A) =0
JI%.b.s
. edge
lim ker(H*(X',A) “5° HO(B', R*7,A)) = 0.
JI%.,b.s

Proof: We would like to apply Lemma 6.1 to the category Jg p ; of desingularized c-coverings
of (X, D), which is cofiltered by Lemma 2.21. With each arithmetic surface 7’ : X' — B’
in J¢ p z, we associate the Leray spectral sequence

HY(B',R'w,A) = H™I (X' A).
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A morphism (X”,D") — (X’,D') in J% p , induces a morphism X” — X’ and thus a map of
spectral sequences ' ‘ ' .
H'(B",R’w,A) — H'(B', R’7 \).

This map of spectral sequences is compatible with the pullback map H" (X", A) — H"(X',A).
We conclude that the above construction defines a functor

C:T5 pz— S2
Setting s = 0 for n = 3 and s = 1 for n = 2 we obtain from Lemma 6.1 that
lim F*H"(X',A) =0.
JI%.,b,z
But
FOH™(X',A) = H*(X',A)  and  F'H2(X',A) = ker(H2(X,A) “%° HO(B, R*x,A)),

and hence the assertion of the corollary holds. O

6.2 Killing the Cohomology of higher direct images

Corollary 6.2 of the previous section provides us with a method to prove the vanishing of
the cohomology groups H"(X’,A) in the limit over J¢ p ;, namely by showing that the limit
of H(B', Riw,A) for i + j = n vanishes. In this section we show the vanishing in the limit
of H'(B', R/w!,A) for most combinations of (4, 7). The two most complicated cases — (4, j) = (0, 2)
and (i,7) = (1,1) — are treated in separate sections.

Lemma 6.3: Suppose that either j =3 or j =2, i = 2 and Dy, is not empty. Then
HY(B,R'T,\) = 0.
If in addition, for every geometric point b above a closed point b € B the natural map
m1(b,0)(c) = m1 (B, b)(c)
is injective, the group
HY(B, R*m,A)
vanishes in the limit over Jp z.
Proof: Let b be a geometric point of B. By Lemma 5.7 the stalk of RIm,A at b is isomorphic
to H7(Xj, A). Since Xj is a curve over an algebraically closed field, it has cohomological dimension
less or equal to 2. Therefore, Rim,A =0 for j > 3. Assume now that Dj, is nonempty and hence,
for all geometric points b of B the curve Xj is not complete. If X3 is regular, it is irreducible and
thus affine. Since affine curves over algebraically closed fields have cohomological dimension less

than or equal to 1, H?(Xj, A) is nontrivial only if Xj is singular. We conclude that R%m,A is a

skyscraper sheaf and ‘
HY(B,R?m4A) =0

for ¢ > 2 as the residue fields at closed points of B have cohomological dimension 1. Furthermore,
applying Corollary 5.12 to every closed point b of B in the support of R?>m,A we find a c-
extension B’ — B such that

H'(B,R*m,A) — H'(B', R*w\)

is the zero map. O
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In case X /B is of local type we can even say a bit more:
Lemma 6.4: Suppose that X is of local type. Then

HY(B,R'm.A) =0
if either i = 2 or j = 3. Moreover, there is an étale c-covering B — B such that

HY(B, R (ny )4 \) — H*(B', R (my )+ \)
is the zero map for all ¢ = 0.
Proof: By Lemma 6.3 the cohomology groups H*(B, R?m,A) vanish for j > 3. Since
HY (B, RimeA) = H (b, 7, A) = H'(k(b), H (X3, A)),

by Lemma 5.7, the remaining assertions follow from Corollary 5.12. O
Lemma 6.4 shows that in the local case the hypotheses of Corollary 6.2 are satisfied. Therefore,

lim H"(X',A) =0

J ,D,z

X

for n > 3 and
. edge
lim ker(H?(X',A) “%° HO(B', R, A)) = 0.

J%.,D.z

In case n = 2 we still have to do some work in order to deduce that

lim H"(U',A) = 0.

I%.b.a
This will be done in section 6.5 (for both the local and the global case).

In the remaining part of this section we continue investigating the global case. The following
lemma and its corollary are valid in the global as well as in the local case. However, in the local
case they are trivially true (compare with Lemma 6.4) so their relevance lies in the global case.

Lemma 6.5: Let B be a Dedekind scheme with generic point n and F a c-constructible sheaf
on Bet. Suppose that for every geometric point b above a closed point b € B the natural map

m1(b,b)(c) — m1 (B, b)(c)

is injective. Choose a finite set of closed points T' = B such that F is locally constant on B —T.
Assume that the action of T (B—T,7) on F; factors through m (B —T,1)(c). Denote by B(c) the
universal c-covering of B and by T(c) the preimage of T in B(c). Suppose that B —T is K (m,1)
with respect to ¢ and

i (B(e) = T(c),m))(c) = X )Wl(nih,ﬁ)(C) -k )Ix(t%

where nSh denotes the generic point of the strict henselization of B at the point x and I, the
inertia group of x in the absolute Galois group of n. Then for all j = 2 there is a finite étale c-
covering B' — B such that

HY(B,%) — H'(B',%)

is the zero map.
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Proof: Denote by ¢ : n — B the inclusion of the generic point. We will first reduce to the case
where
F — 1, *F

is an isomorphism. We have an exact sequence
0>CGL—>F 51" F >G>0

with skyscraper sheaves ¢; and G» with support in 7. Since the points in 7" have finite residue
field, 4
H'(B,Gi) =0

for j = 2 and there is a finite étale c-covering 7" — T such that
H'(B,G;) = H'(T,G;) — H'(T',G:)

is the zero map. By hypothesis all finite étale c-coverings of T' are globally realized so there is a
finite étale c-covering B’ — B such that

HY(B,Gi) — H'(B',¢:)
is the zero map. By splitting the above exact sequence in two short exact sequences
0 -G = F > H—0, 0> H — 13*F > Gy — 0,
and using the associated long exact cohomology sequences we obtain isomorphisms
HI(B,5) > H)(B,1,*F)
for j = 3 and a short exact sequence
0 — HY(B,G,) —» H*(B,¥) — H*(B,14.*F) — 0.
Noting that the hypotheses are stable under base change by a finite étale c-extension B’ — B we

conclude that it suffices to prove the statement in case F =~ 14 1*F.

In this case F corresponds to a finite c¢-torsion 71 (B — T')-module 771. Consider the excision
sequence ' _ _
..—> H.(B,¥) > H(B,F) > H (B-T,5) —> ....

By assumption we have

lim H/(B'—T',5) = H/(B(c) - T(c),¥) = H (m(B(c) = T(c))(c), M) = P "H’(I(c), M),
BB zeT(c)
where the limit is taken over all finite étale c-extensions B’ — B and T’ denotes the preimage
of T'in B’. Since cd, I, < 1 for all closed points x € B by [NSW], Theorem 7.1.8, we conclude
that '

lim H7(B —T,%) =0

B'—>B
for j = 2 and thus there is a finite étale c-extension B’ — B such that

H/(B-T,%)— H/(B' - T,%)

is the zero map. Taking into account that the hypotheses are stable under base change by finite
étale c-coverings of B it remains to show that for j > 2 the image of HJ.(B,¥) — H’(B,%)
vanishes in the limit over all finite étale c¢-coverings.

For a closed point = € B denote by B the henselization of B at z. Consider the excision sequence

> @H B —2,9) > HM(B,%) > @ H (B"5)— ...

xeT xeT
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‘We have ' '
HI (B! %) = H/ (2,%,) =0

for 7 = 2 and ‘ ‘
HI7YBM —2,5) =~ HI-Y (K", m)

where K denotes the fraction field of B?. Let z be a geometric point over . Then the
cohomological c-dimension of K3 is equal to one by [NSW], Theorem 7.1.8. Since all unramified
extensions of K" are globally realized, H'~1(B" — x,#) vanishes in the limit over all finite
étale c-extensions B’ — B if j > 3. For j = 2 consider the commutative diagram of excision
sequences

HY(B-T,5) — H%(B,%) — H?*(B,%)
@zeT Hl (Kh )
Taking the limit over all finite étale c-coverings B’ — B we obtain

HY(B(¢) = T(c), F) — H%(C)(E(c),g) —— H*(B(c), %)

-
@xeT‘(c) Hl(Kihym)-

We conclude that in the limit over all finite étale c-extensions of B the image of HZ(B,F)
in H?(B, ) vanishes. O

Corollary 6.6: Suppose that B meets the hypotheses of Lemma 6.5 for the image T of S in B.
Then for all 7 = 0 and all i = 2 the cohomology groups

HY(B, Rim,\)
vanish in the limit over Jp z.

Proof: By [SGA4], XIV, Théoréme 1.1 the sheaves Rim Ay are constructible and by [SGAA4|,
XVI, Corollaire 2.2 their restriction to B — S is locally constant. The corollary now follows from
Lemma 6.5. O

Combining Lemma 6.3 and Corollary 6.6 we conclude that under certain hypotheses on (X, D)
H'(B, RA)

vanishes in the limit over Jpz if i + j > 3 orif i + j = 2 and i > 2. By Lemma 7.2, once these
hypotheses are satisfied for (X, D) they are satisfied for all (X', D’) in Jp z. We then obtain that

lim H'(B',R'm,A) =0

Jx.,b,z

ifi+j >=>3orifi+j =2 and i > 2. Therefore, in order to show that the hypotheses of
Corollary 6.2 are satisfied there is only the case (i,7) = (1,1) left for examination. It will be
treated in section 6.4.

6.3 The intersection matrix

In order to treat the cases (7,j) = (1,1) and (¢,7) = (0,2) we have to deal with the cokernel of

H%(X,A) — H*(X,A).
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In this section we explain how to relate this homomorphism with the intersection matrix of the
irreducible components of the singular fibres.

Lemma 6.7: Suppose that B is strictly henselian with closed point s. Denote by p the intersection
matriz of the components of the special fibre of ™ : X — B. Then, for any integer c the following
diagram commutes

H} (X, Alc+1)) ——— H*(X,A(c+1))
purityT~ ~J/base change
H®(Dy, Alc)) H?(X,, A(e+1))
i Jo

@ Ale)-C —r P Ae) - C.

ccD, C;XS,C(\D}L=®

Here, C always denotes irreducible components.

Proof: 1t suffices to prove the lemma for ¢ = 0. Since the residue field £ is algebraically closed and
thus contains ., the general case follows by twisting by c¢. Consider the following commutative
diagram

H%U(qum) ——— H*(X, i) = H?*(X, ptm)
@ HLHX,Gp) @A —— HY(X,Gn)®A —— P HY(C,Gn)®A
ceD, CrDp=g

] ~ ]

@ A-C Pic(X)Q A ——— @ Pic(C)QA

ceD, CnDp=g
| Juo
@ A-C @ A-C
ceD, CnDy=g

Note that the direct sums on the right hand side run only over irreducible components of X
with trivial intersection with Dj,. The reason is that these are precisely the components of X,
which are proper over B. The upper right horizontal isomorphism comes from Lemma 5.7. The
upper vertical maps are connecting homomorphisms of the Kummer sequence. Note that the
concatenation of the left hand side vertical arrows yields the purity isomorphism by definition as
the latter is normalized this way in codimension one. Moreover, the degree map in the statement
of the lemma is defined as the composition

B (Xopim) & @ HYC.Gm)®A S @ Pie[@)@A S @ A
CnDp= CnDp=g CnDy=3

The restrictions
Pic(X) — Pic(C)

are given by D — D - C where D - C' denotes the intersection product of the divisor D with the
curve C. Composition with degc yields the intersection number (D - C). We conclude that the
lower horizontal map is indeed given by the intersection matrix pc, ¢, = (Cy - Ca). O
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We set
Z.= lim zmZ= []
neN(c) leN(c) prime

Lemma 6.8: Assume that (X, D) has enough tame coverings. Then, for every integer m € N(c)
there is a desingularized c-covering (X', D') — (X, D) such that the image of

H2(X,Z(1)) > H:, (X', Z:(1))
is divisible by m.

Proof: As in Lemma 6.7 absolute cohomological purity provides us with a functorial isomorphism

(—D A-C%H%(X’,lun)
ccD

for every integer n € ¢. Taking the projective limit, we obtain

@ Z.-C > HL (X, Z(1)).
ccD

Moreover, if (X, D') — (X, D) is a desingularized c-covering, the induced map

Pz-C—» P z.-C

ccD c'cD’

is given by the pull-back of divisors. Let C S D be an irreducible component and p € C' a closed
point of D. Since (X, D) has enough tame coverings, there is f, € K(X)* such that degc(f,) =
m, > 0 and degz(f,) = 0 for all other irreducible components Z of D passing through p. Hence,
in a Zariski neighborhood U, of p we have div f, = m,C. Denote by m;, be the maximal factor
of m,, contained in N(c). Let ¢, : (X,, D,) — (X, D) be a desingularized c-covering with function
field extension

K(X,) = K(X)[ "R/ f,]| K(X).

Then div f, S X, is divisible by m/m. Thus, ¢*(C) n ¢,'(U,) is divisible by m, i.e., the
coefficients of all irreducible components of ¢%(C) whose generic points lie over U, are divisible
by m. This property is conserved by further desingularized coverings.

There are finitely many closed points p1, ..., p, € C such that the open subschemes Uy, ,...,Up,
cover C. Let (X:, D’) — (X, D) be a desingularized c-covering dominating all coverings con-
structed above (X,,, D,,) — (X, D). Then the pullback of C' to X' is divisible by m. O

Remark 6.9: Assume that X /B is the pullback of an arithmetic surface Xo/Bg to the strict
henselization of By in some geometric point. Moreover, assume that D is the pullback of a tidy
divisor Dy S Xg. If (X0, Do) has enough tame coverings, the same holds for (X, D) and in the
proof of Lemma 6.8 we can choose the functions f, € K(X)* such that they are already contained
in K(Xo)* and as such have support in Dy. Hence, we may assume that the desingularized c-

covering (X', D') — (X, D) constructed in Lemma 6.8 is the pullback of a desingularized c-

covering of (Xo, Dy).

Corollary 6.10: Assume thalt B is strictly henselian and that Dy, is nonempty and meets all
irreducible components of W. If (X, D) has enough tame coverings, the cokernel of

Hp(X, Z(c)(1) — H*(X, Z(c)(1))

vanishes in the limit over Jx p 7.
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Proof: Tt suffices to prove that the cokernel of
Hp, (X, 2(c)(1)) — H*(X, Z(c)(1))

vanishes in the limit over Jx p ; as H3 (X,Z(c)(1)) is a direct summand of H (X, Z(c)(1)).
Taking the inverse limit over all A =~ Z/nZ with n € N(¢) in the diagrams in Lemma 6.7, we
obtain a commutative diagram

H? (X, Z(c+1)) — HX(X,Zc(c+1))
purityT~ ~J/base change

HO(D,, Ze(c)) H2(X,, Ze(c + 1))

i o

P Ze(c)-C —r @D Zc(c)-C.

ccD, ccD,

Note that since we assumed that Dy, meets all irreducible components of W, we have that C' N
Dy = @ if and only if C € D,,. The map

¢ Hp, (X, 2(c)(1)) — H*(X,Z(c)(1))

is thus given by the intersection matrix p of the irreducible components of D,. By [Liu|, Theo-
rem 9.1.23 the intersection matrix of the components of the special fibre is negative semidefinite
and its radical is generated by the special fibre. Since we assumed that Dy, is nonempty, the sup-
port of D does not comprise all irreducible components of the special fibre. Hence, the restriction
of p to the components of D is negative definite. We conclude that

$®Q: Hp(X,Z(c)(1)) ®Q — H*(X, Z(c)(1)) ®Q

is an isomorphism and thus the cokernel of ¢ is ¢-torsion. Take m € N(c) such that m-coker ¢ = 0.

By Lemma 6.8 there is a desingularized c-covering (X', D') — (X, D) of (X, D) such that the
image of . R
Hp (X, Z(c)(1)) — Hp (X', Z(c)(1))

is divisible by m. Taking into account that multiplication by m is injective on H?(X", Z(c)(1))
this proves the result. O

Remark 6.11: Assume that Dy, is nonempty and meets all irreducible components of W. In
case (X, D) has enough tame coverings, the base change of X to the strict henselization Bl—fh
of B at any geometric point b meets the hypotheses of Corollary 6.10. Using in the proof of the
corollary a desingularized c-covering of (Xth,Dth) which is the pullback of a desingularized c-

covering of (X, D) (it ewists by Remark 6.9), we see that the cokernel of

13, (X 2 (1) = H(Xp. 2(6) (1)

vanishes not only in the limit over I% oD yon but also in the limit over Jg p .
b b

6.4 The first higher direct image

In this section we treat the remaining case (i,5) = (1,1): We examine the vanishing of

lim H'(B',R'7,A).

J%.,D.z
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We will only be able to prove this if ¢ is the class ¢() of finite [-groups for a prime number /. In
this case it suffices to prove the assertion for A = Z/IZ (see Corollary 2.5). Therefore, in this
section ¢ is assumed to be ¢(I) and A = Z/IZ. We assume throughout this section that y; is a
constant sheaf on X.

Let us recall the notation: The divisor Dy, is the maximal subdivisor of D with support in the
isolated horizontal components of D, i.e., on the horizontal components which do not intersect
any other component. Set X = X — Dy, and U = X — D and denote by D € X the restriction
of D to X. We write 7 : X — B for the structure morphism of X and 7 : X — B for
its restriction to X. The maximal vertical subdivisor of D is denoted D, and the maximal
horizontal subdivisor Dy, such that D = D,, + Dj,. Let W denote the union of all vertical prime
divisors which are contained in a singular fibre of X — B but not contained in D. Denote by S
the finite set of special points of D, i.e., the set of singular points of D 4.

The sheaf R'7, A is closely related to the Jacobian of the geometric fibres of X — B. Indeed,
the stalk of R'7,A at a geometric point b of B is

Hl(ngA) = Hl(XBnul)v

which parameterizes the I-division points of the Jacobian of Xj. We will not explicitly need the
theory of the Jacobian variety. If we speak of [-division points of the Jacobian, it can just be
thought of the cohomology group H'(Xp, ).

The diagram

induces the base change homomorphism
Ry — Rlﬁn*(b}kzul) = R'%puput,
which by adjointness corresponds to a homomorphism
¢ R Ty — 1R T
of sheaves on B. We have the following

Lemma 6.12: Assume that for every closed point b of B the prime | does not divide the greatest
common divisor of the multiplicities of the irreducible components of Xy,. Then the above defined
morphism ¢ is injective and its cokernel is a skyscraper sheaf whose stalk at a geometric point b
over a closed point b of B is given by

cok:er(H)Qg (X,fh,Zz) — HQ(XBSthl»[Z]v

5
where Xgh denotes the base change of X to the strict henselization of B at b.

Proof: The stalk ¢y of this homomorphism at a geometric point b over a closed point b of B is
given by the composition

Hl(XEnul) é Hl(Xffha,ul) — Hl(Xngvul) — Hl(Xﬁyul)Igy

where Xm; denotes the pullback of X to the generic point 7; of the strict henselization th of B
at b and I the inertia group of b. We have a diagram
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Hl(XEShvﬂl)
f

0 —— H' (L, m) —— HY(X,,, ) —— H (X5, m)%" —— 0

H2,(X3", )

p
H2( _fjhvﬂl)y

where the horizontal sequence comes from the Hochschild-Serre spectral sequence for I and the
vertical sequence is the excision sequence associated to Xz — Xl—fh. Let 7 be a uniformizer of th.
The group H' (I3, 1) is generated by the class o given by

Iy =
l
gHg\/f
N

Via the purity isomorphisn_l the image of o in H?’(;, EXi?ha ;) corresponds to the divisor of X'gh
given by the special fibre X; = > a;D; (note that X is regular). Since we assumed that [ does
not divide ged(a;), this image is not zero and thus the morphism

Hl(IEnul) - H)%( (Xghaﬂl)

5
is injective. This also proves the injectivity of ¢;.

In order to deal with the cokernel consider the diagram

\ S 'l Y S \ S
0 —— HL (X" Zi(1) —— HE (XM Zi(1)) —— HE (X" ) —— 0

b b

le lr |7

0 —— H2(Xh 2)(1)) —1— HA(X, 2(1)) —— H* (X", ) — 0.
The snake lemma implies the exact sequence
0 — ker(p)/l — ker(p) — coker(p)[l] — 0.

The kernel of p is given via purity by the special fibre X; = > a;D;. By the above considerations
its image in ker(p) thus coincides with the image of
H' (I, ) — HZ, (X", ).
We conclude that
coker(¢y) = coker(p)[l],

which proves the lemma. O
For the rest of this section we keep the assumption that for every closed point b of B the prime [

does not divide the greatest common divisor of the multiplicities of the irreducible components
of Xp. According to Lemma 6.12 we have a short exact sequence

0— R'Fupy — 1o R Tpupyy > F — 0 (6.1)

with a skyscraper sheaf & with stalks % = coker(p)[l], where p is the intersection matrix at b.
Our first step will be to examine the sheaf #. Naturally, this involves considerations concerning
the intersection of vertical prime divisors.
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Lemma 6.13: Possibly after replacing (X, D) by a desingularized l-covering of (X, D), for each
geometric point b such that Xj is singular the following holds: For every vertical component Z
of Dy we have Z - Wy < 1. (Intersection products are taken in the base change of X to the strict
henselization of B at b.)

Proof: We first show that after replacing (X, D) by a desingularized I-covering of (X, D) the
following holds for every closed point (not necessarily a geometric point) b of B: For every
vertical component Z of D with nontrivial intersection with W there is exactly one intersection
point x with W and Z is isomorphic to Py ;.

Since there are only finitely many singular fibres, we can treat each fibre X for b € B separately.
Let (X’,D') — (X, D) denote the blowup of X in W n D,, which is a finite set of closed
points x1,...,x,. In particular, it is a desingularized l-covering. For the exceptional fibre F;
corresponding to x; we have [k(z;) : k(b)] = (W'-E;), where W’ denotes the strict transform of W
in X’ and there is exactly one intersection point y; of W’ with E;. Moreover, E; is isomorphic
to IP’}C(Z,).

Now we prove that after the above construction the assertion of the lemma holds for the geometric
singular fibres. Choose a geometric point b over a closed point b € B such that Xj is singular,
which is equivalent to X, being singular. Let Z be an irreducible component of Dj with nontrivial
intersection with W3. Its image Z in X, is an irreducible component of D, with nontrivial
intersection with W. By the preparations in the preceding paragraph of the proof, Z thus
equals F; for some i. Hence, there is exactly one intersection point x € Z and Z is isomorphic

to P,lf(x). The base change of Z to the strict henselization of B at b is the disjoint union of [k(x) :
k(b)] copies of ]P’,lc(l;) each of which intersects Wj transversally in exactly one point. Thus, Z is
1

one of these copies of Pk@ and the proof is complete. O

If (X’,D') — (X, D) is a desingularized [-covering, Lemma 6.12 also holds on X’. We denote
the resulting skyscraper sheaf by F’.

Lemma 6.14: Assume that (X, D) has enough tame coverings and that every irreducible com-
ponent of W has nontrivial intersection with D,. Then, for every geometric point b of B we
have
lim F =0.
J%.b.z
Proof: We will prove in Lemma 7.2 that for any desingularized I-covering (X', D’) — (X, D) the
pair (X', D’) has again enough tame coverings. Moreover, it is easy to see that the condition on

singular fibres is also stable under desingularized [-coverings. It therefore suffices to show that 55
vanishes in the limit over J¢ p ;.

Let b be a geometric point of B such that Xj is singular (if Xj is nonsingular, % = 0, anyway).
An element of F; = coker(pg)[1] is represented by a divisor Z = >} ncC with support in Xz such
that there is a divisor A with support in Xz such that

1Z = py(A).

Write A = Aw + Ap with supp Ap © Dj and supp Aw < Wj. By Lemma 6.8 and Re-
mark 6.9 there is a desingularized I-covering (X', D') — (X, D) such that the image of Ap
in H, (X', Z(1)) is divisible by I. On X’ we have

o By

p5(Aw) = U(Z" = pi(AD)), (6.2)

where Ay, is the pullback of Ay to X’é, A’ is the pullback of Ap to X’é divided by [ and Z’
is the image of Z in H2((X") grsn,Zi(1)). By hypothesis and by Lemma 6.13, we may assume
b
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that for each irreducible component C’ of Wé there is an irreducible component Dy, of Dé such
that (C"- D¢) = 1 and (Z' - Dg,) = 0 for all other components Z’ of Wy. Write

W= acC

where the sum is over all irreducible components C” of Wy. The coefficient of Df, in p}(A},)
is acr - (Dg - C') = acr. By equation (6.2) it is divisible by I. In total we get I|A};,, which
concludes the proof of the lemma. O

Corollary 6.15: Under the assumptions of Lemma 6.14, we have

lim H°(B',5') = 0.

Jx.b,z

We need a slightly stronger version of Lemma 6.14, which states that the lemma also holds after
base change by a possibly ramified [-extension By — B. Unfortunately, its proof is quite laborious
and, even more annoyingly, it forces us to assume that W is regular. Let us set up notation.
Suppose that IV is regular. Let by be a geometric point above a closed point by of B such that Xz,
is singular. Let By — Bl—fé‘ be a finite, local [-extension, i.e., By is the normalization of B in
some [-extension of the function field of BgéL Note that By — Bg: is purely tamely ramified. The
base change of X to By becomes singular at the special points of Xgo. Since W is regular, these
points are all contained in Dy. Let (Xo, Do) — (X xp Bo, D x g By) be a tidy desingularization.
Define Uy, Dy, etc. as on X.

The composite (Xg,Dg) — (X xp Bg’f,D Xp Bg{’:) is not a desingularized [-covering as it is
not étale over U. But by definition (Xo, Zo) — (X xp Bgé‘, Xj,) is a desingularized I-covering,
where Z is the preimage of XBU in Xy (it is a multiple of the special fibre of Xo/By).

Denote by K the union of the vertical irreducible components of D with nontrivial intersection
with W and by Kj its generalized strict transform in Xo. Similarly, let Wy be the generalized
strict transform of W. By Proposition 4.19 the preimages in X of the intersection points of K

with W are bridges of P!’s connecting K, with Wy. We denote their union by Fy. In other
words, Py is the union of all exceptional fibres in X of intersection points of D, with W.

Lemma, 6.12 also holds on Xj. We denote the resulting skyscraper sheaf by .

Lemma 6.16: The sheaf o is independent of the choice of tidy desingularization (X0, Do) —
(X XB B(),D XB Bo)

Proof: We have to show that blowing up Xy at a special point of Dy does not change %,. Consider
the short exact sequence

0— Rl(ﬁ'O)*Ml - L*Rl('ﬁo)no*ﬂl — F—0

defining F, (it is the analogue of sequence (6.1) on By). Since By is strictly henselian, this
sequence reads

0 — H"(Xo, ) = H' ((Xo)nes )™ — Fo(Bo) — 0,

where Iy denotes the inertia group in the absolute Galois group of 9. The group H* (()?0),70, up) o
is independent of the special fibre by definition. Furthermore, H'(Xy, y1;) does not change with a
blowup in a closed point as the exceptional fibre is rational. We conclude that also % is invariant
under blowups in closed points. O]

If (X',D') — (X,D) is a desingularized I-covering, we can construct a tidy desingulariza-
tion (X{, D}) — (X' xp By, D’ x g By) fitting into the diagram
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(X(l)v DE)) E— (X/’ D,)

| |

(Xo, Do) Em— (X, D)

We obtain a morphism of sheaves
70 — Sfé,

where 7] is defined as F but with (X}, Dj)) instead of (X, Dp). By Lemma 6.16 the limit
lim %
J%.b,z
is well defined. Our goal is to prove that this limit vanishes.

If (X, D) has enough tame coverings, it is not clear whether the same holds for (X, Dg) but we
have the following partial result:

Lemma 6.17: Let py be a closed point of Dqy which is not contained in Py. Then, for every
irreducible component Zy of Dg passing through po there is f € K(X)* with support in Do such

that degz,(f) > 0 and dege, (f) = 0 for any other prime divisor Cy passing through po.

Note that the function f is required to be contained not only in K(Xg)* but in K(X)*.

Proof: Let Zy be an irreducible component of D, passing through py. Denote by Zi,...,Z,
(for n = 1 or n = 2) the irreducible components of D passing through the image point p € D
of py. Since p is not contained in W, these are also the irreducible components of W + D passing
through p. Since (X, D) has enough tame coverings, for i = 1,...,n there is f; € K(X)* such
that degz, (fi) > 0 and degz, (f;) = 0 for i # j. The projections of div f; to

constitute a basis of this vector space. Let Zy = Zy1,...,Zom denote the irreducible compo-
nents of Dy passing through pg. These are also the irreducible components of Wy + Dy passing
through py. As in section 4.5 we assign to (Xo, Wy + Do) — (X,W + D) the multiplicity
homomorphism

Op, Q- Z21®..0Q- 2, —-Q - Zp1®.. Q- Zo,m

at pg induced by pullback. By Lemma 4.24 all multiplicity homomorphisms of a desingular-
ized [-covering are surjective. Therefore, there is a linear combination of div fi,...,div f, with
coefficients in Q mapping to Zp 1 = Zp under the multiplicity homomorphism. Clearing denomi-
nators we obtain

d-Zy = ¢p,(krdiv f1 + ... kpdiv fy,)

with integers d, k1, ..., k, such that d > 0. In other words, setting f = flk1 -... fk» we have in a
neighborhood of pg
div f =d- Zy.

This is what we wanted to prove. O

Corollary 6.18: Let Z be a vertical divisor on Xo and po € Z a closed point which is not
contained in Py + Wy. There is a desingularized l-covering (X', D') — (X, D) such that in the
pullback of Z to X|, the prime number | divides all coefficients of prime divisors whose image
in Xo contain po.

Proof: Using Lemma 6.17, we find f € K(X)* such that locally at py we have
div f = dZ

with a positive integer d. Write d = I"d’ such that [ does not divide d’. The normalization of X
in K(X)["'V/f] does the job. O
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Lemma 6.19: Let Y /S be a proper, reqular arithmetic surface over a strictly henselian Dedekind
scheme S. Let A € Y be a connected, tidy, vertical divisor with at least two irreducible components
whose dual graph T 4 is simply connected. Denote by A1, ..., A, (possibly r = 0) the irreducible
components of A which have more than one intersection point with other irreducible components
of A and by A,11,...,As the remaining irreducible components of A. Then the intersection
matrix

p:Al-Fl®...@AT+1-Fl—>A1'Fl@...@As-Fl
18 injective.

Proof: If A has only two irreducible components A; and As, the intersection matrix is

AT\ _ (AT
A-4y) T\ )

which is injective independently of the value of A?. Assume now that s > 2. Let a = Z:;l a; A;
be an element in the kernel of p. Since I'4 is simply connected, the number of components of A
with only one intersection point is at least two, i.e., s > r + 1. Hence, A, intersects only one
other irreducible component A; of A. We have ¢ < r because otherwise s = 2. Without loss of
generality we may assume ¢ = 1. The coefficient of Ay in p(a) is a1, whence a; = 0. Thus, a is

in the kernel of the intersection matrix
pI:AQ'Fl®...®AT+1 'Fl HAQ'F[@...@AS-FZ,

and the lemma follows by induction on s. O

Since (Xo, Dy) does not necessarily have enough tame coverings in p € Py, it is slightly more
complicated to kill elements of the cokernel of the intersection matrix. However, this is not
the crucial point. The biggest problem is the following: Let (X1, W) — (Xo,Wy) be a tidy
desingularization. Then we cannot force the dual graph of W; to be simply connected except
by requiring W to be regular. This is the reason why we assume in the next lemma that W is
regular.

Lemma 6.20: Assume W is reqular and every irreducible component of W has nontrivial inter-
section with K. Suppose further that for every irreducible component K; of K3, we have K;-Wy =
1. Then

= 0.

lE

J%x.,b,z

Proof: Let (X', D') — (X, D) be a desingularized [-covering. Then also W’ is regular and every
irreducible component of W’ has nontrivial intersection with K’ by Lemma 7.2. Furthermore, by
Lemma 6.13 we may assume that the statement concerning the intersection product also holds
on X'. Hence, it suffices to show that F, vanishes in the limit over T p ;.

As in the proof of Lemma 6.14 let Z = > neC be a vertical divisor of X, such that there is a
vertical divisor A of Xy with

1Z = pg,(A).

Write A = A + Aw + Ap + Ag with supp Ax S Kq, supp Kyw S Wy, supp Ap € Py and such
that K has support in the union Ry of the remaining irreducible components of the special fibre
of Xo. If (X', D') — (X, D) is a desingularized I-covering, we write A’ = A% + Al + Ap + Al
for the analogous decomposition of the pullback of A to X(’). Let Ty < DO\PO be a finite set of
closed points containing all special points of Ky + Ry and such that each irreducible component
of Ko + Ry contains at least one point in Ty. By Corollary 6.18, for each pg € Ty we find
a desingularized [-covering (X', D’) — (X, D) such that [ divides the coefficients in A’ of all
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vertical prime divisors whose image in X contain pg. Replacing (X, D) by a desingularized I-
covering which dominates the just constructed coverings for all points pg € Ty we may assume
that Ar and Ag are divisible by {. We can thus write

l(Z — AK/l — AR/l) = PBO(AW + Ap).
Changing notation we may assume that A has support in Wy + P.

Blowing up in special points of K we may assume that K is regular. Let C' be a connected
component of Wy + Py + K. There is precisely one irreducible component of C' that is contained
in Wo as W and K are regular and K; - W = 1 for every irreducible component K; of Kj, .
To this irreducible component in Wy are attached several (at least one by assumption) bridges
of PY’s connecting the said irreducible component of W, with an irreducible component of K.
By our hypothesis on the intersection number of components of K and W, each component of K
is connected to Wy by precisely one bridge of P'’s. The dual graph of C is thus of the form

K} K3
K2,

The vertex labeled Wy denotes the irreducible component of C' contained in Wy, K}, K2, K3
are irreducible components of Ko, and Pg, P2, P§ denote bridges of P1’s in P,. Of course, the
number of bridges of P'’s in C' does not have to be equal to three as in the above figure. In
particular, the dual graph of C is simply connected. If there is more than one bridge of P!’s,
the irreducible components of C with exactly one intersection point with the other irreducible
components of C' are precisely the irreducible components of Ky in C. If there is only one bridge
of P1’s, the components of C' with only one intersection point are the irreducible component of Wy
and the irreducible component of Ky contained in C'. In both cases we obtain from Lemma 6.19
that the intersection matrix modulo [

e @® RG— @R
C;cC,CiE Ko C;cC

is injective, where the direct sums run over irreducible components of C. We conclude that A =
0 mod [, i.e., A is divisible by I. Therefore, Z is contained in the image of the intersection matrix
and defines a trivial element of Fj = coker(pg,)[I]. O

We will need Lemma 6.20 in order to prove that H (B, L*Rlﬁ'n* ;) vanishes in the limit over all
desingularized [-coverings of (X, D). Before we can do so we need two more elementary lemmas.

Lemma 6.21: Let G be a profinite group, #1 and #o two closed subgroups and M a discrete G-
module. Suppose that 1 acts trivially on M. If the restriction of a class ¢ € H (G, M)
to both H(#1, M) as well as to HY(#a, M) is zero, its restriction to H'(#132, M) is zero.
Here, #1#5 denotes the closed subgroup of G which is topologically generated by #1 and #s.

Proof: Without loss of generality we may assume that ¢ = #1J>. Let x be a 1-cocycle repre-
senting ¢. By assumption

x(hl) =0 Vhl € #y and
dm € M such that z(hy) = hamm —m  Vhy € Ho.
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Since #; acts trivially on M, we can thus write
z(g) = gm —m

for all g € #1 U #5. Because a cocycle is determined by its values on a generating subset of (¢,
the above equation holds for all g € G. O

Lemma 6.22: The natural homomorphism
H' (X, ) — H' ((Xo)p, 1)
s an isomorphism.
Proof: The stated homomorphism decomposes as follows:
HY (X5, ) — H'((X x5 Bo)g, ) — H' ((Xo)s, u)-

The left hand homomorphism is an isomorphism as X; = (X xp By);. Since the singularities

of X x g By are rational by Proposition 4.19, the right hand homomorphism is also an isomorphism.
O

We are interested in the following part of the long exact cohomology sequence associated to the
short exact sequence (6.1):

.— H°(B,%) > H (B, R'#ypu) — H' (B, 14 R Tpspt) — - ... (6.3)

By Corollary 6.15 the limit over Jg p ; of H°(B’,#') vanishes. In order to show that the
cohomology group H'(B, R'7, ;) vanishes in the limit it thus suffices to prove:

Lemma 6.23: Assume that the following conditions are satisfied:

(i) The scheme W is regular.

(11) The action of G, on the l-division points of the Jacobian of X5 factors through an l-primary
quotient.

(iii) Fvery irreducible component of W has nontrivial intersection with D,,.
(iv) The pair (X, D) has enough tame coverings.

(v) Let T < B be a finite (possibly empty) set of closed points. Denote by B! the universal I-
covering of B and by T" the preimage of T in B'. Then

m(B' = TH(1) = % I5(1).

seT!

Then
HY(B, 1o R Ry ptr)

vanishes in the limit over Jx p 5.

Proof: The five term exact sequence of the Leray spectral sequence associated to ¢ : n — B reads
0 — HY(B,1s R Fpspu) — H* (0, R*7puptr) — H°(B, R* 1y (R Tpuput)) — ...
We have -
Hl (777 Rl,ﬁ-n*;u’l) = Hl(g’m Hl (Xﬁy Ml))?
and H(B, R't(R'7,«u)) is the group of global sections of the sheaf associated to the presheaf

(B' = B)— [ H'Of, R Fpu) = || H Gy H (X5 1)),
n'—B n'—B
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where the product runs over all generic points 1’ of B’ and @, denotes the absolute Galois group
of . We view these groups as subgroups of the absolute Galois group G,, of the generic point 7
of B. A class ¢ € H(G,, H' (X5, 1)) maps to zero in H°(B, R, (Rlﬂ'n*m)) if and only if there
is an étale cover B’ — B such that the restriction of ¢ to H(G,, H'(X5,u)) vanishes for all
generic points 1’ of B’. This is the case if and only if the restriction of ¢ to the inertia group of
each geometric point of B vanishes.

Let 71|n be the minimal extension of 7 such that H'(Xg, ) is a trivial G,,-module. It is fi-
nite Galois and by assumption it is an l-extension. The cohomology group H'(G,,, H' (X7, 1))
parameterizes finite [-extensions of 7; and vanishes automatically in the limit over all such ex-
tensions. We conclude that there is a finite [-extension 1”|n such that

Hl(gn7H1(Xﬁnu’l>) - Hl(g’ﬂ”? Hl(Xﬁnul))

is the zero map.

Denote by T' < B the finite set of closed points p such that X, is singular. Then X, has good
reduction at all closed points in B — T'. Hence, by smooth base change (see [SGA4.5], Exp. V,
Théoréme 3.1), the action of ¢, on H*(X5, A) factors through 7 (B — T, 7). In other words, the
extension 7;|n is unramified in B — T'. Let ¢ be an element of the kernel of

(gm ( naﬂl)) - HO(BaRlb*(Rlﬂ'n*/il))'

In particular, ¢ is in the kernel of

H (G, H' (X5, 1)) — H(B = T, R' 15 (R e pur))-

By the above description there is an étale cover B’ — B — T such that the restriction of ¢
to HY(G,, H' (X5, u)) vanishes for all generic points 7’ of B’. Without loss of generality we
may assume that 71|n is a subextension of each 7/|n. Then G, acts trivially on H'(Xz, y;) and
by repeated use of Lemma 6.21 we find a common subextension 72|n of the extensions 7’|n and
of n”|n such that the restriction of ¢ to G, is trivial. The extension 72|n must necessarily be
an l-extension which is unramified in B — T. We conclude that ¢ can be lifted to an element ¢
of

HY((my(B' = T))(1), H' (X, ),

where B! denotes the universal [-covering of B and T! the preimage of 7" in T'!. In order to prove
that ¢ vanishes in the limit over all desingularized I-coverings of (X, D) it suffices to show that ¢
vanishes in this limit. By assumption we have

The first cohomology group of such a free pro-l-product is described by the following exact
sequence (see [NSW/|, Theorem 4.3.14):

_ ~1 _
O_)Hl(Xﬁaul)ﬂ-l(B T )(l) T]?/’Ll @Hl nvul)/Hl(Xﬁ7ul)IS(l) g
seTt
— H'(m (B' = T(1), H (X5, )~ @ H' (L), H' (X5, m)) = 0.
seTt

Note that in the statement of Theorem 4.3.14 of [NSW]| there occurs a modified direct sum
denoted @' instead of the usual direct sum @. However, as explained in the proof of the cited
Theorem 4.3.14, the modified direct sum

D HY(L(1), B (Xq, 1))

seT
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coincides with the usual direct sum as the module H Y(X5,m) is finite. The same reasoning
applies for @, 7 H (Xg, )/ H (X5, )= O.

The group I4(l) is the maximal [-quotient of the inertia group of ¢, at s. As we have seen
above, the restriction of ¢ to the inertia group of ¢, at s vanishes and hence, so does the restric-
tion of @ to I,(l). We conclude that ¢ lifts to an element of @, 7 H*(Xg, )/ H* (Xz, m)"=O.
Therefore, it suffices to prove that for a fixed geometric point s of B lying over T the quo-
tient H' (X, pu)/H (X5, )™ vanishes in the limit over Jg p ;.

Consider the sequence of stalks at s associated with the short exact sequence (6.1):
0— H' (X, ) = H' (X5, )" — 7, — 0.

We would like to have a similar sequence with H'(Xj, 1) in the middle. Let By — B be the
normalization of B in 7;. Since we assumed W to be regular, the singularities of X x g B; are
all contained in D xp B (see Lemma 4.2). Let (X’,D’) — (X xp B1,D x5 B;) be a tidy
desingularization. Then Lemma, 6.12 also holds on X’ and we obtain a short exact sequence

0 — R'u — R o — F — 0.
Taking stalks at s and using functoriality yields a diagram of short exact sequences:

0 — HY (X5, ) — H (X5, m)0 —— F —— 0

| | |

0 —— H(X0 ) —— H(Xy, ) ——)

Note that by setting By = (B;)$" we are in the situation described after Lemma 6.15 and 7/
equals F(By). By Lemma 6.22 we have

Hl(Xsyul) = Hl(Xgnul)

Lemma 6.13 allows us to assume that for every vertical component Z of Dy, we have Z - W} < 1.
Then, by Lemma 6.20, F; as well as F; vanish in the limit over Jg p ;. Hence, for every
element & € H'(Xg, ) there is a desingularized I-covering (X”,D") — (X,D) such that
the image of £ in H'(X}, ) is contained in HI(X%’,;L,)I;'(”. We conclude that the direct
sum @, 7 H' (X5, u)/H* (X, p1)"=@ vanishes in the limit over Jg p ;. Therefore, the coho-
mology class ¢, which is an element of

ker(H' (m(B' = T') (1), H' (Xq, 1)) — @ H'(L,(1), H' (X5, m))),

seT!
vanishes in the limit and the same holds for the class ¢ in
HY(B, 1 R Ryuut) = ker(H (9, R*Fpupu) — H° (B, R 1o (R Fpspu)))-
This concludes the proof of the lemma. O
We can now collect the results of this section to prove

Proposition 6.24: Assume that the following conditions are satisfied:

(i) The class ¢ is the class of finite l-groups for a prime number .
(ii) The scheme X as well as W is regular.

(iii) For every closed point b of B the prime l does not divide the greatest common divisor of the
multiplicities of the irreducible components of Xp.
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(iv) The action of G, on the l-division points of the Jacobian of X5 factors through an l-primary
quotient.

(v) Every irreducible component of W has nontrivial intersection with D,,.
(vi) The pair (X, D) has enough tame coverings.

(vii) Let T < B be a finite (possibly empty) set of closed points. Denote by Bl the universal 1-
covering of B and by T" the preimage of T in B'. Then

m (B = TH(1)

lle

% I5(1).

seT!
Then
HY(B, R'm,A)

vanishes in the limit over Jx p 5

Remember that hypotheses (i) and (iii) and the assertion that X is regular are required to
hold throughout this section. This is the reason why they do not appear in the statement of
Lemma 6.23. However, we included these conditions in Proposition 6.24 for later reference.

Proof: We choose an isomorphism A =~ pu; and show the proposition with A replaced with p;.
This allows a more natural interpretation of the cohomology groups involved. At first we show
that we may replace X with X and 7 with 7. Consider the excision sequence

. > Rlﬁ'*,ul — R17r*,ul — R%hﬁ*,ul — ...
The sheaf RQDh 7447 is the sheaf associated to the presheaf
(B/ — B) —> H%thB’(X XB B/,ul).

Let (X',D') — (X, D) be a desingularized [-covering such that the ramification index of each
irreducible component of D), is divisible by [. Such a covering exists as (X, D) has enough tame
coverings. By Proposition 5.17

HZ

Dpnm

1) (X XB Bla Ml) - ng)’thB/ (X XB B/) Hl)
is the zero map. Since this holds for all étale B’ — B, also
R%;,ﬁ*/“ - R%;,,ﬁ;ﬂl

is the zero map and thus the image of Ry in R7l ; can be lifted to R 7, ;. Propositions 7.2
and 7.3 will show that our assumptions a stable under desingularized I-coverings. Hence, it suffices
to prove that H'(B, R'7, ;) vanishes in the limit over all desingularized I-coverings.

Consider the cohomology sequence associated to the short exact sequence (6.1):
.— H°(B,%) — H'(B,R'7up) — H* (B, s R Tpaptr) - . ..

By Lemma 6.23 the cohomology group H'(B, xR 7, 4p;) vanishes in the limit. After replac-
ing (X, D) with a desingularized [-covering, the elements of H'(B, R'7,u;) can thus be lifted
to H°(B, ). Since by Propositions 7.2 and 7.3 from the next chapter our assumptions are stable
under desingularized [-coverings, we are left with proving that H°(B,¥) vanishes in the limit.
This is precisely the assertion of Lemma 6.15. O
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6.5 The second higher direct image

At this point we have tackled all hypotheses of corollary 6.2. Under the conditions stated in the
preceding sections the said corollary thus implies that

lim H"(X',A) =0
J%,b,z
for n > 3 and
lim ker(H?(X',A) “%° HO(B', R, A)) = 0.
J%.b.=
The only thing left to prove is that in the limit over J¢ p ; the elements of H 2(U, A) cannot only
be lifted to H2(X,A) but even to

ker(H2(X,A) “%° HO(B, R2m,A)).

Proposition 6.25: Assume that Dy, is nonempty and intersects all irreducible components of W.
Let ¢ be in the image of
H*(X,\) — H*(U,A).

Assume further that (X, D) has enough tame coverings. Then there is a desingularized c-

covering (X', D') — (X, D) such that the image of ¢ in H*(U',\) can be lifted to an element 1)’
of H2(X', A), which lies in the kernel of the edge morphism

H*(X',A) — H(B', R?m,A).
Proof: Consider the diagram
H%(X,A) —— H?*(X,A) ——— H?*(U,A)

Nledge J/edge

H°(B, Rym,A) — H°(B, R®m,A).

The left vertical arrow is an isomorphism because due to purity RJDW*A =0for j < 1. We
conclude that it suffices to show that the cokernel of

HY(B,Rhm\) — H°(B, R*m,\)

vanishes in the limit over J¢ 5 ;. We have a direct sum decomposition indexed by the irreducible
components D; of D
Rhm A = P R, mA.
i

It is sufficient to prove that the cokernel of the vertical part vanishes after a desingularized c-
covering: We want to show that there is a desingularized c-covering (X', D’) — (X, D) as above
such that

coker(H"(B, Rh, msA) — H°(B, R*m,\)) — coker(H"(B', R}, m,A) — H°(B', R*m,A))

is the zero map. Both R%v 7« and R?m,A are skyscraper sheaves with support in the singular
locus of X — B. We can treat each singular fibre separately and thus assume that B is a henselian
discrete valuation ring. We only have to make sure that the constructed desingularized c-covering
extends to a desingularized c-covering above the initial base scheme. We have the following
diagram of exact sequences

0 —— HO(B, R} miZc) —" H(B, R} myZc) — H(B,R% mA) — 0

! ! | o

0 — H°(B, R?r,Z.) —™— HY(B, R?r,Z.) — H°(B, R?1,A) — 0.
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The exactness of the above sequences can be checked by using the explicit description of the
cohomology groups involved: Let b be a geometric point above the closed point b of B. Denote
by B*" the strict henselization of B at b and by X*", X*" and D*" the base change of X, X,
and D to B*". Let k be the residue field of B and k the residue field of B*" and denote by G the
Galois group of k|k. Then

H°(B, Rh, mZe¢) = Hpo(B™Z)% = (P Zc - O)F
CcDy

where G acts on the direct sum by permuting the components C' of D*". This already shows the
injectivity of multiplication by m. Similarly,

H°(B,RL mA) = ( P A-C)

ccDsh

and H°(B, R}, myZ.) — H°(B, R}, mA) corresponds to the canonical projection

(P Z-C)f - (P A-CO)F,

Cc Dy Cc Dy

which is surjective. In the lower row we have

H°(B,R°mZ) =~ ( P H*(C,Z))% = ( @ Z.-C)Y.

CccXy CcXy,C/Bs" proper

The irreducible components of Xj which are proper over B*" correspond to the irreducible com-
ponents of Xj not intersecting D). By assumption these irreducible components coincide with
the irreducible components of Dj. The rest of the calculation for the lower sequence is analogous.

In order to show that the cokernel of the right hand side vertical map in the diagram (6.4) vanishes
after a desingularized c-covering it suffices to show that the cokernel of the middle vertical map
does so. The stalk of the morphism R}, 7m.Z(c) — R*m,Z(c) at b is

Hp, (X", 2(e) — H* (X", Z(c)).

By Lemma 6.7 it is given by the intersection matrix p of the components of Dg. Since Dy does not
contain all components of the geometric special fibre, p is injective. Denote by F the cokernel.
By Corollary 6.10 there is a desingularized c-covering (X', D') — (X, D) such that ¥ — &' is the
zero map (where F' is the respective cokernel defined on X’). Note that this covering extends to
the initial base scheme by Remark 6.11. We have an exact sequence

0 — H°(B, R}, m.Z(c)) — H(B, R*m,Z(c)) — H°(G, 7).

So the cokernel of H°(B, R%, m,Z(c)) — H°(B, R?1,Z(c)) is a subgroup of #. This shows the
result. O
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Chapter 7

Construction of
K (m,1)-neighborhoods

In the preceding chapters we proved the vanishing in the limit over all desingularized tame
coverings of cohomology groups H*(X,A), where X is an arithmetic surface (and similarly for
cohomology groups with support). The vanishing of these cohomology groups in the limit was
subject to various conditions on X. In this chapter we construct étale neighborhoods of a given
geometric point satisfying these conditions. Moreover, we show that these conditions are stable
under desingularized c-coverings

7.1 Stability of certain properties under desingularized tame
coverings

In order to apply the results of chapter 5 and of chapter 6 it is not enough that an arithmetic
surface X itself has the above mentioned properties. Since we are aspiring to show the vanish-
ing of a limit over all desingularized c-coverings (for a full class of finite groups) of X, every
desingularized c-covering of X has to have these properties. Therefore, we have to show that the
necessary properties are stable under desingularized c-coverings. We start with the base scheme.

Lemma 7.1: Let B be a global Dedekind scheme and b — B a geometric point over a closed
point b e B. Letl be a prime number which is invertible on B. The following properties are stable
under restriction to Zariski neighborhoods of b and étale l-coverings of B

(i) = Z/IZ on B, i.e., the quotient field of B contains the 1™ roots of unity.

(ii) For any closed point by € B and geometric point by over by the natural morphism
1 (b1, b1) (1) — 1 (B, b1)(1)
18 injective.

(iii) Let T < B be a finite (possibly empty) set of closed points. Denote by B' the universal I-
covering of B and by T the preimage of T in B'. Then B—T is K(m,1) with respect to
and

(B —TH(1)

e

l

* Ls(1).
eT

s

where I, is the inertia group at s.

Proof: Property (i) is clearly stable under any étale morphism B’ — B. The same holds for
property (ii): Let B’ — B be étale and b a closed point of B’. Let by — B’ be a lift of by — B’
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with image b}. Consider the commutative diagram

m1 (b7, 01) (1) —— (B, 01)(1)

I |

71'1(()1,[_)1)([) —_— 7T1(B,b1)(l)

If ~ ~
m1(b1,01)(1) — 71 (B, b1) (1)

is injective, the same holds for 7y (b7,b1)(1) — 71 (B’,b1)(1).

Assume that property (iii) holds on B and let B — B be an étale [-covering. Since by as-
sumption B is K (7, 1) with respect to [ (set T = @ in property (iii)), the same holds for B’.
Also if B — B is an open immersion, B’ is K (7, 1) with respect to [ by applying property (iii)
with T = B — B’. Hence, in both cases property (iii) holds by [Sch II], Satz 8.1 and Be-
merkung 8.2. O

Lemma 7.2: Let 7 : X — B be a proper arithmetic surface and D < X a tidy divisor. Set X =
X —Dy and U = X — D. Let ¢ be a full class of finite groups such that all integers in N(c)
are invertible on X and p; = Z/IZ on B for every prime number in N(c). Then the following
conditions are stable under desingularized c-coverings.

(i) Every connected component of D has at least one horizontal component.
(i) Dy, is nonempty and intersects all irreducible components of W.
(111) Every irreducible component of W has nontrivial intersection with D,,.

(iv) For every prime number | € N(c) and every geometric point b of B there is an irreducible
component C' of Wy such that | does not divide the multiplicity of C in Xj

(v) (X, D) has enough tame coverings.
(vi) W is regular.

Proof: Let (X1, D1) — (X, D) be a c-covering and (X', D') — (X1, D;) a tidy desingularization.
By Corollary 4.7 a connected component of D; is mapped surjectively onto a connected compo-
nent of D. Furthermore, connected components of D’ are mapped surjectively onto connected
components of D;. Therefore, if (X, D) satisfies condition (i), so does (X', D’).

By Lemma 4.2 and Corollary 4.7, the preimage of Dy, in X’ is D). If Dy, is nonempty, the same
holds for D;L. Furthermore, suppose C’ is an irreducible component of W’. It maps surjectively
onto an irreducible component C of W. If 2 € C is contained in Dy, the (nonempty) preimage of =
in C' is contained in Dj,. This proves that condition (ii) is stable under desingularized c-coverings.

Let C' be an irreducible component of W’. It maps to an irreducible component C' of W. Let x
be a closed point of X in the intersection of C' with D,,. Then the preimage of x in C’ is contained
in the intersection of C” with D;. This treats condition (iii).

Let [ € N(c¢) be a prime number and b a geometric point of B. Assume that there is an irreducible
component C of Wy such that [ does not divide its multiplicity nc. Let (X', D’) — (X, D) be
a desingularized c-covering and b’ a geometric point of B’ above b. Then there is an irreducible
component C’ of W, above C. The desingularized c-covering (X’,D’) — (X, D) induces a

generically étale c-covering C' — C'. Therefore, C' has the same multiplicity nc over b as C. The
multiplicity of C” over b divides n¢ and is thus not divisible by I.

In order to deal with condition (v) assume that (X, D) has enough tame coverings. Let (X', D’) —
(X, D) be a desingularized c-covering, p’ € D" a closed point and Z’ an irreducible component
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of D’ passing through p’. We have to find f' € K(X')* with support in D’ such that degz (') > 0
and deger (f') = 0 for all other irreducible components C” of D’ passing through p’. Let Z1,..., Z,
(for n = 1 or n = 2) denote the irreducible components of D passing through the image point p €
D of p’. Since (X, D) has enough tame coverings, for i = 1,...,n there is f; € K(X)* with
support in D such that degz, (f;) > 0 and degz, (f;) = 0 for i # j. The projections of div f; to

Q- 21®..0Q- 2,

constitute a basis of this vector space. Let 2’ = Z7,..., Z}, denote the irreducible components
of D' passing through p’. In section 4.5 we investigated the multiplicity homomorphism

by Q- 21®..0Q0-2,-Q-Z1®...®Q- Z,,

at p’ induced by pullback. By Lemma 4.24 all multiplicity homomorphisms of a desingular-
ized c-covering are surjective. Therefore, there is a linear combination of div f1,...,div f, with
coefficients in Q mapping to Z; under the multiplicity homomorphism. Clearing denominators
we obtain

d-Z) = ¢p(krdiv fi + ... kndiv f,)

with integers d, k1, ..., k, such that d > 0. In other words, setting f = f{“ -... fk» we have in a
neighborhood of p’
div f=d-Z,

what we wanted to prove.

Let us treat the last property. The statement that W is regular is equivalent to (Up).eq being
regular for every closed point b of B such that X is singular. Indeed, since W is the Zariski
closure of the union of these (Up),eq, we only have to show that W is always regular at the
finitely many closed points in the complement of (Up),eq. But these points are intersection points
of W with D and D is tidy. In particular, D has normal crossings with W and thus W is
regular at the intersection points. A desingularized c-covering (X', D’) — (X, D) induces an
étale covering (U}, )red — (Up)req for every closed point b of B’ with image b in B. Therefore,
if (Up)req s regular, so is (U},) red- O

In the global case we have to treat one more property concerning the [-division points of the
Jacobian of the generic fibre of an arithmetic surface.

Proposition 7.3: Let @ : X — B be a proper arithmetic surface and D < X a tidy divisor.
Set X = X —Dp, and U = X — D. Letl be a prime number which is invertible on X. Let n
denote the generic point of B. Let 7] be a geometric point above n and denote by G, the Galois
group of f|n. The following property is stable under desingularized l-coverings: The action of G,
on the l-division points of the Jacobian of Uy factors through an l-primary quotient.

For the proof of Proposition 7.3 we will need the following proposition which is Proposition 4
in [Fri I] in the situation where the pro-group ¢ is profinite.

Proposition 7.4: Let
l->F—->¢—->H—1

be a short exact sequence of profinite groups such that H'(F,7Z/1Z) is finite and H*(F,Z/IZ) = 0.
Then F (1) is free pro-l.

Assume in addition that K(#,1)(l) K K(#(1),1) is a f-isomorphism. Then the action of
on HY(F,Z/1Z) factors through #(l) if and only if

1->51)—>Ggl)— #() -1

18 exact.
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Corollary 7.5: Let
1->F->Q0—->H#H —1

be a short ezact sequence of profinite groups such that HY(F,Z/1Z) is finite and F has cohomo-
logical I-dimension 1. Let ¢' € @ be an open subgroup of l-primary index. Denote by F' the
intersection of F with ¢’ and by #' the image of ¢’ in #. If the action of # on HY(F,Z/IZ)
factors through #(1), the action of #' on HY(F',Z/IZ) factors through (#')(l).

Proof: Tt suffices to prove that for each homomorphism A’ : Z — #’ the induced action of Z
on HY(#,Z/IZ) factors through Z;. For a homomorphism h’' : Z — ' we denote by h the
composite homomorphism Z — #' — #. Setting Gy, := G X, Z and G}, := ¢’ X, Z the diagram

1 F 6 H 1

1 F' G’ ' 1
induces the following diagram of exact sequences

1 F Gh Z 1

1 ' G Z 1.

Noting that K(Z,1)(1) K (Zy,1) is a f-isomorphism we check that the upper exact sequence
meets the conditions for Proposition 7.4. Hence, I-completion yields

1 — 5 F(1) — Gu(l) Z 1

J I

() — (G — Zt — L

The vertical maps are injective as F’ and Gy, have [-primary index in F and G, respectively.
It follows that (F')(1) — Gx(l) is injective and thus so is (F')(1) — (G},)(1). Let us check that
the assumptions of Proposition 7.4 continue to hold for the lower exact sequence in the diagram
implying that the action of Z; on H'(#',Z/IZ) factors through Z;. By [NSW]| Proposition 3.3.5
we have cd;F' = ¢d;F = 1 and thus in particular H?(F',Z/IZ) = 0. We see that H*(F',Z/IZ) is
finite using the Hochschild-Serre spectral sequence for ¥/ < F and the finiteness of H'(F,Z/IZ).

O

Proof of Proposition 7.3: Let T be a geometric point of Uz. Let n1|n be a finite Galois I-
subextension of 77|y such that G,, acts trivially on H'(Uy,Z/IZ). We have the following exact
sequence of pro-finite groups.

1 - mUs,z) = m(Uy,,Z) = Gy, — 1.

A desingularized I-covering (X’,D’) — (X, D) induces by base change to U,, a finite étale I-
covering U, — Uy, and we obtain the following diagram of short exact sequences

1 —— ﬂ-l(UﬁVf) — Wl(Unlviﬂ) Qﬁl 1
1 — Wl(U%,S_C) e 7T1(U7/71,f) gnll 1.

Let us verify that Corollary 7.5 applies. Since Uy is an affine curve over an algebraically closed
field, it is K (7, 1) with respect to [ and has cohomological [-dimension less or equal to 1. We con-
clude that m (Uz, Z) has cohomological [-dimension less or equal to 1 and H'(m(Ug, %), Z/IZ) =
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H'(Uy, Z/IZ) is finite. Hence, by Corollary 7.5 the action of G, on H' (U}, Z/IZ) factors through
an [-primary quotient G, / Gyy,- We obtain the following diagram of extensions of 7:

/

T2
\
m=nm

77’/ \77
~,

Since m1|n is an l-extension, the same holds for n;|n’. Furthermore, n5|n] is an l-extension and
thus also nb|n’. O

7.2 Neighborhoods with enough tame coverings

For the construction of étale neighborhoods with enough tame coverings we need the following
variant of prime evasion.

Lemma 7.6: Let v and s be positive integers. Let A be a noetherian ring and p1,...,p.

and qi,...,qs prime ideals such that for i # j q; is not contained in q;. For j < s define
the integer m; by

; i+1

P Sy N\

Then there is a € A such that fori <r aecp; and for j < s a¢ q?ﬁl.

Proof: For i # j we can find b;; € q;\q;. We define
bj = H b:;thl
i#]

Then we have
bj ¢ q;, bj € q;n,;Jrl for 17 # ]

Furthermore, by assumption, we can choose a; € py - ... - pT\q;njH. Then c¢; := ajb; for j < s
satisfies
¢ ¢ q;ﬂﬁl, cj € q;n”l for i # j, cj €p; fori<r
Finally,
a = Cj
J<r
has the required properties. O

For the rest of this section we use the following notation: For an integral closed subscheme Z of
an affine scheme Spec A we denote by pz the prime ideal of A corresponding to the generic point
of Z. Moreover, we write m,(Z) for the multiplicity of a closed subscheme Z in a point z. It is
defined as the maximal power of p, containing the ideal corresponding to Z.

Lemma 7.7: Let X/B be an arithmetic surface such that B is local with generic point 1 iso-
morphic to the spectrum of a global field (i. e., B is the localization of a global Dedekind scheme
at a closed point). Let x1,...,x, be finitely many points of X. Then there are horizontal prime
divisors G1,...,Gs,Gs11,...,Gy such that G1,...,Gs and Gsi1,...,G, each generate the Weil
divisor class group CHY(X) of X. Furthermore, the supports of G; for i = 1,...,r do not
contain x; for j =1,...,n and the supports of G; and G; fori < s and j > s are disjoint.
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Proof: The generic fibre X,, of X — B is a smooth curve over a global field. By the Mordell-Weil
theorem (see [Wei|) its Weil divisor class group is finitely generated. Denote by Ci,...,C; the
irreducible components of the special fibre. The Weil divisor class group of X is generated by
the Weil divisor class group of X, and by C,...,Cy. It is therefore also finitely generated, by
prime divisors D1, ..., D,,, say.

Since X is quasi-projective over an affine scheme, there is an affine open subscheme Spec A € X
containing 1, ...,%,, as well as the generic points of Dy,..., D, and of Cy,...,C; (see [Liu],
Proposition 3.3.36). By Lemma 7.6 we can choose f1,..., fim € A such that for i =1,...,m

fi € PDi\P%ia

mao; (D;)+1

fi ¢ v, for j=1,...,1,
my . (D;
fi¢ijJ( s forj=1,...,n.

Viewing f; as elements of K (X)* we obtain divisors Dy —div f1,..., Dy, —div f,, generating the
Weil divisor class group. The supports of the divisors D; — div f; do not contain x1,...,x, and
the coefficients of C1, ..., C; are zero, i.e., D; — div f; are horizontal. Denote by G1, ..., G, the
prime divisors in the support of Dy — div f1,..., Dy — div f,. Then G1,..., G, are horizontal

prime divisors generating the Weil divisor class group whose supports do not contain x1, ..., x,.
Denote by z1,...,2 the intersection points of Gy,...,Gs with the special fibre. Choose an
affine open subscheme Spec A’ € X containing x1,...,x,,21,..., 2 as well as the generic points

of Dy,...,D,, and of Cy,...,C;. Using Lemma 7.6 again we find ¢1,...,9n € A’ such that
fori=1,...,m

giepDi\pzDiv
gt pe " o j= 1,000,
g#pZJ( * forj=1,...,n,

9@'¢PZJ forj=1,...,t

Denote by G4i1,...,G, the prime divisors in the support of Dy — div g1,..., D, — div go,.
As above G4,1,...,G, are horizontal prime divisors generating the Weil divisor class group
whose supports do not contain x,...,x,. Moreover, 21, ..., 2; are not contained in the support
of Gs41,...,G,. Hence, the support of G; for i < s is disjoint from the support of G; for j > s
as z1,..., 2t are the only possible intersection points of GG; with another divisor. O

Lemma 7.8: Let X /B be an arithmetic surface and let Gy, ...,Gs be horizontal prime divisors
generating the Weil divisor class group CH'(X) of X. Let p be a closed point of X such that X is
regular at p and p is not contained in any Gj for j = 1,...,s. Denote by X' — X the blowup of X
in p. Let G be a horizontal prime divisor disjoint from G1,...,Gs with nontrivial intersection
with the exceptional locus E. Then Gy, ...,Gs, G generate CH'(X') ® Q.

Proof: The Weil divisor class group of X' is generated by G1,...,Gs and E. Let Gy denote the
image of G in X. Since G, ...,G, generate the Weil divisor class group of X, there are n; € Z
such that

Go = Z TLjGj
j=1
in CH'(X). By |Liu], Chapter 9, Proposition 2.23 the pullback of Gy to X’ is given by

G+ mp(Go) - K.
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Since p € Gy, the multiplicity m,(Gyp) is positive. In CH(X') ® Q we thus have

1 s
E = m(z leG]‘ - G)

j=1
O

Lemma 7.9: Let Y/B be an arithmetic surface such that B is local with its generic point iso-
morphic to the spectrum of a global field and x € Y a closed point. Let Y be a compactification
of Y over B. Then there is an open neighborhood V.= Y of x and a compactification X /B
of V. dominating Y such that D = X —V is a tidy divisor and such that the following assertion
holds: For every closed point y € X and every prime divisor Z of X passing through y there
is f € K(X)* with support in Z U D such that degz(f) > 0 and degw (f) = 0 for all other prime
divisors W passing through y.

Proof: Take an open neighborhood V' of x such that the complement contains all singular points
except z (if x is singular) and all vertical prime divisors not passing through z and set D’ =
Y — V'. By [Lip] we can replace (Y, D’) by a desingularization (in the strong sense) and thus
assume that x is the only possible singular point of Y and D’ is a Cartier divisor. Choose prime
divisors G1,...,G, of Y not passing through z as in Lemma 7.7. Making V' smaller we may
assume that G, ...,G, are contained in D’.

Let (X,Dg) — (Y, D’) be a tidy desingularization, which exists by Proposition 2.15. Since Y
is regular at every point in D’, the morphism X — Y is a consecutive blowup in closed points
over D’. Moreover, the exceptional fibre of each blowup in a closed point p is isomorphic to P,lc(p)
(see [Liu|, Chapter 8, Theorem 1.19). Denote by Ej,..., E, the irreducible components of the
exceptional locus of X — Y. For each i = 1,...,n choose two different closed points p;,q; € E;
in the regular locus of Dy and (horizontal) prime divisors D; and K; intersecting E; transversally
at p; and g;, respectively. Since a horizontal prime divisor consists of only two points, namely
the special and the generic point, D; and K; are regular and do not intersect Dy in any other
point. Denote by D the sum of Dy and the prime divisors Dy, ..., D,, K1,..., K, as above and
set V.=X—D.

We claim that (X, D) has the required properties. By the definition of a tidy desingularization,
Dy is a tidy divisor. The property of being tidy is invariant under adding horizontal prime divi-
sors intersecting the special fibre transversally in a regular point of Dy. Therefore, also D is tidy.
Let y € X be a closed point and Z a prime divisor of X passing through y. Either G4, ..., G
or G4y41,...,G, do not pass through the image point of y, say Gi,...,G,s. Furthermore, ei-
ther Dy,...,D, or Ki,...,K, do not pass through vy, say Di,...,D,. By Lemma 7.8 the
prime divisors Gy, ..., Gy, D1,..., D, generate the first Chow group CH'(X)® Q. Hence, there
are m,my, ..., Mp,N1,...,Ms € Z with m > 0 and f € K(X)* such that

mZ = Z mij + Z anj + div f
j=1 j=1

The prime divisors Dy,..., D, and Gi,...,G4 do not pass through y. Therefore, degw (f) = 0
for all prime divisors W different from Z passing through y and degz(f) = m > 0. Further-
more, D1,...,D,,G1,...,Gs are contained in D and thus f has support in Z U D. O

As a direct consequence of Lemma 7.9 we obtain:

Corollary 7.10: In the situation of Lemma 7.9 let U S V' be a neighborhood of x such that D" =
X — U is a tidy divisor. Then (X, D’) has enough tame coverings.
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7.3 Construction of suitable étale neighborhoods

Definition 7.11: Let Y /B be an arithmetic surface and T a geometric point of Y inducing a
geometric point b on B. An étale neighborhood of T in'Y /B is an arithmetic surface U/B’ fitting
into a (not necessarily cartesian) commutative diagram

g

— Y

;

such that U — Y is an étale neighborhood of T and B' — B is an étale neighborhood of b.

<

R —

—

Given an arithmetic surface Y/B and a geometric point Z of Y we want to construct an étale
neighborhood U/B’ of z in Y /B such that B’ satisfies properties (i)-(iii) of Lemma 7.1 and U
satisfies properties (i)-(vi) of Proposition 7.2.

Lemma 7.12: Let B be a global Dedekind scheme and b — B a geometric point over a closed
point b€ B. Letl be a prime number different from the residue characteristic of b. Then there is
an étale neighborhood B' — B of b satisfying the following conditions:

(i) The prime [ is invertible on B' and p, = Z/IZ on B’, i. e., the quotient field of B’ contains
the 1" roots of unity.

(ii) For all closed points b/ € B’ the natural morphism
7 (b, 0)(1) — 71 (B, b)(1)
18 injective.
(iii) Let T" < B’ be a finite (possibly empty) set of closed points. Denote by B’ the universal l-
covering of B' and by T" the preimage of T' in B". Then B' — T’ is K(=,1) with respect

tol and ~ ~
(B —=TY(1) = % I.(), (7.1)

where Iy is the inertia group at s'.

Proof: Choose an open neighborhood B; & B of b on which [ is invertible. This is possible
as [ is prime to the residue characteristic of b. Etale locally on By the *! roots of unity are
isomorphic to Z/IZ. We can thus find an étale neighborhood B’ — B of b such that every étale
neighborhood B” — B’ of b satisfies condition (i). We can further assume that the fraction
field K’ of B’ is totally imaginary in case [ = 2 and K’ is a number field. We claim that any
étale neighborhood B” — B’ of b also satisfies conditions (ii). For a closed point b” of B” the
maximal [-extension of the finite field k(b”) is globally realized by the cyclotomic l-extension of B”,
which is unramified over B” as [ is invertible on B”. This shows that B” satisfies condition (ii).
After [Sch II], Theorem 1.1(iv) we can shrink B’ further such that B’ is K (, 1) with respect to [.
Then, by [Sch II], Satz 8.1 and Bemerkung 8.2 B’ — T is K (m, 1) with respect to [ for any finite
set of closed points 1" and

~1 =1
m(B" —T)(1) = % m(KM)(). (7.2)
s'eT"!
O
Having constructed a base scheme B with the necessary properties, we now show the existence

of étale neighborhoods on an arithmetic surface over B satisfying properties (i)-(v) of Proposi-
tion 7.2.
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Proposition 7.13: Let 7 : Y — B be an arithmetic surface of local or global type and T a
geometric point above a closed point x € Y. Let ¢ be a full class of finite groups such that the
residue characteristic of x is not contained in N(¢) and in the global case assume ¢ = ¢(l) for a
prime number I. Then there is an étale neighborhood U/B' of & and a compactification U € X
of U — B’ such that the complement D of U in X is a tidy divisor with the following properties.

(i) Every connected component of D has at least one horizontal component.
(ii) Dy, is nonempty and intersects all irreducible components of W .
(111) Every irreducible component of W has nontrivial intersection with D,,.

(iv) For every prime number | € N(¢) and every geometric point b of B there is an irreducible
component C' of Wy such that | does not divide the multiplicity of C' in X3.

(v) (X, D) has enough tame coverings.

Proof: Denote by b the image of x in B. It suffices to prove the proposition in case B is local with
generic point the spectrum of a global field. Indeed, if Y'/B is of global type, denote by Yy/By the
base change of Y /B to the localization of B at b. Suppose there is an étale neighborhood B}, — By
of b, an étale neighborhood Uy — Yp; of T and a compactification Uy < Xy of Uy — B} such
that the complement Dy of Uy in X is a tidy divisor with properties (i)-(v). We may assume
without loss of generality that By is local with closed point &’. Then B, — By is the localization
of an étale morphism B’ — B at a closed point " above b and Uy and X are the base changes
of arithmetic surfaces U and X over B’. Making B’ smaller we may assume that [ is invertible
on B, X — B’ is proper, U is an open subscheme of X and X is the only possible singular
fibre. Similarly, we may assume that D = X — U is a tidy divisor whose vertical components
are all contained in X . The irreducible components of D are then in one to one correspondence
with the irreducible components of Dy. Hence, conditions (i)-(iii) are satisfied. Moreover, the
geometric fibres at b’ of X — B’ and X, — B} are identical, whence property (iv).

In order to achieve that (X, D) has enough tame coverings, we choose finitely many closed
points pi,...,pn in Dy including all special points of Dy such that there is at least one point p;
in each irreducible component of Dy. Furthermore, denote by Dy, ..., D,, the irreducible com-
ponents of Dy. For every irreducible component D, of Dy passing through one of the points p;
there is fi; € K(Xo)* with support in Dy such that degp,(fi;) > 0 and de:qz(fij) = 0 for all
other prime divisors passing through p;. Viewing f;; as an element of K (X)* it has support
in the union of D with finitely many vertical prime divisors mapping to closed points different
from b" in B’. Removing these points from B results in f;; having support in D. Now (X, D)
has enough tame coverings: Let p be a closed point of D and K < D a prime divisor passing
through p, which corresponds to an irreducible component D; of Dy. If p is a special point of D,
it equals p; for some ¢ and f;; serves our purposes. If p is a regular point of D, we can take fij
for any of the closed points p; lying on D;.

If Y/B is of local type, it is the base change to B of an arithmetic scheme Y;/Bj such that By
is local with generic point the spectrum of a global field and B is the completion of By at its
closed point. Taking completion does not affect the tidiness of a divisor, nor does it disturb
properties (i)-(v). Therefore, also in this case it suffices to prove the proposition for B local with
generic point the spectrum of a global field.

For the rest of the proof we assume that B is the localization of a global Dedekind scheme at
a closed point b. Choose a geometric point b above b compatible with Z. Replacing B by an
étale neighborhood of b we may assume that all irreducible components of the special fibre are
geometrically irreducible. The irreducible components of the special fibre are then in one to one
correspondence with the irreducible components of the geometric special fibre Y. Replacing Y by
an open subscheme we may further assume that all irreducible components of the special fibre Y3
contain .
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Let m be the greatest integer in N(¢) dividing all multiplicities of components of the closed
fibre Y;,. We may assume that p,, = Z/mZ on B. Let t be a uniformizer of B and denote by Y’
the normalization of Y in K (Y)[ ¥/t]. Let

Y'>B — B

be the Stein factorization of Y’ — B. The morphism Y’ — Y can ramify only in irreducible
components of Y. Let C' be a component of Y, and y a closed point of C in the smooth locus
of C. Locally at y we can write
t =au™"

with a positive integer n, « a unit at z, and div u = C. Locally at x the covering Y’ — Y is
thus given by adjoining an m™-root of the unit «, which is étale. Moreover, the multiplicity of
a vertical prime divisor of Y’ above C is n. We conclude that Y/ — Y is an étale c-covering
and the greatest integer in N(¢) dividing all multiplicities over B’ of the vertical prime divisors
in Y, is 1. Let 2’ be the image of Z in Y, i.e., 2’ is a preimage of x. For every vertical prime
divisor C' of Y there is a vertical prime divisor C" of Y’ over C' passing through 2’ (Remember
that all irreducible components of the special fibre Y} contain x). Thus, the greatest integer
in N(c) dividing all multiplicities over B’ of the vertical prime divisors in Y} passing through 2’
is still 1. After changing notation, we may assume that this is true already on Y. We conclude
that for any (Zariski) open neighborhood U of z and any compactification X of U condition (iv)
is satisfied.

Possibly replacing Y by an open neighborhood of x, we may assume that x is the only singular
point of Y. We use Theorem 2.8 in order to construct a compactification Y of Y. After a tidy
desingularization of (Y,Y —Y) we may assume that the complement of Y is a tidy divisor.
Property (iii) can be achieved by removing from Y one closed point (different from z) on each
irreducible component of W and blowing up these points. Then condition (iii) continues to hold
for every Zariski neighborhood of x contained in Y.

Choose an open neighborhood V of z and a compactification X /B as in Lemma 7.9. By Corol-
lary 7.10, for any open neighborhood U of x which is contained in V' and such that D = X — U
is a tidy divisor the pair (X, D) has enough tame coverings, i.e., condition (v) is satisfied.

On every irreducible component C of X, choose a closed point pc # z in the smooth locus of C
and not contained in any other irreducible component of X;. For each irreducible component of X,
remove from V' a (horizontal) prime divisor intersecting C transversally at pc. The complement D
in X of the resulting open neighborhood U of z is tidy by construction and thus (X, D) has enough
tame coverings. Moreover, (X, D) has properties (i) and (ii). O
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Chapter 8

The main results

In this chapter we collect the work of Chapters 4, 5, and 6 in order to prove the main theorems
of this thesis. The first theorem treats the local case and the second one the global case.

Theorem 8.1: Let Y /B be an arithmetic surface of local type and § — Y a geometric point.
Let ¢ be a full class of finite groups such that the residue characteristic of B is not contained
in N(¢) and for all but finitely many primes | € N(c) the extension B[u] — B is a c-extension.
Then Y has a basis of étale neighborhoods at §j which are K(m,1) with respect to c.

Proof: For every étale neighborhood V' — Y of § we have to construct an étale neighborhood U —
V of § which is K(7,1) with respect to ¢. Since U is again an arithmetic surface of local type
over some B’ over B, we may replace Y by U and B by B’. It thus suffices to show the existence
of an étale neighborhood U — Y of § which is K (m, 1) with respect to c.

Let ly,...,l, be the finitely many primes in N(c) such that B[u;,] — B is not a c-extension.
Consider the finite étale morphism
B/ = B[/J,ll, e ,/J,ln] — B.
Then
YxpB 5L B - B
constitutes the Stein factorization of Y x g B’ — B. Replacing 7 : Y — B with 7’ : Y’ — B’ we
may assume ; = Z/IZ on B for all prime numbers [ € N(c).

By Proposition 7.13 there is an étale neighborhood U — Y of § and a compactification U < X
of U — B such that the complement of U in X is a tidy divisor satisfying properties (i)-(v) in
the statement of Proposition 7.13.

By Corollary 2.5 and Lemma 2.22 we have to show

lim  H(U,A) =0 (8.1)
(X',DeJ% &

for A = Z/IZ with | € N(c¢) prime. For n = 1 the cohomology group H"(U, A) parameterizes
finite étale [-coverings and thus

lim HYU',A) =0

is automatically satisfied.

Let us show equality (8.1) for n > 2. We have chosen X and D such that the conditions (i)-(v) of
Proposition 7.13 are satisfied. By Proposition 7.2, for every desingularized c-covering (X', D) —
(X, D) these conditions continue to hold on X’. By propositions 5.17, 5.19, 5.20 for n = 2, n = 3,



CHAPTER 8. THE MAIN RESULTS 87

and n > 4, respectively, the restriction

lim H' (X' A) — lim H™(U',A)

(X', D)eJ% p.x (X",\D)eT% b.s
is surjective. Note that the assumptions made in these three propositions are among the condi-
tions (i)-(v) of Proposition 7.13. It is thus legitimate to apply them in our situation.

We are left with treating the cohomology groups H™(X’, A). Let us first examine the case n > 3.
By Corollary 6.2 it suffices to prove that

lim HY(B',RI7,A) =0
—>
(XI,D/)EJX,D,i

for ¢+ + j = n. This is true by Lemma 6.4.

Suppose now that n = 2. By Lemma 6.4

lim H (B Rt/ A) =0
(X',D"eJx &

for (¢,5) = (1,1) and (4,j) = (2,0). By Proposition 6.25 the composition

lim ker(H*(X',A) —» H°(B', R’m,A\)) — lim H*(X',A) — lim H*(U',A)
JI%.b. J%,b,z JI%,b.x

remains surjective. Again, the hypotheses of Proposition 6.25 are satisfied because they are
part of conditions (i)-(v) of Proposition 7.13. We can now apply the part of Corollary 6.2
concerning n = 2, which says that

lim  ker(H*(X',A) —» H'(B', R*m,A)) = 0,

(X/7D/)ej)?,f),a’;
and thus also
lim H*(U',A)
—
(XlaD,)Ej}?,D,i
vanishes. This concludes the proof. O

Theorem 8.2: Let Y /B be a regular arithmetic surface of global type and T — 'Y a geometric
point lying over a closed point x € Y mapping to b € B. We assume that x is contained in the
regular locus of (Yp)rea. Let I be a prime number different from the residue characteristic of x.
Let X denote the completion of the generic fibre Y,, of Y — B. Suppose that the action of the
inertia group at b on the l-division points of the Jacobian of Xy factors through an l-primary
quotient. Then Y has a basis of étale neighborhoods at T which are K (w,1) with respect to l.

Proof: As in the local case we have to show the existence of an étale neighborhood U — Y
of § which is K(m,1) with respect to ¢. We may assume that B satisfies properties (i)-(iii) of
Lemma 7.12. By Proposition 7.13 there is an étale neighborhood U — Y of  and a compactifica-
tion U € X of U — B such that the complement of U in X is a tidy divisor with properties (i)-(v)
of Proposition 7.2. Since by hypothesis x is not a special point, we may assume that all special
points of the fibre X, are contained in D, i.e., W is regular. By shrinking B we may assume
that X, is the only possibly singular fibre of X — B. Let b be the geometric point of B induced
by Z and denote by 7 the generic point of B. Denote by 7;|n the minimal extension of 1 such
that G, acts trivially on the [-division points of the Jacobian of Uy. After replacing B with an
étale neighborhood of b we may assume that n1|n is purely ramified at b. By assumption, the
extension 7|n is thus an [-extension. By Proposition 7.3 this property continues to hold on
every desingularized [-covering of (X, D). Furthermore, by Proposition 7.2 the above mentioned
properties (i)-(v) are also stable under desingularized I-coverings.
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Set A = Z/IZ. As in the local case we have to show that

lim  H*(U,A) =0

for n = 2.
By the same reason as in the local case
lim H"(X' A) — lim H"(U',A)
— —
(X",D"eI% b3 (X',D")eI% b=
is surjective (use Propositions 5.17, 5.19, and 5.20 as in the local case).

Again, we have to examine the cohomology groups H"(X’, A). Let us first treat the case n > 3.
By Corollary 6.2 it suffices to prove that

lim HY(B',RI7/A) =0
(X',\D)eIx px

for ¢ + 7 = n. This is true by Lemma 6.3 and Corollary 6.6. Note that for Corollary 6.6 we need
the assumption on the Jacobian of the generic fibre.

Suppose now that n = 2. By Lemma 6.3 and Proposition 6.24

lim  H'(B,R'm,A)=0
uninin Y
(X',D")eJx &
for (i,7) = (2,0) and (i,7) = (1,1), respectively. For Proposition 6.24 we need the assumption

on the Jacobian again and moreover the hypothesis that W is regular. As in the local case the
theorem now follows by Proposition 6.25 and Corollary 6.2. O
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