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1. INTRODUCTION

Consider a smooth discretely ringed adic space 2 over a field k. Here, discretely
ringed means that 2" is locally isomorphic to the spectrum of a Huber pair (A, AT),
where A and AT carry the discrete topology. The space 2~ comes with two structure
sheaves, 0y and 0. One might ask for a similar partner Q" for the sheaf of differentials
Qg = Q) . It should be a subsheaf of  := Q- defined by a condition |w,| < 1 for
suitable 0y ,-seminorms |- | on the stalks Q4 , for every point x € £". Such a sheaf Q7
will be useful for investigating cohomological purity for p-torsion sheaves in characteristic
p > 0. As explained in the introduction to [Hiib20], the logarithmic deRham sheaves v/(r)
play a crucial role in cohomological purity. They are defined by an exact sequence

0—v(r) = Q_, Lo o,
1
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in the étale topology. However, we expect purity to hold only for the tame topology (see
[Hiib18]) and the above sequence is not exact in the tame topology. We hope to solve
this problem by replacing Q" with Q™*. This will be subject to future investigations.

In this article we construct a sheaf Q as above using the K#hler seminorms (cf.
[Tem16], § 4.1) on the stalks €2, defined by

=2_;Jiag:;

wlo = _inf max{|fi] |gi}

where the infimum is taken over all representations of w as a finite sum ), fidg; (see
Section 5.1). In Section 5.2 we prove that QT is indeed a sheaf on 2. In fact, it is even
a sheaf on the tame site Z; of 2" but not on the étale site.

It turns out that Q7 has a description in terms of logarithmic differentials. After
a preliminary section on the logarithmic cotangent complex (see Section 2), we study
logarithmic differentials in Section 4. Let us specify the connection of logarithmic differ-
entials with Q*. For a Huber pair (A, A™) over k such that A is a localization of AT,
we equip AT with the total log structure (At \ my — A%) on A*. The corresponding
logarithmic differentials Ql(oAg’ A%) define a presheaf Q'°¢ but not a sheaf. We prove that the

sheafification of €28 is Q7 in Section 5.2. An important input is that for a local Huber
pair (A, A™) over k the logarithmic differentials Qt‘f A+) are torsion free over AT, i.e., they
imbed into Q4. ’

The last section is dedicated to a study of logarithmic differentials on adic spaces of the
form Spa(Y,Y), where Y is a scheme over the field k& and Y is an open subscheme such
that the associated log structure on Y is log smooth. The main result (Theorem 6.12)
constructs a natural isomorphism

O (Spa(Y.Y)) = Q°%(Y.Y),

where ¢ on the right hand side is the sheaf of logarithmic differentials on the log scheme
associated with (Y,Y’). The crucial point is that on the adic space Spa(Y,Y) we do not
need to sheafify °¢ in order to compute the global sections of Q. This makes QF a
lot more accessible and it is possible to use the theory of logarithmic differentials on
log schemes to inverstigate Q. We also want to stress that the above isomorphism is
obtained without assuming resolution of singularities The proof relies on the theory of
unramified sheaves (see Section 6.2), a notion adapted from [Morl2|, and techniques
similar to the ones applied in [HKK17| for studying cdh differentials.

Acknowledgement: The author wants to thank Michael Temkin for drawing her attention
to Kahler seminorms. Moreover, many thanks go to Steffen Sagave for his help with the
logarithmic cotangent complex.

2. THE LOGARITHMIC COTANGENT COMPLEX

In [OIs05] Olsson describes two approaches for a logarithmic cotangent complex. His
own construction using log stacks has the advantage that it is trivial for log smooth
morphisms. However, transitivity triangles only exist under certain conditions and the
construction only works for fine log schemes, i.e. under strong finiteness conditions that
are not satisfied in our situation. Gabber’s version described in [Ols05], §8 is more
functorial but it has the disadvantage that it is not trivial for all log smooth morphisms.
We will use Gabber’s log cotangent complex and compare it in special situations to
Olsson’s in order to make explicit computations. Slightly more generally we will define



LOGARITHMIC DIFFERENTIALS ON DISCRETELY RINGED ADIC SPACES 3

the log cotangent complex for simplicial prelog rings as described for instance in [Bhal2],
§5 or [SSV16], §4.

Let us start with reviewing some definitions. Recall that a prelog ring is a ring R
and a (commutative) monoid M together with a homomorphism of monoids M — R,
where R is considered as a monoid with its multiplicative structure. A log ring is a prelog
ring ¢ : M — R inducing an isomorphism (~!(R*) — R*. The inclusion of the category
of log rings into prelog rings has a left adjoint, logification (see [Ogul8|, Chapter II,
Proposition 1.1.5) We write (M* — R) or (M — R)® for the logification of (M — R).

Denote by Set, Mon, Ring, and LogRing"*® the categories of sets, monoids, rings, and
prelog rings. We write sSet, sMon, sRing, and sLogRing®™ for the respective categories
of simplicial objects. We endow sSet with the standard model structure, i.e. the weak
equivalences are the maps inducing a weak homotopy equivalence on geometric realiza-
tions and the fibrations are the Kan fibrations. Defining the (trivial) fibrations to be the
homomorphisms that are (trivial) fibrations on the underlying category of simplicial sets,
we obtain a closed model structure on sRing and sMon (see [Bhal2], §4). Now consider
the forgetful functor

L R pre .
e ne o sLogRingP™

ForgetsMon xsRing -

— sMon X sRing

mapping (M — A) to (M, A). By [SSV16|, Proposition 3.3 there is a projective proper
simplicial cellular model structure on sLogRing® whose fibrations and weak equivalences
are the maps that are mapped to fibrations and weak equivalences, respectively, under
Forgetzl%/f’fﬁg%:g. With respect to this model structure Forgetik/f’fﬁg%i:g is a left and
right Quillen functor (|Bhal2|, Propositions 5.3 and 5.5). Its left adjoint is the functor
Freezggﬁigﬁig mapping (M, A) to (M — A[M]).

For a homomorphism (M — A) — (N — B) of simplicial prelog rings we write
sLogRing?E%A)//(N%B) for the category of simplicial (M — A)-algebras over (N — B).

It inherits a model structure from sLogRing™*. Consider the functor
Q: sLogRingﬁjﬁA)//(NﬁB) — Modp
(L—=C)— Q%L—>C)/(N—>B) ®c B

where Q! is defined by applying to each level the functor of log Kéhler differentials (see
[Ogul8], Chapter IV, Proposition 1.1.2; note that a log ring in loc. cit. is what we here
call a prelog ring). Being a left Quillen functor ([SSV16], Lemma 4.6), it has a left derived
functor

LY : Ho(sLogRing{y; 4y /v p)) — Ho(Modp)

on the respective homotopy categories. The image of (N — B) under Lf2 is called
the cotangent complex of (N — B) and denoted L(y/—4)/(v—p). For a homomorphism
(M — A) — (N — B) of discrete log rings it can be computed as follows. For shortness
write F' = Forgetkffrii%ﬁi: d G = Freei{jg;gfgiﬁé (the discrete versions of the above

considered functors) We have a canonical free resolution
pm—
(1) {{canomcﬁs@m&w — B) &= GF(N — B) ==, (N — B),

which we denote by Py, — (N — B). Then a4y, n—p) is represented by Q(F,). In
particular, we recover Gabbers definition ([Ols05], Definition 8.5).

The cotangent complex has the following two important properties (see [SSV16], Propo-
sition 4.12)
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{transitivi
Proposition 2.1. (i) Transitivity. Let (M — A) — (N — B) — (K — C) be maps
of simplicial prelog rings. Then there is a homotopy cofiber sequence in Ho(Mod)

C & LinvoBy/v—a) = Lik—o)y/i—a) — Lik=c)/(n=B)-
(ii) Base change. Let
(N'—- B') «— (N — B)

I [
(M= A") +— (M — A)

pre

be a homotopy pushout square in sLogRing Then there is an isomorphism in

Ho(Modp)
B &% Lino )y (v—a) = Liv pry (i an-

In order to apply these results in our setting of discrete prelog rings it would be useful
to know when the homotopy pushouts appearing in (i) and (ii) coincide with the ordinary
pushout. The homotopy pushout in (i) appearing in the cofiber sequence is taken in the
homotopy category of Modes. Suppose that C' and B are discrete. Then it is well known
that

C ®p Linap) s = C Q% Livosn)/ra)
in case C'is flat over B. In the base change setting for discrete prelog rings it turned out

to be easier to prove the base change result from scratch instead of deducing it from the

homotopy version Proposition 2.1 (ii) for simplicial prelog rings.
_cotangent}
Lemma 2.2. Let

(N'— B') «— (N — B)

I I
(M= A") «— (M — A)

pre pre

be a pushout square in LogRing®® which is a homotopy pushout square in sLogRing™®.

Then
Livopynr—an = Linos)i—a) @4 A

Proof. Let (K — P) — (N — B) be a simplicial resolution in the category of simplicial
(M — A)-algebras. Then the induced map

(K = P) ®msay (M — A') - (N = B) Qu—a (M' - A') = (N' — B')
represents the map from the homotopy pushout to the naive pushout, hence is a weak
equivalence. It is therefore a simplicial resolution of (N’ — B’) in the category of simpli-
cial (M'" — A’)-algebras and we can use it to compute the cotangent complex of (N' — B’)
over (M — A'):

Lvpyr—any = Q(lK—>P)®(MHA)(M’—)A')/(M’—>A’) Rpoa (B®a A')
= (Q%KHP)/(MHA) ®p B) @4 A
= Ln=B)/(mr—4) @4 A
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Lemma 2.3. Let
(N'—- B') «— (N — B)

[ [
(M= A") «— (M — A)

pre

be a pushout square in LogRing®*®. It is a homotopy pushout square if and only if the

two pushout squares

N «—— N B «—— B
(2) {{pushout_monoids_riné%}} T T‘ T
M ——— M Al +—— A

are homotopy pushout squares.

Proof. Let (N” — B”) represent the homotopy pushout of (M — A) — (M’ — A’) and
(M — A) — (N — B). We obtain a map (N' — B’) — (N” — B”). By the definition
of the model structure on sLogRing™* it is a weak equivalence if and only if N’ — N”
and B’ — B” are weak equivalences. The pushout in the category of prelog rings is
compatible with the pushouts in the category of monoids and the category of rings:

B~A®,sB and N =M UyN,

3 : sLogRingP™ . .
i.e., the diagrams (2) are pushout squares. Moreover, as Forget (R, 18 a left Quillen

functor, it preserves homotopy colimits. Therefore, B” and N” represent the homotopy
pushouts of

N and B
| [
M+— M A +— A,

respectively. We conclude that (N — B') — (N” — B”) is a weak equivalence if and
only if both (N — N”) and (B’ — B”) are. O

Corollary 2.4. Let

(N'—= B') «— (N — B)
(3) {{log_pushout_square}} T T

(M' = A") +— (M — A)
be a pushout square in LogRing°. Assume that either of the ring homomorphisms A —

B or A — A’ is flat and that either M — N or M — M’ is an integral homomorphism
of integral monoids. Then the square (3) is a homotopy pushout square.

Proof. By Lemma 2.3 we have to show that the two diagrams in (2) are homotopy pushout
squares. For the diagram of rings this is well known. For the diagram of monoids this is
|Kat89], Proposition 4.1. O

Corollary 2.5. Let
(M — A)— (N — B)

{condition_

{localizati
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be a homomorphism of prelog rings and S C A a multiplicative subset. Then
Livos-18)/(m-s-14) = ST Livom)/ (1))

We finished our treatment of the compatibility of the logarithmic cotangent complex
with base change. The rest of this section uses transitivity and base change to compute
the log cotangent complex for certain well behaved prelog rings.

Proposition 2.6. Let M — A be a prelog ring and N a finitely generated free monoid.
Then

Hi(Lven—an) /(M—a))
vanishes for 1 > 1 and is isomorphic to N# @ A[N] for i = 0.

Proof. By |Ols05|, Theorem 8.16 we know that taking the associated log ring does not
change the cotangent complex:

L(neszivg /(+13-2) = Livszivg0-2)-

Since ({£1} — Z) is (obviously) log flat over Z with trivial log structure, Gabber’s
cotangent complex L(ye_z[n])/({+1}—z) coincides with Olsson’s (see [Ols05], Corollary
8.29), which we denote by L(O]\lfsa%Z[N])/({il}HZ)' But

ILOZS ~ Ql
(Ne=Z[N])/({£1}=2Z) — *H(N*—=Z[N])/{£1}=2)

as ({£1} — Z) — (N* — Z|[N]) is log flat (|Ols05], 1.1 (iii)) and
Qvasziv]) /(1) »z) = Homygon (N, Z[N]).

Now consider the pushout square
(M &N — A[N] «— (N — Z|N))
(M — A) «—— (0= 2).

The ring homomorphism Z — Z[N] is flat and the monoid N is integral. Hence, by
Corollary 2.4, the above square is a homotopy pushout square. Applying Lemma 2.2
yields an isomorphism

Liven—an))/(v—a) = Livszivy/0-2) @z A.

From this and the above description of L(y_z[n])/(0—z) We obtain the result. ]

Proposition 2.7. In the situation of Proposition 2.6 let I be a regular ideal of A[N].
Then

~ —d
Loven—amynyai—ay = (1)1 = Qiyranapg) /- ay @am AN/,
where I/I? is placed in degree —1 and d is induced from the differential.

Proof. The proof is the same as for Olson’s cotangent complex (|Ols05], Lemma 6.9): By
Proposition 2.1 (i) we have a homotopy cofiber sequence

Lven—AN)/(M=A) ®Z[N}A[N]/I — Lven—aNy/ 1)/ -4 — Loven—anN/n/(MeN—AN])-

Proposition 2.6 gives us

Lven— ANy /(M- 4) ®ZX[N} A[N]/T = Q%M@N—M[N])/(M—Ml) QAN A[N]/1.
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Moreover,
Lsen—ainy/n/oren—any) = Loapyn i = I/T[1].
We have the first isomorphism because the map on monoids is the identity ([Ols05],
Lemma 8.17) and the second one is a classical result for the cotangent complex of rings
(JI171], III, Proposition 3.2.4).
It remains to show that the resulting map I/I? = Q{yen . ainy) /a4y 18 given by the
negative of the differential. By functoriality we have a factorization

1/1* — Q}4[N] JA T Q%N[@N%A[N])/(]V[%A)'

The first map is the negative of the differential by [I1171], III Proposition 1.2.9 and the
second map is the canonical one. O

Corollary 2.8. Let A be a ring and M a finitely generated free commutative submonoid
of A*. Then LL(yr— 4)/({0y—4) is concentrated in degree zero.

Proof. We choose generators my, ..., m, of M. This defines an isomorphism of A[M] with
A[Ty,...,T.]. Let I be the ideal of A[Ty,...,T,] generated by T, —m,; fori = 1,...,r.
This is clearly a regular ideal. By Proposition 2.7 we have

~ —d

Lai ay/(03-4) = (/1 = Qs a0y - 4) @) A).-
We have a natural identification of I/I? with the free A-module with generators (T; —m;).
Moreover, by Proposition 2.6, Q%MAA[M])/({O}HA) ®apa A) is isomorphic to M* ® A. The
differential d maps (T; — m;) to dT; = T;(dT;/T;) (corresponding to m; ® m; € M3 ® A).
This map is injective. U

Finally, we will need that the cotangent complex is compatible with filtered colimits:

Proposition 2.9. Let (M — A) = colimye;(M; — A;) and (N — B) = colime;(N; —
B;) be filtered colimits in the category of prelog rings. Suppose we are given compatible
homomorphisms (M; — A;) — (N; — B;). Then there is a natural isomorphism

Liv—p)/(—4) = colim Ly, ;) (Mi—4,)-

Proof. The functors F' and G in the canonical resolution (1) commute with filtered col-
imits and so does the formation of log differentials. O

3. UNRAMIFIED AND TAME EXTENSIONS

For a valued field K we will adopt the following notation. The valuation of an element x
in K is written |z|x or only |z| when it does not cause confusion. We denote the valuation
ring of K by KT and the value group of the valuation by I'x. We endow KT with the
total log structure (KT \ {0} — K*). For an extension L|K of valued fields we define

lo
L7k = L\ {0y 1)/ \ (0} 5 K+

Remember that a finite extension L|K of valued fields is unramified if L" = Kb
(strict henselization). It is tamely ramified (or tame for short) if [L" : K*®I] is prime
to the residue characteristic of K. In this case [['; : I'x] = [L" : K*}]. An algebraic
extension L|K of valued fields is tame if all its finite subextensions are tame.

Lemma 3.1. Let L|K be unramified. Then ]Llf/gK = (). In particular, QILO;”K =0.

{cotangent._

{colimits_c

{cotangent._
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Proof. Since L|K is unramified, I';, = T'k, so the total log structure of L™ is the logifica-
tion of (K™ \ {0} — L*). We can thus compute the logarithmic cotangent complex as
follows:

]LlLo/gK = Ligr\{oy—r+)/(kH\{0}»k+) = Lp+/g+ =0,

The left hand isomorphism is due to |Ols05], Theorem 8.16, the middle one to [Ols05],
Lemma 8.17, and the right hand one to [GR03|, Theorem 6.3.32 and the well known fact
that the differentials vanish for unramified extensions. O

Proposition 3.2. For any tame extension L|K of valued fields the logarithmic cotangent

complex Is trivial: ]Llf}gK = (. In particular, Qlf/gK = (.

Proof. Using Lemma 3.1 and transitivity (Proposition 2.1 (i)) for the extensions in the

diagram
Lsh
Kb L
K.

we reduce to the case where K is strictly henselian. Moreover, since the logarithmic
cotangent complex is compatible with filterd colimits (Proposition 2.9),we can reduce
to the case of a finite extension. We decompose the extension L|K into a chain of
subextensions of prime degree:

K=LyClL,C...CL,=1L

such that [L;yq1 : L;] is a prime number. Transitivity (Proposition 2.1 (i)) allows us to
treat each extension separately. We may thus assume [L : K] is a prime number ¢ (prime
to the residue characteristic as L|K is tame).

We have L = K[a'/*] for some a € K with |a| < 1. The valuation ring L™ is the filtered
colimit of its subalgebras R, = K*[ba'/‘] with b € K such that |ba'/‘| < 1 (see the proof
of [GRO3], Proposition.3.13 (i)). We equip R}, with the prelog structure

M, = (KT\ {0} @ N)/ ~— Ry,

where the equivalence relation is generated by (b‘a,0) ~ (1, £) (note that the first compo-
nent is written multiplicatively and the second one additively) and (z,r) € M, is mapped
to z(ba'/*)" € R,. We claim that the total log structure of L is the logification of the
colimit of the prelog rings (M, — Ry). Since M, and R, are naturally contained in LT
and we already know that L™ = colim, Ry, this amounts to checking that every element
y € Lt \ {0} can be written in the form y = ux(ba'/*)" for v € K*, r €¢ N, b € K
such that |ba'/’|, < 1, and u a unit of L*. We choose b € K such that y € R,. Then
1yl = |z(ba'/*)"| for some x and r as above. Setting u = yz~!(ba'/*)~", the claim follows.

Using that logification does not change the cotangent complex (|Ols05], Theorem 8.16)
and Proposition 2.9 this reduces us to showing that Lz, r,)/(x+\{0}—K+) iS concentrated
in degree 0.
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We now consider the following pushout square of prelog rings:

(Mb — Rb) — (IN — Rb)

| [

(KT\{0} > KT) «+— (N — KT),

where the prelog structures on the right hand side are given by r +— (ba'/*)" and r
(b*a)", the right hand vertical monoid homomorphism is 7 + ¢r, the upper horizontal one
r — (1,7), and the lower one r — (b’a)". The identity on K is (obviously) flat and the
right hand vertical map of monoids is integral. Hence, the diagram is also a homotopy
pushout (see Corollary 2.4). We conclude that

L=y (k\ o}k +) = Lo ry) /(N— K +)-

By [Ols05], Theorem 8.16

I

Linosk+)/N=Ry) = LiNosk+)e /(N— Ry )a-

The logification of (IN — K1) — (N — R,) is a log étale, integral homomorphism of fine,
integral log rings. Its cotangent complex is thus isomorphic to Olsen’s cotangent complex
(JOIs05], Corollary 8.29), which in turn is concentrated in degree zero by log smooth-
ness ([Ols05], (1.1 (iii))). Moreover, it vanishes in degree zero by [Ogul8], Chapter IV,
Propostion 3.1.3. U

4. LOGARITHMIC DIFFERENTIALS ON ADIC SPACES

All Huber pairs in this section will be endowed with the discrete topology and all adic
spaces will be discretely ringed, i.e., locally isomorphic to a Huber pair with the discrete
topology. Recall from [Hiib18|, Definition 6.1, that a Huber pair (A, AT) is local if A
is a local ring with maximal ideal m4 and A" is the preimage in A of a valuation ring
of A/my. Given a local Huber pair (A4, A1), we endow A" with the total log structure
given by

(ATNA* -5 AT) = (AT \my — AT).

This extends the definition of the total log structure of a valuation ring. For a morphism
of Huber pairs (A, A™) — (B, BT), we define

n,lo L On
Q(B,g“')/(fLA“‘) T Q(BJFﬁBX—>B+)/(A+OA><—>A+)'

If n =1, we omit n and just write Ql(‘;fBﬂ/(A At)- For this section we fix a field k£ and a
valuation ring k* of k. We assume that one of the following properties is satisfied:
e the residue characteristic of k™ is 0,
e [ is algebraically closed,
e k= k™ is perfect.
For a Huber pair (A, A*) over (k, k") we use the short notation 2, for 2%+ )+ and

n,lo, n,lo
Qi for QT gk

{section_1c¢
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4.1. Logarithmic differentials on local Huber pairs. The following is a reformula-
tion of results of [GR03], § 6.5.

Proposition 4.1. Let (K, K") be any extension of valued fields of (k, k™). Then Q";}gﬁ
and (1}, are torsion free for all n > 1.

Proof. The statement about Qg+ is [GR03|, Theorem 6.5.15 and Corollary 6.5.21. In
|GRO3|, § 6.5 Gabber and Ramero examine the natural homomorphism

PK+ i+ * QLOE/Z Qp+ KT — QII(;%F/Z‘
The cokernel of pj+ -+ is isomorphic to QIKK+ (|Ogu18], Chapter IV, Proposition 2.3.1).
Therefore the result for n = 1 follows from [GROB] Lemma 6.5.16, Theorem 6.5.20, and
Corollary 6.5.21. The general case (n > 1) follows as well as over a valuation ring exterior
products of torsion free modules are torsion free (|[HKK17]). O

We want to extend this result to local Huber pairs over (k, k™). To achieve this, we
need some preparation.

Lemma 4.2. Let (A, A™) be a local Huber pair and Mt an A*-module. Denote by m
the maximal ideal of A and set K+ = A% /m. Then M™ is torsion free over A" if and
only if M is torsion free over A and M™ /mM™ is torsion free over K.

Proof. Suppose M is torsion free over AT. Torsion freeness of M, is clear as A is flat
over AT, In order to show that M /mM™ is torsion free, take a € AT\ mand m € M
such that am € mM™. Since m is an ideal of A, the action of AT on mM™ extends to A.
But a is a unit in A, whence m € mM™.

Let us now assume that M and M*/mM™ are both torsion free. Take a € AT and
m € M such that am = 0. From the torsion freeness of M we obtain that either a = 0
or there is s € AT \ m such that sm = 0. In the latter case we use the torsion freeness
of M /mM™ to conclude that m € mM™. But mM™ extends to an A-module and s is a
unit in A, so m = 0. O

Proposition 4.3. Let (A, A™) be a local (k, k*)-algebra such that A is the localization
of a smooth k-algebra. Then ', and Q"Aloj, are flat A*-modules. In particular, they
torsion free.

Proof. We give the proof for Q"Aloi For Q7 the argument is the same. We first show

that Q := Q' is torsion free. Let m be the maximal ideal of A, K = A/m, and
Kt = A" /m. By Lemma 4.2 we have to show that /m(2 is torsion free over Kt and Q,
is torsion free over A. Since AT — A is a localization, we have by [Ogul8], Chapter TV,
Proposition 1.1.3
O = QY

and this is torsion free (even free) as A is the localization of a smooth k-algebra. Now
consider the short exact sequence (see |Ogul8|, Chapter IV, Proposition 2.3.2 and The-
orem 3.2.2)

0—m/m?—= Q/m— Q% ., —0.

(K,K+)
Since m/m? is a K-vector space, it is torsion free over K. Moreover, Q(K K+) 1s torsion
free by Proposition 4.1.

Knowing that € is torsion free and Q, is flat and we can now apply [Hiib18], Proposi-
tion 10.7 to conclude that € is flat. O

{Omega_valt
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4.2. The presheaf of logarithmic differentials. The naive idea of defining logarithmic
differentials on an adic space 2 is to set for an affinoid open Spa(A4, A1)

Q°%(Spa(A, A%)) = Q% ..

and to glue these for general open subspaces. This approach is too naive fo various
reasons. Unfortunately the sheaf condition is not satisfied. Consider for instance the
following

Example 4.4. Let 2 be the affinoid adic space Spa(k[T,T~'], k) over an algebraically
closed field k. On the one hand,

lo,
Q-1 = Qk\(0}—k)/(k\ {0} k) = 0.

On the other hand, 2" = Spa(G,.x,P}) is covered by the affinoid open subspaces
Spa(k[T, T, k[T]) and Spa(k[T,T~'], k[T']). The logarithmic differentials d7/T and
—dT~1/dT~ on Spa(k[T, T '], k[T]) and Spa(k[T,T '], k[T]), respectively, coincide
on the intersection but do not lift to a global section. Hence, the sheaf condition is not
satisfied.

Apart from the fact that the above defined presheaf of logarithmic differentials is not a
sheaf, its secions on Spa(k[T,T~'], k) are not the ones we would expect. Intuitively there
should be a global section lifting dT'/T and —dT~'/dT*.

To overcome the problem described in the example we only work with strict affinoids,
which are defined as follows.

Definition 4.5. We say that a Huber pair (A, A") is strict if A is a localization of A™.
An affinoid adic space Spa(A, AT) is strict if (A, AT) is strict. For an adic space 2~ we
denote the category of strict affinoid open subspaces by Zras-

Lemma 4.6. Let 2 be an adic space locally of the form Spa(A, A*) with A/A" essen-
tially of finite type. Then the strict affinoids of 2 form a basis of the topology.

Proof. Without loss of generality we may assume that 2 is of the form Spa(A, AT) with
AJAT essentially of finite type. Given an affinoid open subspacee Spa(B, B*) we have a
diagram

B+— A

[

BT «+—— A"

such that Spec B — Spec A is an open immersion and B™ is the normalization in B of
an At-algebra of finite type. In particular, B is essentially of finite type over B*. It thus
has a compactification Y — Spec BT. By [Hiib18|, Lemma 7.5 we have an identification
Spa(B, BT) = Spa(B,Y). Covering Y by affines Spec A and each Spec B N Spec A;" by
affines Spec A;;, we obtain a cover of Spa(B,Y’) by the strict affinoids Spa(A4;;, 4;). O

Lemma 4.7. Let (A, A"), (B,B™"), and (C,C™) be strict affinoids. Then the tensor
product

(D,D*) = (B,B") ®a+ (C,CT)

is strict.

{strict_nei

{tensor_prc
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Proof. Let S = D™ N D*. We claim that D = S~!DT. Every element of S is invertible
in D, whence the existence of a natural homomorphism S~'D* — D. Injectivity is
clear as D* C D. Let d € D. We want to write d = d* /s for d* € D™ and s € S.
Without loss of generality we may assume d = b ® ¢ for b € B and ¢ € C. But by
assumption b = b /s and ¢ = ¢t /t for b© € B, s € BTN B*, and b € C* N C*. Hence
d=0b"®ch)/(s®1t). O

Let X — S be a morphism of schemes which is essentially of finite type. We equip
Spa(X, S)strar (see [Tem11], § 3.1 for the definition) with the topology whose coverings are
surjective families. Note that by Lemma 4.7 the necessary fiber products for the structure
of a site exist. We denote by Spa(X, S)p the site associated with the topological space
Spa(X, S). By Lemma 4.6 the corresponding topoi of Spa(X, S)strasr and Spa(X, S)iep are
equivalent. If F is a presheaf on Spa(X, S)sar We can view its sheafification as a sheaf G
on all of Spa(X,S). Slightly abusing notation we will say that G is the sheafification
of . We have thus justified the restriction to strict affinoids.

Our presheaf of interest is the presheaf of logarithmic differentials Q8. It is defined
on Spa(X7 S)Straff as

Q°f(Spa(A4, A%)) = Q% ..
Similarly we define ™!°8 by
Q18 (Spa(A4, AM)) == Q1% .
Even restricted to strict affinoids 2!°8 is not a sheaf as the following example shows.

Example 4.8. For positive integers d and r we consider the action of pg on C[Xo, ..., X,]
induced by the diagonal embedding of 14 in Gl..1(C). In other words, £ € ug acts by
multiplying each coordinate with £&. We consider the quotient spaces

Xy i= (Spec C[ X, .., X,])/pta = Spec C[ X, .. ., X, 1.

They are normal and can also be described as the affine cone of the dth Veronese embed-
ding of P.. Moreover, note that

A;’:d = C[Xo, cee ’Xr]ﬂd

is the C-subalgebra of C[Xy, ..., X,| generated by all monomials of degree d. In [GR11],
Proposition 4.1 it is shown that QXM has torsion if and only if d > 3.

Let U,4 = Spec A, 4 be the open subscheme of X, ; defined by inverting Xg. Then
(Ara, A),) is a strict Huber pair. By transitivity (Proposition 2.1 (i)) and the vanishing
of Hl(L((XS)WHAH)/({O}%AL)) (Corollary 2.8) we know that

log

Qur = Q(Ar,d,Am/(c,m

C e . log
is injective. Hence, Q2
J A AT)/(C,0)

Let Y, s — X, 4 be the blowup in the origin. Denote by D the Cartier divisor of Y, 4
which is the pullback of the Cartier divisor of X, ; defined by Xg. Then Y, 4 is smooth

and D is a simple normal crossings divisor. In particular, (U, 4, Y, 4) is log smooth, so

log . .
Q(Ur,d,YT,d)/(C,C) is torsion free.

has torsion as well for d > 3.

We cover Y, 4 by affine schemes Spec B;r. As the complement of U, 4 in Y, 4 is the sup-
port of a principal Cartier divisor, the intersection of Spec B; with U, 4 is still affine. We
denote the corresponding ring by B;. The strict affinoids Spa(B;, B;") cover Spa(A,. 4, A:fd).
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log
Moreover, €2 (B B)/(€,0)

over (C,C). In particular, Ql?_ri,Bﬂ/(c ©)

log log
Qi aar o) HQ(B“B+

cannot be injective because Qt‘f 1/(C.0) has torsion. We conclude that the sheaf axiom
T d7 7(1 )

is a finitely generated free B;"-module as (B;, B;") is log smooth

is torsion free over A:fd. But then

is not satisfied.

The example already suggests that the problems lie in the singularities of Spec A™.
Indeed we will see in Section 6 that the differentials are well behaved for log smooth
Huber pairs.

We are now interested in the sheafification of Q™. For a strict Huber pair (A4, A1)
over (k, k™) and n > 1, we consider the natural map

n,lo n,lo, ~,

If (A, AT) is local and A is the locahzatlon of a smooth k-algebra, it is injective. (Proposi-
tion 4.3). We conclude that the sheafification of ™! is a subsheaf of Q" in case Spa(X, S)
is smooth over (k, k™). It will turn out that the sheafification can be described in terms
of the Kéhler seminorm which we study in the next subsection.

5. THE KAHLER SEMINORM

5.1. The Ké&hler seminorm for local Huber pairs. Fix (k, k") as before. Moreover,
throughout this subsection (A, A™) is a local Huber pair over (k, k™) equipped with the
discrete topology. We denote by m the maximal ideal of A™.

Definition 5.1. We define the Kihler seminorm on €24 by

wlo = _Inf max{|fialgila},

= 1agi
where the infimum is over all representations of w as a finite sum w =), fidg;.
The Kéhler seminorm has been studied in [Tem16], § 5 for real valued fields. As our
setting is a little bit different, we give the proofs of the properties we need although they

are similar as in loc. cit. By Proposition 4.3 we can consider Qles (A.A+) S an A*-submodule
of QA

Lemma 5.2. We have
Q5 = e | wlo < 1),
Proof. For w =Y. fidg;/g; in Qs (A4A+) We have
wlo < max{|fi[} <1.
Now take w € QY with |w|q < 1. By definition there is a representation w = Y, f;dg;
with
max{|fi|algila} <1,
e., |filalgila <1 for alli. So f;g; € AT.
In case g; ¢ m we write g; = ¢./g/ with ¢i, g/ € AT\ m. Then

dg; dgz o
fidgz f.gz g +fzgz g QlAg,aﬁ

)

{section_Ke

{unit_ball}
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Suppose now that g; € m. If f; € m as well, then in particular, f; and g; are both elements
of A*. Hence, fidg; € Qa+ C Ql(‘ff,Aﬂ (Qa+ is torsion free by Proposition 4.3). Finally, if
g; € m but f; ¢ m, we write

fidgi = d(fig:) — gidf;.
The first term is in QY, C Ql& A+ and the second term in QI((E’AJF) by the same reasoning

as above. We conclude that w € QICEM O

Lemma 5.3. The Kéahler seminorm is the maximal A-seminorm on Q4 with | Og| <1
and |dz|g = 0 for v € m.

Proof. We already know from Lemma 5.2 that the Kéhler seminorm is less or equal to
one on logarithmic differentials. It is also clear from the definition that |dz|q = 0 for
z € m. Tt remains to show the maximality. Let | — | be a seminorm such that |Q'%] < 1
and |dz| =0 for x € m. Let w € 4 and pick a representation w = >, fidg,;. For every i
such that g; ¢ m take g, g/ € AT\ m such that ¢g; = ¢g//g/. Then

dg; , dgi’

fldgl fz z( 17 )

gi i

For i with g; € m we have |f;dg;| = 0. Hence, by the strong triangle inequality,

!

dg; q!
|w| < maX{|fi9i|A| ! |fgz|A| !}'

2,94

<1 and ]dgl

By our assumption | d9; < 1, whence

ol < max{|ilalgila} = max{|falgl.1}

Since this holds for all representations w = . fig;, we obtain |w| < |w|a. O

Definition 5.4. For a local Huber pair (A, A™) and an A*-module M we define the adic
seminorm by

— +
|2]aq := Inf |a™|4.
ateAt
x€atM
. . . 1 . .
We can consider the adic seminorm on 4%, On the other hand, we have an inclusion
1 . . . ] .
Q ilgm — Q4 (see Proposition 4.3). We thus obtain a seminorm on Q((EM) by restricting

the Kéhler seminorm to Ql((jiAJr).
Lemma 5.5. Forw € Q(AA+) we have |x|q = ||

Proof. By Lemma 5.3 it suffices to show that |QIA A laa < 1, |dx|eq = 0 for x € m, and

lwla < |w|gq for all w € QIA a+y- The first assertion is obvious as |Q§,A+)|ad C |A*|4. For
the second one take z € m and a™ € AT \ m. Then z is divisible by a™ and

dr = d(a* - a%) - (a%)doﬁ - a+(d(ai+) - #

, dv € a*QlofAﬂ By the definition of the adic seminorm, this means |dz| < |a™|.

)da™,

As a™ was arbitrary, this implies |dx| = 0.
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Let us now prove the last assertion. Take w € Q x a+y and at € AT withw € a*Ql‘fAﬂ
So there is a representation w = >, a* f;dg;/g; Wlth fi € AT and g; € AT\ m. Then

wlo < max{la®|a - |fila} < |a|a;
Since this holds for all a* € AT with w € a+Ql((fA+ we obtain
wlo < waa-
{isometry}
Proposition 5.6. Let (B, B")/(A, AT) be a tame extension of local Huber pairs. Then
is an isometry (with respect to the Kdhler seminorm).

Proof. Consider the following map of distinguished triangles

lo lo log +1
Litan @i BT —= L 5oy — LB pe) a0
L,®Y% B » L s Lpjg —— .

Since B/A is étale, L4 = 0 ([IlI71], Proposition 3.1.1). Moreover, (B, B*)/(A, AT)
is tame, whence ]L(B B)/(AAF) = ( (see Proposition 3.2). Furthermore, B is flat over A

and B is flat over A (see [Hiib18], Proposition 10.7). Hence the derived tensor products
are naive tensor products. We thus obtain a diagram

Ql°gA+) ®a+ BT —> Qlos

(B,B+)
| |
Q4®4 B +> Qp.

The vertical maps are localizations by Corollary 2.5. Hence, in order to show that v is
an isometry, it suffices to show that ¢ is an isometry. But the restriction of the Kéahler
seminorm to logarithmic differentials coincides with the adic seminorm (Lemma 5.5) and

the adic seminorm is unique for a given A™-module. U
{section_Kse
5.2. The Kihler seminorm on adic spaces. For a discretely ringed adic space 2, a

point x € £, and an open neighborhood % C 2 of x we define the Kéahler seminorm
| — |z on Qg (%) associated with x as follows. For w € Qg (%) let w, be the image of w
in Qg . =g, ,. Then

|wle = |wzle,
where | — |q is the Kéhler seminorm on g, . associated with the local Huber pair
(ﬁﬁf,xa ﬁjg@)

Recall from [Hiib18], that an étale morphism f : 2" — # of adic spaces is strongly
étale at a point x € 2 if the residue field extension k(x)|k(f(z)) is unramified with
respect to the valuation of k(z) corresponding to x. Moreover, f is tame if k(x)|k(f(x))
is tamely ramified. The tame (strongly étale) morphisms to 2" together with surjective
families form a site 2 (Ze), called the tame (strongly étale) site.
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Definition 5.7. We define the subpresheaf Q" of Q on 2; by
O U) ={weQU¥) | |w|. <1Vx e XU}.

Notice that this construction is indeed functorial: For ¥ — % in %2, w € QT (%),
and x € ¥ we have
wlvle = |wlp@ <1

by Proposition 5.6. By restriction, we obtain a presheaf on the topological space 2 and

on the strongly étale site 2,4, as well. We denote all of these Q. Moreover, we set
Qe .= A" QF.

Proposition 5.8. The presheaf Q% is a sheaf on %;.

Proof. For a covering (p; : % — %) in Z; consider the diagram
0 — QN (%) — [ N%) — Hz’j U <9 U;)

/ / I

The lower row is exact as €2 is a sheaf. We have to show that the upper row is exact.
Since QO — Q is injective, exactness on the left hand side is clear. Let (w;); € [[, Q1 (%)
be such that

Wil U x g Uy = Wil Uixa U Vi, j.
There is w € Q(% ) such that w|y, = w; for all 7. In order to show that w € Q1 (%), take
x € %. Since (p; : U — %) is a covering, there is ¢ and z; € %; such that p;(z;) = .
By Proposition 5.6

Ui\ — |w1|xz <L
Hence w € QF(%). O

Remark 5.9. For a morphism ¢ : ¥ — % in Z4 that is not tame, w € Q(% ), and
x € ¥, it is not true in general that |w|y |, = |w|s@m) (compare [Tem16], Theorem 5.6.4).
We only have |w|y|, < |w]y@). So QF is a presheaf on the étale site but not necessarily
a sheaf.

wla = |w

Proposition 5.10. Let n > 1 and 2" a (discretely ringed) adic space. As a sheaf on the
topological space 2, Q™" is the sheafification of Q™'°¢. In particular, Q™% is a subsheaf
of Q™.

Proof. Let us first show the proposition for n = 1. The homomorphism '°¢ — Q factors
through QT as for an open  C 2, w € Q°¢(% ) and x € % we have

log
wy € Q)
* (ﬁ%',xvﬁ:ﬂ%’x)

and
Qlog )’Q S 1

(ﬁ=%vz’ﬁg‘,’,z
by Lemma 5.2. Tt thus suffices to show that for all x € 2" the induced homomorphism
on stalks

log +
0.8 — QF

is an isomorphism. This is precisely the assertion of Lemma 5.2.
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For n > 1 it is clear by definition and from the result for n = 1 that the sheafification
of Q™°8 is O™+ It then follows from Proposition 4.3 that the natural homomorphism
Q™ — Q" is injective. O

Note that the sheafification of Q™'°¢ on the topological space 2~ also provides the
sheafification on the strongly étale and on the tame site as Q™7 is a tame sheaf.

6. DIFFERENTIALS ON SMOOTH ADIC SPACES

6.1. Setup. Recall from [Hub96|, Definition 1.6.5 that a morphism 2~ — % of adic
spaces is smooth if it is locally of finite presentation and for every morphism Spa(A, A1) —
% from an affinoid adic space and every ideal I of A with I? = 0, the homomorphism

Homy (Spa(A, AT), 27) — Homy (Spa(A4, A7) /I, Z7)

is surjective.

We fix a perfect field k£ and consider discretely ringed adic spaces over Spa(k, k). For
short we will speak of adic spaces over k.

A pair of schemes (X, X) is called log smooth if X is an open subscheme of X (we
implicitly take the immersion X — X as part of the datum) such that the associated log
structure on X is log smooth over k. We say that X — X is a log smooth presentation of
an adic space 2 over k if 2" = Spa(X, X) and (X, X) is log smooth. In particular, if 2~
has a log smooth presentation, it is smooth. The converse direction only holds under the
assumption that resolutions of singularities exist over k.

For a morphism of schemes X — S such that Spa(X, S) is a smooth adic space over k,
we consider the following site (X, S): The objects are finite disjoint unions of log
smooth pairs (Y,Y) fitting into a diagram

Y — X

Y —— S

such that Y — X is an open immersion and Y — S is the normalization in Y of a scheme
of finite type over S. The morphisms are compatible morphisms of pairs over (X, S) (but
we do not require the associated morphism of log schemes to be log smooth). If (X, 5)
itself is log smooth, it is a final object of (X, S)e. A morphism (Y',Y’) — (Y,Y) in
(X, S)og is called an open immersion if the associated morphism of log schemes is an
open immersion, i.e., Y/ — Y is an open immersion and Y’ =Y xy Y’. We define the
coverings of (X, 5)ie to be surjective families

(Y5, Ys) = (V.Y ) )ier

of open immersions. In other words, the topology is the Zariski topology on Y.

On (X, S)1g we consider the sheaf Q™1°8 of logarithmic differentials (compare |[Ogul§],
Theorem 1.2.4). Tt is no coincidence that the symbol ™!°¢ is the same as for the presheaf
of logarithmic differentials on the site of strict affinoids studied in Section 4.2. In fact for
a strict affinoid Spa(A, A™) such that (Spec A, Spec A™) is log smooth, we have

Q?fjﬂ — ™!°8(Spec A, Spec AT)

by construction. Because of this compatibility the use of 2™!°¢ in both situations will not
cause confusion.

{section_di
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For an object (Y,Y) of (X, S), the induced morphism
Spa(Y,Y) — Spa(X, S)
is an open immersion. We thus obtain a morphism of sites
0 Spa(X, S)iop = (X, 9)10g-
For log smooth Huber pairs (A, A™) Lemma 5.2 provides functorial homomorphisms

Q™8 (Spec A, Spec AT) — Q?ZAH = £.Q™7(Spec A, Spec AT).

Since the log smooth pairs of the form (Spec A, Spec A™) form a basis of the topology of
(X, S)10g and both Q™8 and £,Q™* are sheaves on (X, S)g, the above homomorphism
extends to a homomorphism of sheaves

@ QUlos 5 QT

Our goal is to prove that if Spa(X,.S) is smooth, ¢ is an isomorphism. Since we do not
want to use resolution of singularities, the argument is somewhat intricate. It is inpired
from [HKK17]. However, we have adapted the constructions to our situation to produce
a more streamlined argument.

6.2. Unramified sheaves.

Definition 6.1. We say that a morphism of schemes ¥ — Z is an isomorphism in
codimension one if there is an open subscheme U C Z containing all points of codimension
< 1 such that the base change Y x, U — U is an isomorphism. A morphism (Y,Y) —
(Z,Z) in (X, S)1g is an isomorphism in codimension one if Y — Z is an isomorphism in
codimension one and Y = Z xy Z. In this case we write (Y,Y) ~; (Z,2).

In a similar way as in [Mor12|, Definition 2.1, we define unramified sheaves:

Definition 6.2. A sheaf .7 on (X, S)io is called unramified if for any open immersion
(YY) = (Y,Y) in (X, S)ig with dense image the restriction

FY.Y) = FY.Y

is injective and an isomorphism if (Y',Y’) ~; (Y,Y) .
A presheaf ¢4 on Spa(X, S) is called unramified if /,% is an unramified sheaf.

Lemma 6.3. Let.# be an unramified sheaf on (X, S)iog. If (Y',Y") = (YY) in (X, S)iog
induces an isomorphim Spa(Y’',Y') — Spa(Y,Y'), then the restriction

FY,)Y) = FY' Y
is an isomorphism.

Proof. The morphism Spa(Y’,Y’) — Spa(Y,Y) is an isomorphism if and only if Y’ =Y
and Y’ — Y is proper birational. Since (Y,Y) is log smooth, Y is normal. Hence, the
exceptional locus of Y/ — Y in Y is of codimension > 2. In other words, its complement
V C Y contains all points of codimension < 1. By construction Y C V and the open
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immersion V — Y lifts to an open immersion V — Y’. We thus obtain a diagram

(YY)

P

(Y, 7).

The diagonal arrows are open immersions with dense image and the image of the lower
one contains all points of codimension < 1. Applying .# yields

ZY',Y)

/

FY,Y).

Since % is unramified, the lower diagonal arrow is an isomorphism and the upper one
is injective. Hence, the vertical arrow is an isomorphism (and the upper diagonal one as
well). O

For an open subset % of Spa(X,S) we define the following full subcategory Zog
of (X,9)e Its objects are the objects (Z,Z) of (X,S)g such that the morphism
Spa(Z,Z) — Spa(X,S) induced by the structure morphism factors through %/. Ob-
viously, for %' C % we have %k’)g C Yog-

In case % = Spa(Y,Y), all objects (Z, Z) of (X, S)1g with a morphism (Z, Z) — (Y,Y)
are in Spa(Y, Y )iog. But Spa(Y,Y )y, might be bigger. For instance, if (Y,Y) — (Z,Z) is
a morphism in (X, ) such that Y — Z is proper and not an isomorphism and Z =Y,
then (Z,Z) € Spa(Y,Y )ig but there is no morphism (Z, Z) — (Y,Y). Only in the affine
case we have the following lemma:

Lemma 6.4. Let (A, AT) be log smooth. Then (Spec A, Spec A") is a final object of
Spa(A, AT ).

Proof. Let (Y,Y') be an object of Spa(A, A%); and set & = Spa(Y,Y). Then Oy (%) =
Oy(Y)and 0, (%) = Oy (Y). By [Hub94|, Proposition 2.1 there is a natural isomorphism

Hom((A4, A"), (O (%), 0(%))) = Hom(%, Spa(A, AT)).

We thus obtain ring homomorphisms A — Oy (Y) and AT — Oy (Y). By functoriality
they fit into a commutative diagram

{final_obje
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The characterization of morphisms to affine schemes by homomorphisms of global sections
of the structure sheaves yields a commutative diagram of schemes

Y —— SpecA

! !

Y —— Spec AT.
This defines a morphism (Y,Y) — (Spec A, Spec AT) in Spa(A, AT)jog. d
Lemma 6.5. Let Spa(Y,Y) C Spa(X, S) be open coming from a diagram of schemes

Yy — X

Yy — X.
Moreover, let (Z,Z) € Spa(Y,Y )1og. Then there is an open subscheme UcZ isomorphic
in codimension one, containing Z, and such that (Z,U) — (X, S) factors through (Y,Y).

Proof. Replacing, if necessary, Y with a compactification of Y over Y, we may assume that
Y — Y is an open immersion with dense image. The morphism Spa(Z, Z) — Spa(Y,Y)
provides an open immersion ¢ : Z — Y and a birational map @ : Z — Y. Since Z is
normal, @ is defined over an open subscheme U C Z containing all points of codimension
< 1. Moreover, we may assume that U contains Z. By construction (Z,U) — (X, S)
factors through (Y,Y). O

We want to remind the reader of the concept of Riemann-Zariski morphisms (see
[HS20]). A point = of an adic space 2 is called Riemann-Zariski, if it has no non-
trivial horizontal specialization. A Riemann-Zariski morphism is a morphism of adic
spaces mapping Riemann-Zariski points to Riemann-Zariski points. Let us now consider
morphisms of adic spaces Spa(Y,T) — Spa(X, S) arising from diagrams of schemes

Yy — X

|

T —— 5.

The above diagram is said to have universally closed diagonal if the induced morphism
Y — X xg T is universally closed. In this case the morphism Spa(Y,T) — Spa(X,S)
is Riemann Zariski and the converse holds if Y is quasi-compact and all residue field
extensions of Y — X are algebraic (see [HS20], Lemma 12.7). In case S is integral, Y is
quasi-compact, and X — S and Y — X (and hence also Y — T') are open immersions
with dense image, being Riemann Zariski is equivalent to Y = X xg¢T.

Lemma 6.6. Let (Y,Y) be in (X, S),.. Let (Spa(Y;,Y;) — Spa(Y,Y))icr be a finite
Riemann-Zariski covering and (Z,7) € Spa(Y,Y )iog. Then there is an open immersion
of the form (Z,U) — (Z, Z) which is an isomorphism in codimension one such that
e (Z,U) — (X, 9) factors through (Y,Y) and
° setting Z; = Z Xy Y; and Uz = U Xy Y;‘, the famﬂy ((ZzaUz) — (Z, U))iel is a
covering in (X, 5)iog-
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Proof. Using Lemma 6.5 we find an open subscheme V' C Z containing Z and isomorphic
in codimension one such that (Z,V) — (X, S) factors through (Y,Y). Set Z; = ZxyY; =
ZNY;and V; = V; x3 Y;. Since V is normal, for each i the morphism V; — V is an open
immersion when restricted to a suitable open subscheme of V isomorphic in codimension
one and containing Z. Denote by U the intersection of all of these subschemes for all 1.
Setting U; = U xy V; we obtain a diagram

(Z2,U) —o— (Z,V) —— (YY)

ﬁvl
(2, 2).

All required properties of U are clear except maybe that (U; — U);er is a surjective
family. But by construction the family (Spa(Z;,U;) — Spa(Z,U))e; is the pullback of
the covering (Spa(Y;,Y;) — Spa(Y,Y))ic; by Spa(Z,U) — Spa(Y,Y). In particular, it is
surjective. This implies that (U; — U);c; has to be surjective. OJ

Definition 6.7. For an unramified sheaf .# on (X, 5),, we define a presheaf %y, on
Spa(X,.S) as follows: )
Fim( %)= lim F(Y)Y).
(YY)eXog

We want to emphazise that in the above definition we are taking a limit and not a
colimit. The presheaf %}, is not related to the pullback ¢*.%. Notice moreover, that the
definition of Zy;, is indeed functorial: For open subsets 7' C % in Spa(X,S) we need
a restriction (%) — Fiim(%’) in

Hom(Fim (% ), Fiim(%')) = lim colim Hom(.Z (Y,Y), Z (Y, Y")).
(YY) (YY)
In other words, we have to find for each (Y',Y’) in %, a (Y,Y) in oy and define a
homomorphism
FY)Y) = FY' Y.

Moreover, these homomorphisms need to be compatible. But for given (Y, Y') we can
just take (YY) = (Y, Y”’) and the identity homomorphism on .% (Y’,Y”). This is clearly

functorial.

Lemma 6.8. Let F be an unramified sheaf on (X, S)og. Then for all open subspaces
' C U C Spa(X,S) the restriction

Friim U ) = Frim (W)
is injective.
Proof. Suppose s = (sxy.v))v,y) € Ftim(% ) maps to zero in Fyn(%'). This means that
sy = 0forall (YY) € %,. Take any (Y,Y) in Z.g. We have to show that sy = 0.
Without loss of generality we may assume that (Y, Y) is connected. There is a dense
open Y' C Y such that, setting Y' = Y’ NY, the morphism Spa(Y’,Y’) — Spa(X,S)
factors tlg)rough '. Then Z#(Y,Y) — FZ(Y',Y’)is injective and s(y.y |y vy = 0, WhencEe,
S(yj/) = V.

{restrictic
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o) . . . {F_lim_shes
Proposition 6.9. With the above notation Fy, is a sheaf on Spa(X,S).

Proof. 1t suffices to show the sheaf condition for coverings of the form (¢; : Spa(Y;,Y;) —
Spa(Y,Y))icr with finite index set I coming from diagrams

Y, -2 Y

Y, v,
Moreover, by [HS20], Lemma 12.10, every such covering has a refinement which is Riemann-

Zariski. Therefore, we may assume that our covering is Riemann Zariski. We need to
show that the sequence

Fim(Spa(Y,Y)) — H%im(spa<n,ﬁ>> = [ Zum(Spa(¥;, V) N Spa(Y;,Y;))
. o
is exact. Exactness on the left is assured by Lemma 6.8. Suppose we are given s; =
(8i(2:,2: ))(Z 2,y in Fim (Spa(Y;, Y;)) such that the restrictions of s; and s; to Spa(Y;, ¥;) N
Spa(Y},Y;) coincide. By definition this means that

8i(2,2) = %j(2.2)
for all (Z,7) € (Spa(Y;,Y;) N Spa(Yj,Yj))log. )
We have to find s € P (Spa(Y,Y)) with s|sp.y,v,) = s for all i. Let (Z,Z) be in

Spa(Y, Y )ig. In the following we explain how to define S(z,2)- Lemma 6.6 provides us
with an open subscheme U C Z isomorphic in codimension one and _containing Z such
that (Z,U) — Spa(X, S) factors through (YY) and ((Z;,U;) — (Z,U));cr is a covering
in (X, )i (Where Z; = Z xy Y; and U; = U xy Y;). Since .Z is a sheaf on (X, S)1og, the
sequence

is exact. The sections s; (7, i,y € -Z (Z;, U;) coincide on the intersections (Z;NZ;, U;NU;).
They thus lift to a unique section s 7y of F(Z,U). We define s z) to be the preimage
of 5.7y under the isomorphism .7 (7, Z) — .#(Z,U). It follows from the fact that .7 is
unramified that the s, z) are compatible and define an element of .y, (Spa(Y,Y)). We
leave the details to the reader.

Let us show that s|gpay;y,) = si- This is equivalent to showing that for all (Z, 7)€
Spa(Y;, Y;)1og We have S(7,7) = Si,(z,7)- By unramifiedness we can check this equality after
restricting to (Z,U) for an open subscheme U C Z isomorphic in codimension one and
containing Z. By Lemma 6.6 we may thus assume that (Z,Z) — (X, S) factors through
(Y., Y:) and ((Z;,Z;) = (Z,Z))jer (for Z; = Z;ixy,,Y; and Z; = Z; Xy, Y;) is a covering in
Spa(X, S)ig. By construction, sz z) is unlquely defined by the condition sz 7)|(z,z,) =

8j(z.z,) for all j € I. In particular, sz 2|z, 2,) = Si(z,2) But (Zi, Z;) = (Z, Z)
S(2.2) = Si(2.2)- D

Lemma 6.10. Q™'°% is unramified.

Proof. Theorem 38 in [Mat70] says that a noetherian normal domain is the intersection
of the localizations at its height one prime ideals. It follows from this that the sheaf &
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on (X, S)e defined by
(YV,Y) = Op(Y)
is unramified. Since the objects of (X, S)g are log smooth, Q™°8 is a locally free O-

module. Hence, it is unramified as well. Il

6.3. The comparison theorem. We have a natural map Q™% — Qﬁ;}nog of presheaves

on the site of strict affinoids Spa(X, S)syag- Sine Qﬁl’jlfg is a sheaf by Proposition 6.9, this
map factors through the sheafification Q™+ of Qmls:

Qn,log - Qn,+ N Qn,log‘

lim
Proposition 6.11. Let (A, A") be log smooth. Then the natural homomorphism
QUL — " (Spa(A, AY))
is an isomorphism.

Proof. Consider the chain of homomorphisms

QL. £ (Spa(A, A1) £ Qes(Spa(A, A)) £ .

lim
By Lemma 6.4 we know that (Spec A, Spec A1) is a final object of Spa(A, AT),.. Hence,
we can identify Q%% (Spa(A4, A1) with Q?ji’jﬂ and then o0 is the identity. Moreover,

lim
3 0 9 is the natural inclusion. We obtain

id

T

QL% —E Ot (Spa(A, AT)) —Z QE%(Spa(A, AT)) —2 Q.

lim
inclusion

A diagram chase shows that ¢ and ¢y are isomorphisms. U
Theorem 6.12. Let (Y,Y) be in (X, S),z. Then

Q" F(Spa(Y,Y)) = Q™8 (Y,Y),
where Q™1°8 denotes the sheaf of logarithmic differentials on (X, S)1og.

Proof. Consider the subcategory € of (X, S), of objects of the form (Spa A, Spa A™).
It is a site with the induced topology and the topoi associated with € and (X, S) are
equivalent. We consider the following morphism of sites

7 Spa(X, S )strag — €
Spa(A, A") < (Spec A, Spec A1),

It fits into the following commutative diagram of morphisms of sites

Spa(X, S)top ——— (X, 9)iog

lLstraff lbcﬁ

ﬂ.straff

Spa(X, S)strat ———— €.

{comparisor

{main_theoz
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It follows by construction that gstraff,sraff 7 = C 7 Z for any presheaf .Z on Spa(X, S)op-
Applying 75 t0 the homomorphism Q7108 — straffiQnt of presheaves on Spa(X, S)sirat,
we obtain a homomorphism

71_itrafon,log N Lfﬁ*Qn’+.

Unraveling the definitions, we see that 75720108 equals 19 Q™% (where now Q™1°8 de-
notes the sheaf of logarithmic differentials on (X, S),s). By Proposition 6.11 the above
homomorphism is an isomorphism. Since the topoi associated to € and (X, S), are
equivalent, we obtain an isomorphism

Qo8 — QT

of sheaves on (X, S),. Evaluating at an object (Y,Y) in (X, S)ig vields the result. [
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