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Abstract

For the locally symmetric space X attached to an arithmetic subgroup of an
algebraic group G of Q-rank r we construct a compact manifold X̃ by glueing
together 2r copies of the Borel-Serre-compactification of X. We apply the classical
Lefschetz fixed point formula to X̃ and get formulas for the traces of Hecke
operators H acting on the cohomology of X. We allow twistings of H by outer
automorphisms η of G. We stabilize this topological trace formula and compare
it with the corresponding formula for an endoscopic group of the pair (G, η). As
an application we deduce a weak lifting theorem for the lifting of automorphic
representations from Siegel modular groups to general linear groups.

Introduction

0.1. Topological Trace Formula: The aim of this paper is to develop a topological
trace formula for Hecke operators acting on the ordinary cohomology of locally symmetric
domains X attached to congruence subgroups of an algebraic group G/Q. We want to deal
with the twisted case also where we allow the Hecke operators to be twisted by an outer
automorphism of G. In the untwisted case such formulas have already been developped
respectively applied by several authors: [Bew], [GKM1], [GKM2], [GM2], [Har2], [Har3],
[KuS], [RoSp], [W1].

We will deduce our formula from a Lefschetz fixed point formula for compact manifolds,
restated in 3.3. Since the spaces X are not compact, we have to use a trick for this
reduction: We construct a compact manifold X̃, which is obtained by gluing together 2r

pieces of the Borel-Serre-compactification X̄ ([BS]) along their boundary strata, where r
denotes the Q-rank of G. On X̃ we have an action of the group S∆ := {±1}r, such that the
quotient X̃/S∆ is isomorphic to X̄. Under this isomorphism we can identify the ordinary
cohomology of X with the S∆-invariant part of the cohomology H(X̃) and similarly the
cohomology with compact supports of X with the χ−1-eigenspace of H(X̃), where χ−1 :
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S∆ → {±1} denotes the character (ε1, . . . , εr) 7→ ε1 · · · εr. By twisting our (twisted) Hecke-
correspondences with all elements σ ∈ S∆ we thus get the correspondences, to which we
can apply the simple fixed point formula for manifolds. By this method we avoid the
application of intersection cohomology to a singular compactifications (e.g. the reductive
Borel-Serre-compactification [GHM], [GT]).

It should be noted that a similar construction already appears in the work of Oshima
[Osh]. But while she gives a compactification ỸOsh of the symmetric space Y of G(R) i.e.
she makes a construction over R, we want to construct a compactification of the locally
symmetric quotient Γ\Y , where Γ denotes some congruence subgroup in G(Q), i.e. we
have to introduce an arithmetic construction. In fact we will construct some extension
(not a compactification) Ỹ of Y , such that the action of Γ can be continued to a proper
discontinuous action on Ỹ (at least for some smaller neat congruence subgroup of Γ), such
that X̃ ' Γ\Ỹ . But the space Ỹ is topologically highly non trivial and has no relation to
ỸOsh apart from the fact that it contains 2r copies of Y too.

0.2. The example SL2. The upper half plane H = H+ ' SL2(R)/SO2(R) is the symmet-
ric space for SL2(R). Then Oshimas construction just gives the complex projective line
ỸOsh = P1(C) = H+∪H−∪P1(R), but the action of Γ cannot be continued in a satisfactory
way from H to P1(C), so that we don’t get a good compactification of Γ\Y in this way.

Our construction can be described as follows: We too can take H+ and H− as the two
copies of H, but we embed them into the complex affine line A = C in the following way:

ι : H+ ∪H− ↪→ C, −x + i · y 7→ x + i · 1
y
.

We take a set of representatives {δ}δ∈∆ for SL2(Q)/B(Q) ' P1(Q), where B ⊂ G denotes
the Borel subgroup of upper triangular matrices and define the embeddings

ιδ : H+ ∪H− ↪→ C, z 7→ ι(δ(z))

Now Ỹ is obtained by gluing together
⋃

δ∈∆C along their open subspaces H+∪H−, where
each subspace is embedded via ιδ into the component C which is indexed by δ. So we get
for each rational cusp in P1(Q) a real line which lies in the common closure of H+ to H−
and a homotopy class of paths from H+ to H−.

Let us illustrate the procedure of computing Euler characteristics χ(X) and Lefschetz
numbers via the compactification procedure in some examples:

Example 0.3. Let X be a Riemann surface of genus g with n > 1 small disks removed.
If one glues together 2 copies of X along the boundary ∂X which is the disjoint union
of n copies of S1, one gets a compact Riemann surface X̃ of genus 2g + n − 1. One has
χ(X̃) = 2− 2(2g + n− 1), χ(∂X) = 0 and

χ(X) = χc(X) =
(2− 2(2g + n− 1)) + 0

2
= 1− (2g + n− 1) = h0(X)− h1(X).
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Example 0.4. Let X be an open interval. Then ∂X consists of the two boundary points
of X and X̃ is homoeomorphic to S1, i.e. χ(X̃) = 0 and χ(∂X) = 2. In this case we get

χ(X) = 1 =
χ(X̃) + χ(∂X)

2
χc(X) = −1 =

χ(X̃)− χ(∂X)
2

.

0.5. In section 1 we construct the spaces X̃ and Ỹ carrying an action of the group S∆

in an adelic language. We avoid to refer to constructions in the paper of Borel and Serre
[BS] and formulate our constructions in a more group theoretical language which gives the
manifold structure of Ỹ immediately. It would be rather unnatural to start with manifolds
with corners to get the manifold structure. The group theoretical description in an adelic
language enables us to compute and describe the sets of fixed points.

0.6. In section 2 we compute the sets of fixed points of Hecke correspondences twisted
by an outer automorphism η. This section uses well known methods ([Bew],[GM3]) and is
of computational nature.

0.7. In section 3 we develop a general Lefschetz fixed point formula for η-twisted Hecke
correspondences on locally symmetric spaces. At first we restate a more or less well known
version of the Lefschetz fixed point formula for compact oriented manifolds. We do not
assume that the correspondence has only isolated fixed points but allow higher dimensional
submanifolds Yj of fixed points, such that the correspondence is only transversal to the
diagonal in the normal direction to Yj .

We apply this fixed point formula to the η-twisted Hecke correspondences H twisted with
elements σ ∈ S∆ acting on X̃. Of course we have to prove that our modified transversality
assumptions hold. The Lefschetz number of H on the cohomology (resp. cohomology with
compact support)of X can then be obtained as linear combination of the Euler characteris-
tics of different sets of fixed points. One has to stratify the sets of fixed points with respect
to the different boundary strata of the Borel-Serre compactification. Fixed point strata on
the boundary contribute several times to the fixed point formula. These contributions may
cancel each other depending on the signs with which the fixed point components contribute
to the trace formula. This corresponds to the theory of contracting and expanding fixed
points in the work of Goresky and MacPherson ([GM1]) and of Bewersdorff ([Bew]). The
Euler characteristics involved can be handled with the Gauss Bonnet formula of Harder
([Har1], [Leu]), so that we arrive at a first version of the trace formula involving orbital
integrals.

0.8. In section 4 we stabilize this trace formula under certain conditions on the vanishing
of the Galois cohomology of the group G, which are satisfied in the main applications we
have in mind. We give a self contained version of this stabilization process independent
of the general theory of [KoS], since the topological trace formula kills several difficulties
of the general trace formula of Arthur and Selberg [Ar] but requires some additional
considerations at the archimedean place.

0.9. In section 5 we compare two topological trace formulas for a group G with outer
automorphism η and its stable endoscopic group G1. We formulate a lemma which com-
pares the traces of matching elements on the coefficient systems. We get that the Lefschetz
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numbers of matching (η-twisted for G) Hecke correspondences on the two locally symmet-
ric spaces coincide. Using the work of Ngô and Waldspurger on the (twisted) fundamental
lemma this implies that the cohomology of X̃G may be considered as the lift of the co-
homology of X̃G1 modulo representations induced from G(Af ) to G(Af ) o 〈η〉. We will
formulate our final result for the lifting from Sp2n to PGL2n+1 and for the lifting from
GSpin2n+1 to GL2n×GL1 over a totally real number field F . Remark that GSp4 is GSpin5,
so that we get two liftings from symplectic groups of genus 2 to general linear groups. A
lifting from PGSp4 to PGL4 has been obtained already by Flicker [Fl3] using a variant of
Arthurs trace formula.

Our result depends on a naive definition of liftings of representations of the finite adele
group: We have to assume, that the normalization of Haar measures on the centralizers
of global elements is in such a way, that certain factors involving the infinity component
agree. This will be sufficient to get weak lifting statements, but requires a more subtle
analysis to get precise lifting statements including multiplicity formulas.

Details and applications of this result will be given in a forthcoming paper [Wes].
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1. The spaces

Levi and maximal compact subgroups

1.1. Reductive groups. Let G/Q be a connected reductive group, G(1) its derived group
and Z = ZG its center. We fix a minimal parabolic Q-subgroup P0 and a maximal Q-split
torus S0 ⊂ P0. Let Φ = Φ(G,S0) ⊂ X∗(S0) be the set of Q-roots of G with respect to
S0, Φ+ ⊂ Φ the subset of positive roots with respect to P0 and ∆ ⊂ Φ+ the set of simple
roots.

1.2. Parabolics. The subsets J of ∆ are in 1-1-correspondence with the G(Q)-conjugacy
classes of rational parabolic subgroups. Each conjugacy class contains exactly one standard
parabolic subgroup, denoted by PJ , i.e. satisfying P0 ⊂ PJ ⊂ G. We define for J ⊂ ∆:

SJ =

( ⋂

α∈J

kerα

)◦
⊂ S0

MJ = Cent(SJ) = centralizer of SJ in G

AJ =
(
SJ(R) ∩G(1)(R)

)◦
.
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As usual the upper index ◦ describes the connected component of the identity (in the first
line for the Zariski topology, in the last line for the real topology). We denote by UJ (resp.
U0) the unipotent radical of PJ (resp. P0). Then we have

PJ = MJ · U0 = MJ n UJ

S∅ = S0, P∅ = P0, P∆ = G

and S∆ is the maximal Q-split torus in ZG.

Lemma 1.3. (compare [Bol] 20.6(i), 11.23(ii))

(a) If M ⊂ PJ is a Levi subgroup with SJ ⊂ M then M = MJ .

(b) If u−1 ·MJ · u = MJ for some u ∈ UJ(Q̄) then u = 1.

Proof: (a) Since MJ is a Levi subgroup of PJ and any two Levi subgroups of PJ are
conjugate, there exists u ∈ UJ(Q̄) such that

M = u ·MJ · u−1.(1)

This implies u−1SJu ⊂ u−1Mu = MJ = Cent(SJ), i.e. (u−1s1u) · s2 = s2 · (u−1s1u) for all
s1, s2 ∈ SJ(Q̄). We can rewrite this equation in the form (since SJ is abelian)

s1 · (s−1
2 us2u

−1) = (s−1
2 us2u

−1) · s1.

Since this is valid for all s1 ∈ SJ(Q̄) we get:

(s−1
2 us2) · u−1 ∈ MJ(Q̄) = Cent(SJ(Q̄)).

On the other side we have (s−1
2 us2) · u−1 ∈ UJ(Q̄), since s2 normalizes UJ . Therefore

s−1
2 us2 · u−1 ∈ MJ(Q̄) ∩ UJ(Q̄) = {1}, i.e. us2 = s2u for all s2 ∈ SJ(Q̄), so that u ∈

Cent(SJ(Q̄)) ∩ UJ(Q̄) = {1} and therefore M = MJ , which proves (a).

If we start with M = MJ in (1) we arrive again at u = 1 with the same proof, i.e. we get
the statement (b).

Lemma 1.4. There exists a maximal compact subgroup Km∞ ⊂ G(R) such that

MJ(R) ∩Km
∞ = PJ(R) ∩Km

∞ for all J ⊂ ∆.

Proof: Let K1 be some maximal compact subgroup of G(R). We denote by θ1 the Cartan
involution of G/R with respect to K1 ([BS, 1.6]). The group M1 := P0∩θ1(P0) is the unique
Levi subgroup of P0 stable under θ1 (apply [BS, 1.8] for L = G, H = P0). We have M1 =
u ·M0(R) ·u−1 for some u ∈ U0(R). Put Km∞ := u−1K1u. Now θ0 := int(u)−1 ◦θ1 ◦ int(u) is
the Cartan involution of G/R with respect to Km∞ (This may be deduced easily from the
characterization in [BS, 1.6].) We have θ0(M0) = int(u)−1θ1(M1) = int(u)−1(M1) = M0.
For arbitrary J ⊂ ∆ we get:

θ0(PJ) ∩ PJ ⊃ θ0(P0) ∩ P0 = u−1 (θ1(P0) ∩ P0) u = u−1M1u = M0 ⊃ S0 ⊃ SJ .

Again by [BS, 1.8] the left hand group is a Levi subgroup of PJ so that we get MJ =
θ0(PJ) ∩ PJ by lemma 1.3(a). Now PJ(R) ∩ Km∞ = {p ∈ PJ(R)|θ0(p) = p} ⊂ PJ(R) ∩
θ0(PJ(R)) = MJ(R). Therefore PJ(R) ∩Km∞ = MJ(R) ∩Km∞ for all J ⊂ ∆.

Lemma 1.5. The family of simple roots (α)α∈∆−J induces an isomorphism of groups:

AJ →̃ (R∗>0)
∆−J .
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Proof: (compare [BS] 4.2.(2)) The exact sequence of algebraic groups

1 → S∆ ∩G(1) → SJ ∩G(1) → (Gm)∆−J → 1

induces an exact sequence:

1 → S∆(R) ∩G(1)(R) → SJ(R) ∩G(1)(R) → (R∗)∆−J → H1(R, S∆ ∩G(1)) → 1,

since SJ ∩G(1) is a split torus. Now the first and fourth term are finite groups, so that the
middle map induces an isomorphism between the connected components of the identity of
the second and third term. Since AJ is the connected component of the second term, the
claim is now clear.

Multi-pushouts

1.6. The category J∆. For a set ∆ we denote by P(∆) the set of its subsets. We define
a category J∆ whose objects are pairs (I, J) with I ⊂ J ⊂ ∆ i.e.

Ob(J∆) = {(I, J) ∈ P(∆)×P(∆) |I ⊂ J } and where

Morph((I, J), (K, L))

{
consists of one element ΦK,L

I,J if I ⊂ K ⊂ L ⊂ J

= ∅ else.

There is a unique and obvious composition of morphisms.

If C is another category we denote by CJ∆ the category of functors F : J∆ → C. The
category C may be embedded as a full subcategory into CJ∆ if we associate to every
c ∈ Ob(C) the constant functor Fc : (I, J) 7→ c, ΦK,L

I,J 7→ idc.

For F ∈ CJ∆ we denote by lim−→J∆

F ∈ Ob(C) the direct limit of F (if it exists). This means

HomCJ∆ (F, Fc) = HomC(lim−→J∆

F, c) for all c ∈ Ob(C).(2)

Example 1.7. If C is the category of sets, one can construct lim−→ F in the following way:

Let X =
.⋃

j∈Ob(J∆)

F (j) be the disjoint union of all F (j). Define an equivalence relation ∼
by: For x ∈ F (j) and x′ ∈ F (j′) we have x ∼ x′ if and only if there are sequences

j = j0, j1, . . . , j2n = j′ of objects in J∆,
xi ∈ F (ji) i = 0, 1, . . . , 2n of elements and
φ2i+1 : j2i+1 → j2i, φ2i+2 : j2i+1 → j2i+2, i = 0, 1, . . . n− 1 of morphisms
such that x = x0, x′ = x2n, F (φ2i+1)(x2i+1) = x2i, F (φ2i+2)(x2i+1) = x2i+2.

Then it is obvious that X/∼ satisfies the defining property (2) of the direct limit lim−→J∆

F .

Example 1.8. If (I, J) 7→ XI,J is a functor from CJ∆ to the category T of topological
spaces, we may construct X = lim−→ XI,J as follows: The set X is the limit in the category

of sets; it carries the quotient topology with respect to the map
.⋃

XI,J → X. This means
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that a subset U ⊂ X is open if and only if all Φ−1
I,J(U) ⊂ XI,J are open. Here we denote

by ΦI,J : XI,J → X the natural map.

Example 1.9. If ∆ = {e} consists of just one element, then lim−→ F is the pushout in the
following diagram

F ((∅, {e})) −−−−→ F (({e}, {e}))y
y

F ((∅, ∅)) −−−−→ lim−→ F

For general ∆ we can think about lim−→J∆

F as a multi-pushout.

Example 1.10. Assume that there exists J0 ⊂ ∆ such that F fulfills the following prop-
erties:

F (I, J) = ∅ (the initial object in the category C) if J * J0,(3)
Φ : F (I, J) → F (I, K) is an isomorphism for I ⊂ K ⊂ J ⊂ J0.(4)

Then we have lim−→ F = F (J0, J0).

Proof: For c ∈ Ob(C) consider the obvious map:

Ψ : HomCJ∆ (F, Fc) −→ HomC(F (J0, J0), c).

Conversely if ϕ : F (J0, J0) → c is given, we can associate to it the transformation ϕ∆ :
F → Fc such that we have for I ⊂ J ⊂ J0:

ϕ∆(I, J) : F (I, J)

(
ΦI,J

I,J0

)−1

−−−−−−−→ F (I, J0)
Φ

J0,J0
I,J0−−−−→ F (J0, J0)

ϕ−−−−→ c

and such that ϕ∆(I, J) is the unique map from the initial object ∅ to c if J * J0. It is easy
to check that ϕ∆ is an element of HomCJ∆ (F, Fc) and the only one satisfying Ψ(ϕ∆) = ϕ.
Therefore Ψ is an isomorphism.

Example 1.11. Let C be the category of sets and C∆ the category, whose objects are
pairs (A, π), where A is a set and π is a map from A to P(∆), and where morphisms
φ : (A, πA) → (B, πB) are maps φ : A → B such that πB ◦ φ = πA. If F : J∆ → C∆ is
a functor then we get for every J0 ⊂ ∆ a functor FJ0 : J∆ → C, such that FJ0(I, J) is
the inverse image π−1(J0) inside the first component of F (I, J). If we assume that FJ0

satisfies (3) and (4) for every J0 ⊂ ∆ then we can describe the direct limit as follows:

lim−→J∆

F '



.⋃

J0⊂∆

FJ0(J0, J0), π




where the map π takes the value J0 on the component FJ0(J0, J0).
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Distance functions and reduction theory

1.12. Absolute values of characters. The natural inclusion SI ⊂ PI induces a nat-
ural restriction map for characters r : X∗(PI) → X∗(SI) which becomes an isomorphism
after tensoring with Q:

rQ : X∗(PI)⊗Q −̃→ X∗(SI)⊗Q, i.e.

for χ ∈ X∗(SI) there exists N ∈ N and χ̃ ∈ X∗(PI) such that χ = r(χ̃)N . Then we denote
by

|χ| : PI(A) → R∗>0 the character(5)

g 7→ |χ̃(g)|(1/N),

where χ̃ : PI(A) → A∗ = Gm(A) and the absolute value denotes the idele norm.

Definition 1.13. Distance functions. Let K = K∞Kf ⊂ G(A) be a compact subgroup
such that K∞ ⊂ G(R) is maximal compact and Kf ⊂ G(Af ) is open. A distance function
with respect to I ⊂ ∆, to a character χ ∈ X∗(SI) and to K is a map

d = dχ = dχ,K : G(A) −→ R∗>0 such that
dχ(pgk) = |χ|(p) · dχ(g) for p ∈ PI(A), k ∈ K, g ∈ G(A).(6)

1.14. The Iwasawa-decomposition G(R) = P0(R) ·K∞ = PI(R) ·K∞ implies the isomor-
phism of double coset spaces:

PI(A)\G(A)/K ∼= PI(Af )\G(Af )/Kf .

The right hand side is finite since it is the set of (open!) Kf -orbits in the compact quotient
space PI(Af )\G(Af ) (Kf acting via right translations on this space). Let {g

1
, . . . , g

n
} be

a set of representatives for PI(Af )\G(Af )/Kf . Then we have a bijection between the set
of all distance functions d with respect to I, χ, K and (R∗>0)

n given by d 7→ (d(g
i
))16i6n:

We get the injectivity of this map from the construction of the g
i

together with the
characterizing property (6) of distance functions. The surjectivity may be deduced from
the fact, that an equation pg

i
k = p′g

i
k′ implies p−1 · p′ ∈ PI(Af )∩ g

i
Kfg−1

i
and therefore

|χ|(p) = |χ|(p′), since R∗>0 contains no nontrivial compact subgroups, so that the image
of the compact group PI(Af ) ∩ g

i
Kfg−1

i
under |χ| is trivial. This implies that one always

gets via (6) well defined distance functions if one prescribes their values at the g
i
.

We observe that any two distance functions dχ, d̃χ with respect to the same triple I, χ, K
are equivalent in the sense that there exist c1, c2 ∈ R∗>0 such that

c1 · dχ(g) 6 d̃χ(g) 6 c2 · dχ(g) for all g ∈ G(Af ).

In fact we can put c1 = min16i6n d̃χ(g
i
) · dχ(g

i
)−1 and c2 = max16i6n d̃χ(g

i
) · dχ(g

i
)−1.

Example 1.15. (compare [Har1]) Let

χI = χPI
=

∑

α∈Φ+

α · dim (Lie(UI)α) ∈ X∗(PI) ⊂ X∗(SI) ⊂ X∗(S0).
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For g∞ ∈ G(R) we denote by θg∞ the Cartan involution with respect to the compact group
g∞K∞g−1∞ , by Bg∞ the bilinear form Bg∞(X, Y ) = −B(X, θg∞Y ), where B is the Killing
form on g = Lie(G(R)), and by dg∞u∞ the Haar measure on UI(R) which is induced by
the restriction of Bg∞ to Lie(UI). Furthermore let dgf

uf be the Haar measure on UI(Af )
such that UI(Af ) ∩ gfKfg−1

f has volume 1. Then

dχI (g) = voldg∞u∞·dgf
uf

(UI(Q)\UI(A))

defines a distance function on G(A) with respect to χI and K.

Now we fix K and distance functions dα with respect to {α} ⊂ ∆, α ∈ X∗(S{α}) ⊂ X∗(S0)
and K.

We may state the main theorems of reduction theory in the following form:

Theorem 1.16. For every I ⊂ ∆ there exists C1 = C1(I) > 0 such that for every g ∈ G(A)
there is δ ∈ PI(Q) satisfying

dα(δg) > C1 for all α ∈ I.

Remark: We may replace C1(I) by the constant C1 = minJ⊂∆ C1(J), which is independent
of I.

Proof: It is easy to see that it suffices to prove the theorem for one chosen K and a
fixed family of distance functions (dα)α∈∆. In the case I = ∆, i.e. PI = G the claim
is an immediate consequence of Borels theorem as stated in [God, Théorème 7]. For
arbitrary I ⊂ ∆ let (xj)j∈J(I) with xj ∈ G(Af ) ⊂ G(A) be a finite set of representa-
tives for the double cosets PI(Af )\G(Af )/Kf . For j ∈ J(I) define dj

α(p) = dα(pxj) as
a distance function on MI = PI/UI with respect to {α}, α ∈ X∗(S{α}) ⊂ X∗(S0) and
Kj = xjKfx−1

j ∩PI(A). Applying Borels theorem again we get constants Cj
1 > 0 such that

for every p ∈ PI(A) there exists δ ∈ PI(Q) satisfying dj
α(δp) > C1 for all α ∈ I. In

view of the double coset decomposition G(A) =
⋃

j∈J(I) PI(A)xjK we now get the claim

with C1(I) = minj∈J(I) Cj
1 .

Theorem 1.17. For every C1 > 0 there exists C2 > C1 such that we have for I ⊂ ∆, δ ∈
G(Q), g ∈ G(A):

If dα(δg), dα(g) > C1 for all α ∈ ∆

and dα(δg) > C2 for all α ∈ ∆− I

then δ ∈ PI(Q).

Proof: This is a reformulation of [Fr, Theorem 1(3)].

The components
1.18. The spaces XI,J . Now we fix some maximal compact subgroup Km∞ ⊂ G(R) satis-
fying the conditions of lemma 1.4 and some open normal subgroup K∞ ⊂ Km∞ satisfying
G(R) = P0(R) ·K∞.
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Let Z∞ be the connected component of the group of R-valued points of the maximal
R-split subtorus of the center ZG/R.

For J ⊂ ∆ we fix the notations

KJ
∞ = PJ(R) ∩K∞ = MJ(R) ∩K∞.

Let the group (comp. 1.2, 1.5)

AJ =
(
SJ(R) ∩G(1)(R)

)◦
act on the space

YJ : =
{

(eα)α∈∆ ∈ R∆
∣∣ eα ∈ {+1,−1} for α ∈ J

} ⊂ R∆ via the roots
a · (eα)α∈∆ = (α(a) · eα)α∈∆ .

For I ⊂ J the group AJ acts on the space PI(R)/KI∞ · Z∞ via right translations, since
AJ ⊂ SJ(R) ⊂ SI(R) centralizes KI∞ ⊂ MI(R). For I ⊂ J we can form the quotient space

XI,J := G(Q) ×PI(Q) (PI(R)/KI
∞ · Z∞) ×AJ

YJ .(7)

More precisely we consider the quotient of G(Q) × PI(R) × YJ under the equivalence
relation (γ, p, y) ∼ (γ′, p′, y′) iff there exist δ ∈ PI(Q), a ∈ AJ , k ∈ KI∞ · Z∞ such that
γ′ = γδ, p′ = δ−1 · p · k · a, y′ = a · y.

Lemma 1.19. For I ⊂ I ′ the canonical map

PI(R)/KI
∞ · Z∞ → PI′(R)/KI′

∞ · Z∞
is an isomorphism.

Proof: The corresponding map with Z∞ replaced by {1} is injective by the definition of KI∞.
Since the composite map P0(R) → P0(R)/K∅∞ → G(R)/K∞ is surjective by assumption,
the claim is now clear for Z∞ replaced by {1} and then obviously also for the original
Z∞.

1.20. The manifold structure of XI,J . By the above lemma we can replace PI(R)/KI∞·
Z∞ by the corresponding space PJ(R)/KJ∞ ·Z∞ in (7). We denote by 0PJ the intersection
of the kernels of all χ2, where χ ranges over all characters χ : PJ → PJ/ZG → Gm. Then
there is a unique decomposition PJ(R) = 0PJ(R)oAJ . We remark

(
PJ(R)/KJ

∞Z∞ × R∆−J × {±1}J
)

/AJ ' 0PJ(R)/KJ
∞Z∞ × R∆−J × {±1}J .

Using a set of representatives for G(Q)/PI(Q) in G(Q) we can thus identify

XI,J = (G(Q)/PI(Q))× 0PJ(R)/KJ
∞Z∞ × R∆−J × {±1}J .

Since 0PJ(R)/KJ∞Z∞ is a submanifold of the symmetric space PJ(R)/KJ∞Z∞ ' G(R)/K∞Z∞,
we get a structure of XI,J as a differentiable manifold, if we equip G(Q)/PI(Q) and {±1}J

with the discrete topology, R∆−J with the usual structure as a manifold and then take the
product structure.

1.21. Functoriality for XI,J . The isomorphism of lemma 1.19 induces surjective maps
which are coverings in the category of differentiable manifolds:

π : XI,J ³ XI′,J for I ⊂ I ′ ⊂ J.

10
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If I ⊂ J ′ ⊂ J we get an injective map (injective by the definition of AJ):

i : XI,J ↪→ XI,J ′

which is induced from the inclusion YJ ↪→ YJ ′ . For I ⊂ I ′ ⊂ J ′ ⊂ J we get a commutative
diagram:

XI,J −−−−→ XI′,Jy
y

XI,J ′ −−−−→ XI′,J ′

(8)

Consequently we get a functor X.. from the category J∆ into the category of topological
spaces. We denote by X the direct limit over all spaces XI,J where I ⊂ J ⊂ ∆:

X = lim−→ XI,J .

1.22. The group H∞. We introduce the group

H∞ = (Km
∞ ∩ P0(R))/K∅

∞ = (Km
∞ ∩ P0(R))/(K∞ ∩ P0(R)).

For all I ⊂ ∆ we have a canonical isomorphism ιI : H∞→̃(Km∞∩PI(R))/KI∞: Injectivity of
ιI is implied by KI∞∩P0(R) = K∅∞. For the surjectivity observe that each g∞ ∈ Km∞∩PI(R)
can be written in the form g∞ = p∞ · k∞ with p∞ ∈ P0(R) and k∞ ∈ K∞. But then also
p∞ = g∞ · k−1∞ ∈ Km∞, i.e. p∞ ∈ Km∞ ∩ P0(R) and therefore k∞ = p−1∞ g∞ ∈ PI(R) ∩K∞ =
KI∞.

Since each element in Km∞ ∩ P0(R) normalizes the groups KI∞, Z∞ and AI the group H∞
acts by right translations on the spaces XI,J and these actions are compatible with the
maps π and i.

1.23. Sign maps. Next we introduce the sign space Σ∆ = {−1, 0, +1}∆ and the sign
map sign : R∆ → Σ∆, which is component for component the usual sign map.

For y = (yα)α∈∆ ∈ R∆ we call supp(y) = {α ∈ ∆|yα 6= 0} its support. This definition
also applies to the sign space Σ∆ ⊂ R∆, such that we have supp(y) = supp(sign(y)) for
y ∈ R∆.

Since the action of AJ ⊂ A∅ on R∆ fixes the signs we get sign maps

sign : XI,J −→ Σ∆ and sign : X −→ Σ∆

For I ⊂ J ′ ⊂ J we have

XI,J
∼=

{
x ∈ XI,J ′

∣∣ supp(x) ⊃ J
}

.

We define for J ⊂ ∆:

EJ : = {x ∈ X | supp(x) = J}, so that

X =
.⋃

J⊂∆

EJ . We have

{x ∈ XI,J | supp(x) = J0} = ∅ for J * J0 and
{x ∈ XI,J | supp(x) = J0} ∼= {x ∈ XI,J0 | supp(x) = J0} for I ⊂ J ⊂ J0

11
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We consider XI,J as a set together with the support map to P(∆). The functor (I, J) 7→
(XI,J , sign) satisfies the conditions of example 1.11 above. Then it is easy to see:

EJ0 = lim−→
I⊂J⊂J0

{x ∈ XI,J | supp(x) = J0} ∼= {x ∈ XJ0,J0 | supp(x) = J0}

∼= G(Q)×PJ0
(Q) PJ0(R)/KJ0∞ ·AJ0 · Z∞ × {−1, +1}J0 × {0}∆−J0 .

1.24. The sign group S∆. The set S∆ = {−1,+1}∆ forms a group under componentwise
multiplication. It acts on R∆, Σ∆, YJ for all J ⊂ ∆ by componentwise multiplication and
therefore also on all XI,J . We write the action of S∆ as a right action. The sign map
and all maps π, i are S∆-equivariant, so that S∆ acts on X. S∆ may be identified with
the set of all subsets of ∆: For J ⊂ ∆ we denote by sJ = (rα)α∈∆ the element with
rα = −1 ⇔ α ∈ J . It is rather obvious that

XsJ = {x ∈ X|x · sJ = x} =
.⋃

I∩J=∅
EI .

1.25. The quotients XI,J(Kf ) and X(Kf ). For a compact open subgroup Kf ⊂ G(Af )
we introduce the spaces:

XI,J(Kf ) = G(Q)\XI,J ×G(Af )/Kf and
X(Kf ) = G(Q)\X ×G(Af )/Kf = lim−→

I,J

XI,J(Kf ).

We have a canonical identification

XI,J(Kf ) = PI(Q)\ (
PI(R)/KI

∞Z∞ ×AJ
YJ

)×G(Af )/Kf .

We fix an open compact subgroup Zf ⊂ ZG(Af ) (which will be assumed to be sufficiently
small later). In the following we shall consider only such Kf , which satisfy

Kf ∩ ZG(Af ) = Zf .(9)

The set of all Kf satisfying (9) is invariant under conjugation and under intersecting its
members. If Kf = K1

f · Zf for an open compact subgroup K1
f ⊂ G(1)(Af ) then (9) is

equivalent to the condition K1
f ∩ ZG(Af ) ⊂ Zf . In case K1

f =
∏

p K1
p and Zf =

∏
p Zp

the local conditions K1
p ∩ ZG(Qp) ⊂ Zp have to be checked only for those finitely many p

where Zp is not maximal compact in ZG(Qp). We define the group

ζ = ZG(Q) ∩ (K∞ · Z∞ × Zf ) .

It acts trivially (from the left) on each XI,J ×G(Af )/Kf and on X ×G(Af )/Kf . We now
assume

For all gf ∈ G(Af ), g∞ ∈ G(R) we have(AssKf
) (

gfKfg−1
f · g∞K∞Z∞g−1

∞
)
∩G(Q) = ζ .

Lemma 1.26. Each Kf satisfying (9) contains open subgroups satisfying (AssKf
).
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Proof: By shrinking Kf we may assume Kf = K1
f · Zf for an open compact sub-

group K1
f =

∏
p K1

p ⊂ G(1)(Af ). We claim that we are done, if we replace some K1
p

by an open pro-p-subgroup (which will be denoted by the same symbol): Let ζ̃ =(
gfKfg−1

f · g∞K∞Z∞g−1∞
)
∩ G(Q). If n denotes the order of the finite algebraic group

G(1) ∩ ZG, then there exists an isogeny of tori ω : G/G(1) → ZG such that π̃ ◦ ω
is the multiplication by n, where π : G ³ G/G(1) is the canonical projection and
π̃ : ZG ↪→ G ³ G/G(1) the induced isogeny with kernel G(1) ∩ ZG. For γ ∈ ζ̃ we get
γn = σ · ρ with σ = ω(π(γ)) ∈ ZG(Q) ∩ ζ̃ = ζ and ρ ∈ G(1)(Q) ∩ ζ̃. The rational ele-
ment ρ is now of finite order, since its archimedian component lies in the compact group
g∞K∞g−1∞ . But the p-component of ρ is contained in the product of the torsion free pro-
p-group gp ·K1

p · g−1
p and a subgroup of the finite central group (G(1)∩ZG)(Qp). Therefore

ρ must be central, i.e. ρ ∈ ZG(Q) ∩ G(1)(Q) ∩ ζ̃ = ζ and thus γn ∈ ζ. Looking again at
the p-component and using that gp ·K1

p · g−1
p is a pro-p-group we conclude that already γ

must be central, i.e. γ ∈ ζ.

Lemma 1.27. The action of G(Q)/ζ on each XI,J × G(Af )/Kf and therefore on X ×
G(Af )/Kf is free of fixed points.

Proof: Let ((γ, p, y), gf ) be a representative of an element of XI,J × G(Af )/Kf which is
a fixed point under δ ∈ G(Q). Then there exist ρ ∈ PI(Q), k∞ ∈ KI∞, a ∈ AI , z∞ ∈
Z∞, kf ∈ Kf such that

(δγ, p, y, δgf ) = (γρ, ρ−1pk∞z∞a, ay, gfkf ).

This means ρ = γ−1δγ = γ−1gfkfg−1
f γ ∈ γ−1gfKfg−1

f γ ∩ PI(Af ). Since the latter is a
compact subgroup of PI(Af ), its image under the absolute value of each root α ∈ ∆ − I
must be 1. Thus |α(ρ)|∞ = |α(ρ)|−1

f = 1. On the other side we have a = z−1∞ k−1∞ p−1ρp and
therefore α(a) = |α(a)| = |α(z∞)−1| · |α(k∞)−1| · |α(ρ)|∞ = 1 for all α ∈ ∆− I. Since we
know this already for α ∈ J ⊃ I we get a ∈ A∆ = {1}. Now ρ ∈ G(Q), ρ ∈ γ−1gfKfg−1

f γ

and ρ ∈ pK∞Z∞p−1. Therefore ρ ∈ ζ by assumption AssKf
. Since ρ is central the equation

δγ = γρ implies δ = ρ ∈ ζ, i.e. δ represents the identity in G(Q)/ζ.

1.28. For each distance function dα : G(A) → R∗>0 associated to α ∈ ∆ we define a
function Dα : X∅,J → R>0 by

Dα(γ, p∞, y) = dα((p∞, γ−1
f ))−1 · |yα|.

This is well defined since we have |α|(δ∞, δf )| = 1 for δ ∈ P0(Q) by the product formula
for the norm, so that

Dα(γδ,δ−1p∞a, ay) = dα(δ−1
∞ p∞a, δ−1

f γ−1
f )−1 · |α(a) · yα|

= |α|(δ∞, δf )|−1 · |α|(a)−1 · dα(p∞, γ−1
f )−1 · |α(a)| · |yα| = Dα(γ, p∞, y).

In the same way we consider the function

Dα : X∅,J(Kf ) = G(Q)\(X∅,J ×G(Af )/Kf ) → R>0 defined by

Dα((γ, p∞, y), gf ) = dα((p∞, γ−1
f gf ))−1 · |yα|.
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Gluing together
1.29. The neighborhoods UI,J and VI,J . Let C1 be a constant as in theorem 1.16 and
C2 > C1 be an associated constant as in theorem 1.17. We define UI,J ⊂ X∅,J by:

UI,J =
{
x ∈ X∅,J | Dα(x) < C−1

1 for α ∈ I, Dα(x) < C−1
2 for α ∈ ∆− I

}

For I ⊂ J we denote by VI,J ⊂ XI,J the image of UI,J under the projection X∅,J → XI,J .

We recall from 1.23:

X =
.⋃

J0⊂∆

{x ∈ XJ0,J0 | supp(x) = J0}

The relation C−1
1 > C−1

2 implies UI,J ⊂ UK,J for I ⊂ K ⊂ L ⊂ J . Together with the
canonical inclusion UK,J ⊂ UK,L this gives UI,J ⊂ UK,L and induces a map:

ΦK,L
I,J : VI,J → VK,L.

Lemma 1.30. The maps ΦK,L
I,J are injective.

Proof: Let ΦK,L
I,J (x1) = ΦK,L

I,J (x2) where x1, x2 ∈ VI,J . Write xi = ΦI,J
∅,J (x̃i) where x̃i =

(γi, pi, yi) ∈ UI,J . Since ΦK,L
∅,J (γ1, p1, y1) = ΦK,L

∅,J (γ2, p2, y2) there exists δ ∈ PK(Q), a ∈ AL

satisfying γ2 = γ1 · δ−1, p2 = δp1a, y2 = a · y1. Since the α-components of yi equal
±1 for α ∈ J we get α(a) = 1 for α ∈ J , i.e. a ∈ AJ . There exists a2 ∈ AJ such
that y0 := a2 · y1 has components −1, 0, +1 and such that dα(p1 · a2, (γ1)−1

f ) > C2 and

dα(p2 · a−1 · a2, (γ2)−1
f ) > C2 for all α with (y1)α = 0 = (y2)α. Then we have xi = ΦI,J

∅,J (x′i)
where x′1 = (γ1, p1 · a2, y0) =: (γ1, p

′
1, y0) and x′2 = (γ2, p2 · a−1 · a2, y0) =: (γ2, p

′
2, y0).

We have (p′2, (γ2)−1
f ) = δ · g for g = (p′1, (γ1)−1

f ) and dα(g), dα(δg) > C2 for α ∈ ∆ − I,
dα(g), dα(δg) > C1 for α ∈ I. By theorem 1.17 we get δ ∈ PI(Q). This means x1 = x2 in
XI,J .

Lemma 1.31. VJ,J contains {x ∈ XJ,J |supp(x) = J}.

Proof: If x = (γ, p, y) ∈ XJ,J has support J we can find by theorem 1.16 some δ ∈ PJ(Q)
such that dα(δ ·g) > C1 for all α ∈ J where g = (p, (γf )−1). Then x′ = (γδ−1, δp, y) ∈ X∅,J
lies in UJ,J and has x as its image in XJ,J (observe Dα(x′) = 0 for α /∈ J and |yα| = 1 for
α ∈ J).

Lemma 1.32. The composite map VI,J
i−→ XI,J

π−→ X is injective.

Proof: The support of each x ∈ VI,J contains J . Consider the following commutative
diagram for J ⊂ L:

{x ∈ VI,L|supp(x) = L} −−−−→ {x ∈ VL,L|supp(x) = L} = {x ∈ XL,L|supp(x) = L}ỹ
ỹ

{x ∈ VI,J |supp(x) = L} −−−−→ {x ∈ XI,J |supp(x) = L} = {x ∈ X|supp(x) = L}
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This implies the injectivity.

From now on we may and will identify VI,J with its image in X.

Lemma 1.33.

VI,J ∩ VK,L = VI∩K,J∪L for I ⊂ J, K ⊂ L

Proof: The inclusion ⊃ being trivial we assume x ∈ VI,J ∩ VK,L, i.e. there are x1 =
(γ1, p1, y1) ∈ UI,J ⊂ X∅,J and x2 = (γ2, p2, y2) ∈ UK,L ⊂ X∅,L having the same image
x ∈ X. If S = supp(x1) = supp(x2) denotes the support of x, then by example 1.11 above
x1 and x2 become equal in XS,S , i.e. there exist δ ∈ PS(Q) and a ∈ AS such that

γ2 = γ1 · δ−1, p2 = δ · p1 · a, y2 = a · y1.(10)

We may assume that (y1)α = (y2)α = ±1 for α ∈ S. Since J, L ⊂ S we have AS ⊂ AJ

and may assume replacing x1 by (γ1, p1 · a, a · y1) that we have a = 1 in (10). We put
g = (p1, (γ1)−1

f ). After modifying p1 and p2 by an element of AS from the right we may
assume dα(g) > C2, dα(δg) > C2 for α /∈ S. Then the assumption on x1 and x2 may be
restated:

dα(g) > C1 for α ∈ I dα(g) > C2 for α ∈ ∆− I

dα(δg) > C1 for α ∈ K dα(δg) > C2 for α ∈ ∆−K.

This implies δ ∈ PK(Q), δ−1 ∈ PI(Q) by theorem 1.17 a nd therefore δ ∈ PI(Q)∩PK(Q) =
PI∩K(Q). So we may assume x1 = x2 ∈ UI,J∩UK,L = UI∩K,J∪L and the claim is proven.

1.34. Continuation of example 1.11 For X = lim−→ XI,J we denote by ΦI,J : XI,J → X

the canonical map. For a subset UI0,J0 ⊂ XI0,J0 we may compute the sets

U∞I,J := (ΦI,J)−1 (ΦI0,J0(UI0,J0)) ⊂ XI,J

in the following way: We put

U0
I,J =

{
∅ for (I, J) 6= (I0, J0),
UI0,J0 for (I, J) = (I0, J0),

and then inductively for j > 0:

U2j+1
I,J :=

⋃

I⊂K⊂L⊂J

(
ΦK,L

I,J

)−1 (
U2j

K,L

)

U2j+2
I,J :=

⋃

K⊂I, J⊂L

ΦI,J
K,L

(
U2j+1

K,L

)
.

Then we get:

U∞I,J =
⋃

j>0

U j
I,J .

Recall from 1.8 the description of the topology on X, if X.,. is a functor to the category
of topological spaces.
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Lemma 1.35. If the maps ΦK,L
I,J are all open then the maps ΦI,J are open too.

We have to show that all U∞I,J ⊂ XI,J are open if UI0,J0 ⊂ XI0,J0 is open. But by induction
all U j

I,J are open for all j > 0 and so is their union U∞I,J .

Now we associate to XI,J the quotient topology with respect to the actions of PI(Q), Z∞
and AJ where PI(Q) ⊂ G(Q) carries the discrete topology and the other two factors the
usual topology. Then it is obvious that the maps ΦK,L

I,J are open.

We conclude from lemma 1.31 that the VI,J form an open cover of X and that already the
VI,I form an open cover.

Lemma 1.36. For x̃ ∈ UI,J and β ∈ J there exists a constant C0 = C0(I, β, x̃) > 0
depending continuously on x̃ such that Dβ(δx̃) > C0 for all δ ∈ PJ(Q) with δx̃ ∈ UJ,J .

Proof: Let x̃ be represented by (γ, p∞, y). Put g = (p∞, γ−1
f ) ∈ P0(R) × G(Af ). After

modifying the representative we may assume that yα ∈ {−1, 0,+1} for all α ∈ ∆, especially
|yα| = 1 for α ∈ J , and that dα(g) > C2 for α ∈ ∆− J . We have to prove:

dβ(δg) 6 C−1
0 for all δ ∈ PJ(Q) with δx̃ ∈ UJ,J .

Let δ ∈ PJ(Q) with δx̃ ∈ UJ,J . We may assume dα(δg) > C2 for all α ∈ ∆−J by modifying
p∞ once more without changing dα(δg) and dα(g) for α ∈ J : if |yα| = 1 then the condition
Dα(δx̃) < C−1

2 is equivalent to dα(δg) > C2, while for yα = 0 we can modify p∞ by
multiplication with a suitable element of AJ , which does not change the other values of
distance functions.
For β ∈ J there exists a character χJ−{β},β ∈ X∗(PJ−{β}) ⊗ Q whose restriction to
X∗(SJ−{β}) coincides with the restriction of β. In X∗(S0) ⊗ Q we have a relation of the
type

χJ−{β},β = β +
∑

α∈J−{β}
cJ,β,α · α with cJ,β,α ∈ Q.

Assume dβ(δg) > C2. This implies δ ∈ PJ−{β}(Q) by theorem 1.17 and furthermore:

dχJ−{β},β
(g) = dχJ−{β},β

(δg) which can be rewritten

dβ(δg) = dβ(g) ·
∏

α∈J−{β}

(
dα(δg)
dα(g)

)−cJ,β,α

< C
−Σα∈J−{β}cJ,β,α

1 · dβ(g) ·
∏

α∈J−{β}
dα(g)cJ,β,α =: C3.

Thus we have proved dβ(δg) 6 max(C2, C3). If we put C0 := (max(C2, C3))−1 we get the
claim.

Proposition 1.37. The space X is Hausdorff.

Proof: Let us assume that x̃ ∈ UI,I maps to x ∈ VI,I and ỹ ∈ UJ,J maps to y ∈ VJ,J , that
x 6= y, supp(x) = I, supp(y) = J . If I = J then we can use the fact that VI,I ⊂ XI,I is
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Hausdorff, so let us assume that I 6= J , without loss of generality α /∈ I, α ∈ J for some
α ∈ ∆. For ε > 0 define Uε(y) to be the (topological) interior of the set

{
z ∈ VJ,J

∣∣∣ DχJ−{α},α
(z̃) > ε for all z̃ ∈ UJ,J mapping to z

}
.

Let U1(ỹ) be an open neighborhood of ỹ lying relatively compact in some neighbor-
hood U2(ỹ). Let ε0 > 0 be half the maximum of the set of numbers C0(J, α, ỹ0) ·∏

β∈J−{α}C0(J, β, ỹ0)cJ,α,β where ỹ0 ranges over U1(ỹ). Then U1(ỹ) maps into Uε0(y)
via the projection map: Let y0 = p(ỹ0) be in the image of U1(ỹ). We have to prove
DχJ−{α},α

(δỹ0) > ε0 for all δ ∈ PJ(Q) such that δỹ0 ∈ UJ,J . But this may be deduced from
lemma 1.36.

Next we define UI,J(C̃2) and VI,J(C̃2) to be the sets obtained by replacing C2 by C̃2 > C2

in the definitions of UI,J and VI,J . We have x ∈ VI,I(C̃2) for all such C̃2 since supp(x) = I
and since VI,I(C̃2) is an open neighborhood of x. We claim that VI,I(C̃2) ∩ Uε0(y) = ∅ if
C̃2 is sufficiently large:

Let z ∈ VI,I(C̃2)∩Uε0(y) ⊂ VI,I(C̃2)∩VJ,J(C2) = VI∩J,I∪J(C2, C̃2), the latter being defined
as the image under projection of

UI∩J,I∪J(C2, C̃2) =



x ∈ X∅,I∪J

∣∣∣∣∣∣

Dα(x) < C−1
1 for α ∈ I ∩ J,

Dα(x) < C−1
2 for α ∈ I − (I ∩ J),

Dα(x) < C̃−1
2 for α ∈ ∆− I





We have a commutative diagram

UI,J ←−−−− UI∩J,I∪J −−−−→ UJ,Jy
y

y
VI,I ←−−−− VI∩J,I∪J −−−−→ VJ,J

If z ∈ VI,I(C̃2) ∩ Uε0(y) is the image of some z̃ ∈ UI∩J,I∪J(C2, C̃2) then we have
DχJ−{α},α

(z̃) > ε0 by the definition of Uε0(y). On the other side

DχJ−{α},α
(z̃) = Dα(z̃) ·

∏

β∈J−{α}
Dβ(z̃)cJ−{α},α,β < C̃−1

2 · C−∑
β cJ−{α},α,β

1

and this is < ε0 if C̃2 is sufficiently large. This contradiction proves V(C̃2)∩Uε0(y) = ∅.
Proposition 1.38. The action of G(Q)/ζ on X ×G(Af )/Kf is properly discontinuous.

Proof: In view of Proposition 1.37 this reduces to the same statement for the action of
G(Q)/ζ on spaces of the form VI,I ×G(Af )/Kf , where the property is well known.

Proposition 1.39. The space G(Q)\X × G(Af )/Kf is compact. It is a differentiable
manifold, if Kf satisfies (AssKf

).

Proof: The Hausdorff property of the quotient is a consequence of 1.37 and 1.38. To prove
compactness it is thus sufficient to prove that the image of each VI,I × G(Af )/Kf under
the quotient map is relatively compact for every I ⊂ ∆. This may be deduced from
ordinary reduction theory, resp. the properties of Siegel sets. The manifold property is a
consequence of lemma 1.27.
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1.40. We recall the sign map sign : X → Σ∆, where Σ = {−1, 0, 1}. We denote by XBS

the inverse image of {0, 1}∆ in X under the sign map and by Xsp ' G(R)/K∞ · Z∞ the
inverse image of {1}∆ under the sign map. Similarly we introduce the spaces: XBS(Kf ) =
G(Q)\XBS ×G(Af )/Kf and Xsp(Kf ) = G(Q)\Xsp ×G(Af )/Kf .

Proposition 1.41. (a) The space XBS is homeomorphic to the quotient space X/S∆

under the canonical map XBS ↪→ X ³ X/S∆.

(b) The space XBS(Kf ) is homeomorphic to the quotient space X(Kf )/S∆ for every
open compact subgroup Kf ⊂ G(Af ).

(c) The space XBS(Kf ) is the compactification of Xsp(Kf ) in the sense of Borel and
Serre [BS].

Proof: (a) and (b) are clear. Since we do not use the original construction of Borel and
Serre in this paper we leave the proof of (c) as an exercise to the interested reader.

2. Sets of fixed points of Hecke correspondences

Normalizations of outer automorphisms
In the following technical subsection we introduce the quantities gη and pη attached to an
automorphism of finite order η and derive some properties of them. The reader may skip
these considerations, since we have gη = 1 and pη = 1 in several applications.

2.1. η and η1. Let η : G → G be an automorphism of G, which is defined over Q and
which is of finite order n. Since Z∞ is by its definition an invariant subgroup, we have

η(Z∞) = Z∞.

Since all pairs (P, S), where P is a minimal Q-parabolic and S is a maximal Q-split torus
lying in P , are conjugate by elements of G(Q) there exists gη ∈ G(Q) such that

η(P0) = gη · P0 · g−1
η η(S0) = gη · S0 · g−1

η .

We may thus define the automorphism

η1 : G → G, x 7→ g−1
η · η(x) · gη.

Since η1(P0) = P0 and η1(S0) = S0 there must be a permutation of ∆, which we denote
also by η, such that:

α ◦ η−1
1 = η(α) for α ∈ ∆, α : S0 → Gm and thus

η1(SJ) = {η1(s)|α(s) = 1 for all α ∈ J}◦

=
{
s|α(η−1

1 (s)) = 1 for all α ∈ J
}◦

= Sη(J) and therefore

η1(PJ) = Pη(J), η1(MJ) = Mη(J) i.e.

η(PJ) = gηPη(J)g
−1
η , η(MJ) = gηMη(J)g

−1
η .

2.2. η2. The finite group
{
1, η, . . . , ηn−1

}
has a common fixed point when acting (as group

of isometries!) on the connected (!) symmetric space (of negative sectional curvature!) of

18
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maximal compact subgroups of G(R) (compare [BGS, lemmma 6.3.]). Since all maximal
compact subgroups of G(R) are conjugate by elements of P0(R) there exists b ∈ P0(R)
such that

η(b ·Km
∞ · b−1) = b ·Km

∞ · b−1 or equivalently

η(Km
∞) = η(b)−1b ·Km

∞ · b−1η(b). Write

g−1
η · η(b)−1 · b = pη · kη with pη ∈ P0(R), kη ∈ K∞.(11)

Then η1(Km∞) = pηK
m∞p−1

η and η(Km∞) = gηpηK
m∞p−1

η g−1
η . Define

η2 : G(R) → G(R), x 7→ p−1
η η1(x)pη = p−1

η g−1
η η(x)gηpη.

We have η2(Km∞) = Km∞ and assume that (the assumption is automatically satisfied if K∞
is an invariant subgroup of Km∞, e.g. if K∞ = (Km∞)◦):

η2(K∞) = K∞, i.e.(AssK)

η(K∞) = gηpηK∞p−1
η g−1

η .

Since η2(Km∞) = Km∞ the algebraic involution η2 ◦ θ0 ◦ η−1
2 : G(R) → G(R) fixes Km∞

pointwise. By [BS, 1.6] it has to be the Cartan involution θ0:

η2 ◦ θ0 = θ0 ◦ η2.

Since pη ∈ P0(R) we have

η2(P0(R)) = P0(R).(12)

Therefore η2(M0(R)) = η2(P0(R) ∩ θ0(P0(R))) = η2(P0(R)) ∩ η2(θ0(P0(R))) = P0(R) ∩
θ0(η2(P0(R))) = M0(R). Since η1(M0(R)) = M0(R) we get p−1

η M0(R)pη = M0(R). If we
write pη = mη · uη with mη ∈ M0(R), uη ∈ U0(R) we get u−1

η M0(R)uη = M0(R) which
implies uη = 1 by lemma 1.3. Therefore

pη ∈ M0(R).(13)

From this relation we conclude

η2(PI(R)) = Pη(I)(R)

η2(MI(R)) = Mη(I)(R)

η2(KI
∞) = Kη(I)

∞ .

2.3. Norm maps. The (naive) norm map N = N0 : G → G is defined by

N (g) = ηn−1(g) · ηn−2(g) · . . . · η(g) · g.

There are analogous maps N1,N2 : G → G defined by:

Ni(g) = ηn−1
i (g) · ηn−2

i (g) · . . . · ηi(g) · g.

The norm maps satisfy the following rules (i = 0, 1, 2; we put N0 = N , η0 = η):

Ni(ηi(x) · g · x−1) = ηn
i (x) · Ni(g) · x−1(14)

Ni(ηi(x)−1 · x · g) = ηn
i (x)−1 · Ni(xgx−1) · x(15)
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and we remark

x = ηn(x) = ηn−1(gηpηη2(x)p−1
η g−1

η )(16)

= ηn−1(gηpη) · ηn−2(gηpη) · ηn−2(η2
2(x)) · ηn−2(gηpη)−1 · ηn−1(gηpη)−1

= . . . = N (gηpη) · ηn
2 (x) · N (gηpη)−1 and

η2(N (gηpη)) = p−1
η g−1

η η(N (gηpη))gηpη(17)

= p−1
η g−1

η ηn(gηpη)N (gηpη) = N (gηpη)

Using (12) the equation (16) implies P0(R) = N (gηpη)·P0(R)·N (gηpη)−1, and we conclude:

N (gηpη) ∈ P0(R).

On the other side we reformulate (11):

gηpη = η(b)−1 · b · k−1
η . This implies

N (gηpη) = b−1 · N (b · k−1
η · b−1) · b

= (b−1ηn−1(bk−1
η b−1)b) · (b−1ηn−2(bk−1

η b−1)b) · . . . · (b−1η(bk−1
η b−1)b) · k−1

η

= N3(k−1
η ),

whereN3 is the norm map associated to the automorphism η3 : G → G, g 7→ b−1η(bgb−1)b.
Since η3(g) = (η(b)−1 ·b)−1 ·η(g) ·(η(b)−1 ·b) = k−1

η ·(gηpη)−1 ·η(g) ·gηpηkη = k−1
η ·η2(g) ·kη

we have η3(K∞) = k−1
η ·K∞ · kη = K∞ and therefore N (gηpη) ∈ K∞. This implies part

(a) of the following:

Lemma 2.4. (a) N (gηpη) ∈ K∅∞ = P0(R) ∩K∞ = M0(R) ∩K∞.

(b) N (gηpηg) = N (gηpη) · N2(g) for g ∈ G(R).
(c) N (gηg) = N (gη) · N1(g) for g ∈ G(R).

The proof of (b) is by induction on n (this may be done if we ignore the assumption that
ηn = id for the original n): Let N ′, N ′

2 be the norm maps with respect to the index n− 1.
Then

N (gηpηg) = ηn−1(gηpηg) · N ′(gηpηg) = ηn−1(gηpη) · ηn−1(g) · N ′(gηpη) · N ′
2(g)

= ηn−1(gηpη) · N ′(gηpη) · ηn−1
2 (g) · N ′(gηpη)−1 · N ′(gηpη) · N ′

2(g)
= N (gηpη) · N2(g).

The proof of (c) is completely analogous.

2.5. We remark that N (gηγ) ∈ PI(Q) if γ ∈ PI(Q) and η(I) = I. This is a consequence
of N (gηγ) = N (gη)N1(γ): We have N (gη) ∈ P0(Q) ⊂ PI(Q) since P0(Q) = ηn(P0(Q)) =
N (gη) ·ηn

1 (P0(Q)) ·N (gη)−1 = N (gη) ·P0(Q) ·N (gη)−1 and N1(γ) ∈ PI(Q), since η1(PI) =
Pη(I) = PI .

Correspondences and fixed point sets
In this section we will define an action of η on the space X(Kf ) and will define a Hecke
correspondence H. In the rest of this and the next section we will compute the set of fixed
points F (H) of this correspondence: F (H) will be the disjoint union of sets F (H)I,γ,gf
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which are like locally symmetric spaces. The reader may read the summary 2.24 for more
details.

2.6. The action of η on XI,J . Let η act on the family of spaces XI,J as follows:

η : XI,J → Xη(I),η(J),

(γ, p, y) 7→ (η(γ) · gη, η1(p) · pη, η(y))

where γ ∈ G(Q), p ∈ PI(R), y ∈ YJ . If we interpret y = (yα)α∈∆ as a map ∆ → R, then
η(y) is defined to be the map y ◦ η−1 : ∆ → R. This means η(y) = (yη−1(α))α∈∆. The
action η is well defined on the quotient XI,J : If δ ∈ PI(Q), k ∈ KI∞, a ∈ AJ then

η(γδ, δ−1pka,a(yα)α∈∆) =
(
η(γδ)gη, η1(δ)−1η1(p)η1(k)η1(a) · pη, η((α(a) · yα)α∈∆)

)

=
(
η(γ)gηη1(δ), η1(δ)−1 · η1(p)pηη2(k) · η1(a), (η−1(α)(a) · yη−1(α))α∈∆

)

∼ (
η(γ)gη, η1(p)pη, (yη−1(α))α∈∆)

)
= η(γ, p, (yα)α∈∆).

Here we used η−1(α)(a) = α(η1(a)), which is an immediate consequence of the defining
equation α ◦ η−1

1 = η(α). Observe that pη ∈ M0(R) centralizes AJ for all J , so that
η1(a) = η2(a).

2.7. The action of η on X(Kf ). For Kf open compact we have the following map
induced by η:

η : XI,J(Kf ) → Xη(I),η(J)(η(Kf ))

((γ, p, y), gf ) 7→ ((η(γ)gη, η1(p) · pη, η(y)), η(gf )).

This induces a map η : X(Kf ) → X(η(Kf )) in the obvious way. We may rewrite this map
using the identification

XI,J(Kf ) ∼= PI(Q)\ (
(PI(R)/KI

∞Z∞ ×AJ
YJ)×G(Af )/Kf

)

in the following form:

η : (p, y, gf ) 7→ (η1(p) · pη, η(y), g−1
η · η(gf ))

‖ ‖
(1, p, y, gf ) 7→ (η(1) · gη, η1(p) · pη, η(y), η(gf ))

(18)

2.8. The Hecke correspondence. Now we take some sJ ′ ∈ S∆, some h∞ ∈ Km∞∩M0(R)
and some hf ∈ G(Af ). We consider the map

H = H(sJ ′) = (h∞, sJ ′ , hf ) ◦ η :

X(Kf ) → X(η(Kf )) → X(h−1
f η(Kf )hf )

induced by the maps

XI,J(Kf ) → Xη(I),η(J)(η(Kf )) → Xη(I),η(J)(h
−1
f η(Kf )hf )

(p, y, gf ) 7→ (η1(p)pη, η(y), g−1
η η(gf )) 7→ (η1(p)pη · h∞, η(y) · sJ ′ , g

−1
η η(gf )hf )

We put K ′
f = Kf ∩ η−1(hfKfh−1

f ). Then H maps:

H : X(K ′
f ) → X(h−1

f η(Kf )hf ∩Kf ) = X(h−1
f η(K ′

f )hf ) ³ X(Kf ).
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We will also consider the canonical projection induced from the inclusion K ′
f ↪→ Kf :

κ : X(K ′
f ) → X(Kf )

We finally make the assumption

η(Zf ) = Zf . This implies η(ζ) = ζ.(AssZf )

2.9. Set of fixed points: Sign conditions. We want to describe the set of fixed
points:

F (H) =
{

x ∈ X(K ′
f )

∣∣κ(x) = H(x)
}

.

From sign(H(x)) = sign(η(x)) · sJ ′ and sign(κ(x)) = sign(x) we get the following neces-
sary condition for x ∈ F (H):

sign(x) = (sign(x)) ◦ η−1 · sJ ′ which implies for I = supp(x) :(19)
η(I) = I and

#
(
J ′ ∩ {

α, η(α), . . . ηn−1(α)
})

is even for all α ∈ I.

Conversely if the last two conditions are satisfied for some I ⊂ ∆ one can construct an x
such that supp(x) = I and sign(x) satisfies (19). The conditions imply specially:

supp(x)η ∩ J ′ = ∅.

2.10. Set of fixed points: Conditions. Now let I = supp(x), x ∈ F (H). By the
description of EI ⊂ X this means, if we write x = (p, y, gf ) with p ∈ PI(R) and y =
sign(x):

(
η1(p)pηh∞, η(y)sJ ′ , g−1

η η(gf )hf

) ∼ (p, y, gf )

i.e. there exist γ ∈ PI(Q), k∞ ∈ KI∞, z∞ ∈ Z∞, a ∈ AI , kf ∈ Kf such that:

g−1
η η(p)gηpηh∞ = γpk−1

∞ z−1
∞ a−1(1)

η(y)sJ ′ = a−1y(2)

g−1
η η(gf )hf = γgfk−1

f .(3)

The condition (2) is equivalent to sign(η(x)) · sJ ′ = sign(x), since we have a · y = y for
supp(y) = I and a ∈ AI . As before this implies η(I) = I. We rewrite (1) and (3) as follows:

η(p)−1(gηγ)p = gηpηh∞az∞k∞(1’)

η(gf )−1(gηγ)gf = hfkf .(3’)

The equation (1’) implies by taking norms:

p−1 · N (gηγ) · p = N (gηpη) · N2(h∞ · a · z∞ · k∞)(1N )

The map η2 takes AI , Z∞ and KI∞ to themselves, and h∞ normalizes KI∞Z∞AI . Therefore
we have the following necessary condition, if we take lemma 2.4(a) into account:

p−1 · N (gηγ) · p ∈ N2(h∞) ·KI
∞Z∞AI .(20)

2.11. Converse conditions. For some I ⊂ ∆ with η(I) = I and some fixed γ ∈ PI(Q)
let us assume conversely that N (gηγ) is conjugate in PI(R) to an element of N2(h∞) ·
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KI∞Z∞AI , i.e. that (20) is satisfied with some p1 ∈ PI(R) instead of p. We consider the
map

η̃γ,h∞ : PI(R) → PI(R),

p 7→ γ−1η1(p)pη · h∞ = γ−1g−1
η η(p)gηpηh∞ = γ−1 · pη · η2(p) · h∞.

It is easy to calculate the n-th power of η̃γ,h∞ (compare 2.4(b)):

(η̃γ,h∞)n (p) = N (gηγ)−1 · ηn(p) · N (gηpηh∞)(21)

= N (gηγ)−1 · p · N (gηpη) · N2(h∞).

For k ∈ KI∞Z∞AI we get η̃γ,h∞(pk) = η̃γ,h∞(p) · h−1∞ · η2(k) · h∞ with h−1∞ η2(k) · h∞ ∈
KI∞Z∞AI . Therefore η̃γ,h∞ induces a map from PI(R)/KI∞Z∞AI to itself, which will be
denoted by the same symbol. Let

F (gη, γ) =
{
p ∈ PI(R) | (η̃γ,h∞)n(p) ∈ p ·KI

∞Z∞AI

}
.

Then this set is invariant under right translations by elements of KI∞Z∞AI and the quo-
tient space

F̃ (gη, γ) = F (gη, γ)/KI
∞Z∞AI

is the space of invariants of the n-th power map (η̃γ,h∞)n acting on PI(R)/KI∞Z∞AI .

The map η̃γ,h∞ leaves F̃ (gη, γ) and F (gη, γ) invariant.

By (21) we may describe F (gη, γ) as the set of p ∈ PI(R) satisfying p−1N (gηγ)p ∈
N (gηpη)·N2(h∞)·KI∞Z∞AI . But since N (gηpη) ∈ KI∞ and since N2(h∞) ∈ (Km∞)∩M0(R)
normalizes KI∞Z∞AI this condition may be rewritten in the following form:

F (gη, γ) =
{
p ∈ PI(R) | p−1N (gηγ)p ∈ N2(h∞) ·KI

∞Z∞AI

}

By assumption we have F (gη, γ) 6= ∅.

2.12. Now fix some p1 ∈ F (gη, γ), i.e. p−1
1 ·N (gηγ) ·p1 = N2(h∞) ·k1 with k1 ∈ KI∞Z∞AI .

We want to describe the set of connected components of F̃ (gη, γ). Let KI,m∞ = Km∞∩PI(R)
and let p be a complement to Lie(KI∞Z∞AI) in Lie(PI(R)) which is invariant under the
adjoint action of KI,m∞ Z∞AI .

Lemma 2.13. Each p ∈ F (gη, γ) has a unique representation

p = p1 · exp(π) · k where k ∈ KI,m
∞ Z∞AI and π ∈ pAd(N2(h∞)k1).(22)

Conversely each p ∈ PI(R) of the form (22) lies in F (gη, γ). Here pAd(N2(h∞)k1) denotes
the set of elements in p fixed by the adjoint action of p−1

1 N (gηγ)p1 = N2(h∞)k1.

Proof: Recall that p−1
1 · p has a unique Iwasawa decomposition

p−1
1 · p = exp(π) · k where π ∈ p and k ∈ KI,m

∞ Z∞AI ,
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and we have to prove π ∈ pAd(N2(h∞)k1) for p ∈ F (gη, γ). We calculate:

p−1 · N (gηγ) · p = k−1 exp(π)−1p−1
1 N (gηγ)p1 exp(π)k

= k−1 exp(π)−1N2(h∞)k1 exp(π)k

= k−1 exp(π)−1 exp(Ad(N2(h∞)k1)π)N2(h∞)k1k

= exp(Ad(k−1)π)−1 · exp(Ad(k−1N2(h∞)k1)π) · k−1N2(h∞)k1k.

Now for p ∈ F (gη, γ) there exists k2 ∈ KI∞Z∞AI such that

p−1 · N (gηγ) · p = N2(h∞) · k2 .(23)

The combination of the last two equations can be rewritten in the form

exp
(
Ad(k−1)Ad(N2(h∞)k1)π

) · k−1N2(h∞)k1k = exp(Ad(k−1)π) · N2(h∞)k2

and by the uniqueness of the Iwasawa decomposition this is equivalent to the system of
equations

Ad(N2(h∞)k1)π = π and

k−1N2(h∞)k1k = N2(h∞)k2,(24)

so that π ∈ pAd(N2(h∞)k1).

Conversely if p is of the form (22) we may define k2 by the equation (24). But then k2

lies automatically in KI∞Z∞AI because k1 does so and KI∞ is a normal subgroup in KI,m∞
with abelian quotient, so that

k−1N2(h∞)KI
∞Z∞AIk = N2(h∞)KI

∞Z∞AI .

Reversing the above calculation then gives the equation (23), so that each p of the form
(22) belongs to F (gη, γ).

2.14. Description of F̃ (gη, γ). From KI,m∞ ∩ Z∞AI = {1} we get an isomorphism of
cosets KI,m∞ Z∞AI/KI∞Z∞AI ' KI,m∞ /KI∞. Now the preceding lemma implies that we get
a bijection

F̃ (gη, γ) ∼= pAd(N2(h∞)k1) × (KI,m
∞ /KI

∞)

p1 · exp(π) · k ← (π, k mod KI
∞)

Since the Iwasawa decomposition induces a homeomorphism this is a homeomorphism too.
Thus we can read off immediately the description of the set of connected components of
F̃ (gη, γ) by the following isomorphism:

P1 : KI,m
∞ /KI

∞ →̃ π0

(
F̃ (gη, γ)

)
(25)

class of k 7→ class of p1k

2.15. Fixed points of η̃γ,h∞. Next we assume that η̃γ,h∞ has a fixed point if acting

on the finite set π0

(
F̃ (gη, γ)

)
of connected components. Then η̃γ,h∞ induces an isometric

automorphism of finite order of this connected component, which is a Riemannian manifold
of negative curvature (i.e. the sectional curvature is 6 0). By [Hel, I, thm. 13.5] or [BGS,
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6.3.] it has a fixed point on this connected component. We may already assume that p1 is
this fixed point:

γ−1g−1
η η(p1)gηpηh∞ = p1 · k0 with k0 ∈ LI

∞ = KI
∞Z∞AI .(26)

The map P1 satisfies P1 ◦ η2 = η̃γ,h∞ ◦ P1 since we have

η̃γ,h∞(p1k) = η̃γ,h∞(p1) · h−1
∞ · η2(k) · h∞ = p1k0h

−1
∞ η2(k)h∞

and since k 7→ k0h
−1∞ kh∞ induces the identity on KI,m∞ /KI∞. Therefore P1 induces an

isomorphism
(
KI,m
∞ /KI

∞
)η2 →̃ π0

(
F̃ (gη, γ)

)η̃γ,h∞
.

2.16. The centralizers GI
γ,η. For γ ∈ PI(Q) we define the automorphism

ηγ : G → G, x 7→ (gηγ)−1 · η(x) · gηγ = γ−1 · η1(x) · γ
and the algebraic subgroup GI

γ,η = (PI)ηγ of ηγ-invariants, i.e.

GI
γ,η(S) = {x ∈ PI(S)|ηγ(x) = x} =

{
x ∈ PI(S)|η(x)−1 · gηγ · x = gηγ

}

for a Q-algebra S. For I = ∆ we will drop the index I, i.e. Gγ,η = Gηγ

We introduce the notations

LI
∞ = KI

∞Z∞AI , LI,m
∞ = KI,m

∞ Z∞AI

L̃ = p1 · LI
∞ · p−1

1 , L̃m = p1 · LI,m
∞ · p−1

1 ,

Lγ,η = L̃ ∩Gγ,η(R), Lm
γ,η = L̃m ∩Gγ,η(R).

We have for l ∈ LI,m∞ i.e. for p1 · l · p−1
1 ∈ L̃:

ηγ(p1 · l · p−1
1 ) = γ−1g−1

η η(p1)η(l)η(p1)−1gηγ

= γ−1g−1
η η(p1)gηpηη2(l)(gηpη)−1η(p1)−1gηγ

= p1 · k0h
−1
∞ η2(l)h∞k−1

0 · p−1
1 .

Therefore ηγ(L̃m) = L̃m and from η2(LI∞) = LI∞ by (AssK) we conclude ηγ(L̃) = L̃.
Furthermore the conjugation with p1 intertwines the η2-action on KI,m∞ /KI∞ with the
ηγ-action on L̃m/L̃, since conjugation by k0h

−1∞ acts as identity on L̃m/L̃.

2.17. The coset space RI
γ,η. We introduce the coset space

RI
γ,η = Lm

γ,η\
(
L̃m/L̃

)ηγ

and denote by

O∞
η (I, γ, h∞) = #RI

γ,η

its cardinality. Finally we choose and fix a representative kr ∈ L̃m of each coset r ∈ RI
γ,η.
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Lemma 2.18. The maps

φ1 :
(
GI

γ,η(R)/Lγ,η

) × RI
γ,η →

(
PI(R)/L̃

)ηγ

(x mod Lγ,η, class of kr) 7→ x · kr mod L̃

and

φ2 :
(
PI(R)/L̃

)ηγ → F̃ (gη, γ)η̃γ,h∞ =
(
PI(R)/LI

∞
)η̃γ,h∞

xkr mod L̃ 7→ xkrp1 mod LI
∞

are isomorphisms.

Proof: First observe that φ1 is well defined since each kr normalizes L̃. Then observe that

φ2 : PI(R)/L̃ →̃ PI(R)/LI
∞

x mod L̃ 7→ xp1 mod LI
∞

is an isomorphism and that the diagram

PI(R)/L̃ −−−−→
φ2

PI(R)/LI∞
yηγ

yη̃γ,h∞

PI(R)/L̃ −−−−→
φ2

PI(R)/LI∞

commutes by a formal computation:

φ2 (ηγ(x)) = γ−1 · g−1
η · η(x) · gη · γ · p1

η̃γ,h∞ (φ2(x)) = γ−1 · g−1
η · η(x) · η(p1) · gη · pη · h∞

= γ−1 · g−1
η · η(x) · gη · γ · p1 · k0

= φ2 (ηγ(x)) · k0,

where k0 is defined in (26). Therefore φ2 is an isomorphism.

Next we prove that φ1 is injective: If x1ka = x2kb ·k with k ∈ L̃ and x1, x2 ∈ Gγ,η(R) then
x−1

2 x1 = kbkk−1
a , but x−1

2 x1 ∈ Gγ,η(R), kbkk−1
a ∈ L̃m. Therefore kbkk−1

a ∈ Lm
γ,η, so that

ka and kb = (kbkk−1
a ) · ka · k−1 lie in the same coset in RI

γ,η. Since each coset has a unique
representative we get ka = kb. But then kbkk−1

a ∈ L̃ since ka normalizes L̃. This implies
x1 mod L̃ = x2 mod L̃.

To prove that φ1 is surjective we reduce to the claim that the canonical map

φ̃1 : GI
γ,η(R) → GI

γ,η(R)/Lm
γ,η →

(
PI(R)/L̃m

)ηγ

is surjective: If p ∈ PI(R) with ηγ(pL̃) = pL̃ is given then pL̃m ∈
(
PI(R)/L̃m

)ηγ

and by

assumption on φ̃1 there exists x ∈ GI
γ,η(R) with p = xk, k ∈ L̃m. Then xkL̃ = pL̃ =

ηγ(p)L̃ = ηγ(x)ηγ(k)L̃ = x · ηγ(k)L̃, which implies kL̃ = ηγ(k)L̃, i.e. kL̃ ∈
(
L̃m/L̃

)ηγ

.

Therefore there exists y ∈ Lm
γ,η, k1 ∈ L̃ and a ∈ RI

γ,η such that k = y · ka · k1. Then
p = (xy) · ka · k1, so p mod L̃ is in the image of φ1, since xy ∈ GI

γ,η(R).
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To prove surjectivity of φ̃1 it is enough to show the existence of an ηγ-invariant subspace
q inside the Lie algebra pI of PI(R) such that the composite map e : q

exp−−→ P (R) ³
PI(R)/L̃m is an ηγ-equivariant isomorphism. Then

(
PI(R)/L̃m

)ηγ

= e(qηγ ) ⊂ e(pηγ

I ) =

e(Lie(GI
γ,η(R))) and the claim follows.

We denote by m̃I the Lie algebra of the derived group of p1MI(R)p−1
1 . The Killing form

is a non degenerate form on m̃I . We take q to be the sum of the following subspaces of pI :

– the orthogonal complement c1 of Lie(p1K
I∞p−1

1 ) ∩ m̃I inside m̃I ;

– the Lie algebra uI of the unipotent radical UI(R) of PI(R);

– some ηγ invariant complement c2 of Lie(Z∞) +
(
Lie(p1K

I∞p−1
1 ) ∩ LieZG(R)

)
inside

Lie (ZG(R)).

We observe that p1MI(R)p−1
1 is ηγ-invariant: For m ∈ MI(R) we have

ηγ(p1mp−1
1 ) = γ−1g−1

η η(p1)gηη1(m)g−1
η η(p1)−1gηγ

= p1k0h
−1
∞ p−1

η η1(m) · pηh∞k−1
0 p−1

1 by (26).

Now η1(m) ∈ Mη(I)(R) = MI(R), pη ∈ M0(R) ⊂ MI(R), h∞, k0 ∈ LI,m∞ ⊂ MI(R)
and therefore ηγ(p1mp−1

1 ) = p1m1p
−1
1 with m1 ∈ MI(R). For k ∈ KI∞ we conclude

ηγ(p1kp−1
1 ) = p1k0h

−1∞ η2(k)h∞k−1
0 p−1

1 ∈ p1K
I∞p−1

1 , since k0 and h∞ normalize KI∞. This
implies that c1 is ηγ-invariant.

Since ηγ acts as η on the center ZG(R) it acts as an automorphism of finite order on
Lie(ZG(R)). Therefore c2 exists.

Now observe that pI is the direct sum of m̃I , of uI and of the Lie algebra of the center of
p1MI(R)p−1

1 , which itself is the direct sum of Lie (ZG(R)) and Lie
(
p1AIp

−1
1

)
. This implies

that q is an ηγ-invariant complement to Lie(L̃m∞) in pI . We get the surjectivity of e by
Iwasawa decomposition. This finishes the proof of lemma 2.18.

2.19. A first summary. We take RI
γ,η to be the empty set if π0

(
F̃ (gη, γ)

)η̃γ,h∞
is empty.

We may summarize: Let γ ∈ PI(Q) be given. If the set

P η,γ
I =

(
PI(R)/LI

∞
)η̃γ,h∞

=
{
p mod LI

∞ ∈ PI(R)/LI
∞ | η(p)−1(gηγ)p ∈ gηpηh∞ · LI

∞
}

is not empty, thenN (gηγ) is conjugate inside PI(R) to an element ofN2(h∞)·KI∞N (Z∞)AI .
If N (gηγ) is conjugate to such an element, then we have an isomorphism:

φ :
(
GI

γ,η(R)/Lγ,η

)×RI
γ,η → (

PI(R)/LI
∞

)η̃γ,h∞

(x, ka) 7→ xkap1

for some p1 ∈ P η,γ
I .

2.20. By lemma 1.27 the class of γ in G(Q)/ζ is uniquely determined by x = (p, y, gf ) and
the equations (1), (2), (3) in 2.10. Now let us take another representative x̃ = (p̃, ỹ, g̃f ) for
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the class of x, where

p̃ = δ · p · κ∞ζ∞b−1, ỹ = by, g̃f = δgfκf

with δ ∈ PI(Q), κ∞ ∈ KI∞, ζ∞ ∈ Z∞, b ∈ AI , κf ∈ Kf . Then the relation
(
η1(p̃) · pηh∞, η(ỹ)sJ ′ , g

−1
η η(g̃f )hf

) ∼ (p̃, ỹ, g̃f )

is due to elements γ̃, k̃∞, z̃∞, ã, k̃f . Here we can take

γ̃ = η1(δ)γδ−1, k̃∞ = h−1
∞ η2(k−1

∞ )h∞ · k∞ · k0,

z̃∞ = ζ∞ · η(ζ∞) · z∞, ã = b · a · η2(b)−1,

k̃f = h−1
f η(κf )−1hf · kf · κf ,

since we have

g−1
η η(p̃)gηpηh∞ = g−1

η η(δ)η(p)η(κ∞ζ∞b−1)gηpηh∞
= η1(δ) · g−1

η η(p) · gηpηh∞ · h−1
∞ η2(κ∞ζ∞b−1)h∞

= η1(δ) · γpk−1
∞ z−1

∞ a−1 · h−1
∞ η2(κ∞)η2(ζ∞)η2(b−1)h∞

= (η1(δ)γδ−1) · p̃ · (a∞ζ−1
∞ k−1

∞ z−1
∞ a−1η2(κ∞)η2(ζ∞)η2(b−1)h∞

)

= γ̃ · p̃ · k̃−1
∞ · z̃−1

∞ · ã−1 and

η(ỹ) · sK = η2(b) · η(y) · sK = η2(b) · a−1 · y
= η2(b) · a−1 · b−1 · ỹ = ã−1 · ỹ. Furthermore:

g−1
η η(g̃f )hf = g−1

η η(δ)η(gf )η(κf )hf = η1(δ) · g−1
η η(gf )hf · h−1

f η(κf )hf

= η1(δ) · γgfk−1
f · h−1

f η(κf )hf

= η1(δ)γδ−1 · g̃f · κ−1
f k−1

f h−1
f η(κf )hf = γ̃ · g̃f · k̃−1

f .

The relation γ̃ = η1(δ) · γ · δ−1 is equivalent to

gηγ̃ = η(δ) · gηγ · δ−1

Therefore we have to consider the elements gηγ up to η-conjugacy, i.e. the fixed point sets
are indexed by the η-conjugacy classes of elements in G(Q)/ζ.

Remark 2.21. We recall lemma 2.4(c): N (gηγ) = N (gη) · N1(γ). The construction of gη

implies:

N (gη) · P0 · N (gη)−1 = ηn−1(gη) · · · η(gη) · gηP0g
−1
η · η(gη)−1 · · · ηn−1(gη)−1

= ηn−1(gη) · · · η(gη) · η(P0) · η(gη)−1 · · · ηn−1(gη)−1

= η
(
ηn−2(gη) · · · η(gη) · gηP0g

−1
η · η(gη)−1 · · · ηn−2(gη)−1

)

= . . . = ηn−1(gηP0g
−1
η ) = ηn(P0) = P0.

Using S0 instead of P0 we obtain by the same calculation: N (gη) · S0 = S0 · N (gη), i.e.
N (gη) normalizes P0 and S0. But the normalizer of S0 inside P0 is the centralizer of S0.
This implies N (gη) ∈ M0(Q) ⊂ MI(Q) ⊂ PI(Q) for all I. Thus if γ ∈ PI(Q) and η(I) = I
we get N (gηγ) ∈ PI(Q), since we have η1(PI(Q)) = Pη(I)(Q).
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Parametrization of fixed point sets

2.22. Let gηγ ∈ G(Q) be a representative of a fixed η-conjugacy class, where γ ∈ PI(Q).
Define as a subset of F (H):

F (H)I,γ =





class of
x = (p, y, gf )

∣∣∣∣∣∣∣

p ∈ PI(R), y = sign(x) such that there exist
k∞ ∈ KI∞, z∞ ∈ Z∞, a ∈ AI , kf ∈ K ′

f

satisfying (1),(2),(3) in (2.10) for this γ





The condition (1) means that pLI∞ is invariant under η̃γ,h∞ as an element of PI(R)/LI∞.
We recall the condition (3’):

η(gf )−1(gηγ)gf ∈ hfKf .

In this condition we can replace gf by bfgfkf for kf ∈ K ′
f = Kf ∩η−1(hfKfh−1

f ) and bf ∈
Gγ,η(Af ). Thus we can arrange with respect to the double cosets in Gγ,η(Af )\G(Af )/K ′

f .
Recall that Gγ,η = Gηγ =

{
x ∈ G|η(x)−1(gηγ)x = gηγ

}
denotes the η-centralizer of gηγ.

Now we fix some representative gf of a double coset in Gγ,η(Af )\G(Af )/K ′
f satisfying

η(gf )−1(gηγ)gf ∈ hfKf and denote the corresponding set of fixed points F (H)I,γ,gf
. By

(2.18) we get a surjective map
(
GI

γ,η(R)/Lγ,η

)×RI
γ,η × (Σ∆)I,J ′ ×Gγ,η(Af ) → F (H)I,γ,gf

(p, ka, y, bf ) 7→ (pkap1, y, bfgf )

where

(Σ∆)I,J ′ =
{
y ∈ Σ∆ such that supp(y) = I, η(y) · sJ ′ = y

}

and p1 is the element introduced in (2.12). We remark that (p, ka, y, bf ) and (p′, kb, y
′, b′f )

have the same image in F (H)I,γ,gf
if and only if there exist δ ∈ PI(Q),κ∞ ∈ KI∞, ζ∞ ∈

Z∞, a∞ ∈ AI , κf ∈ K ′
f such that

pkap1 = δ · p′kbp1 · κ−1
∞ ζ−1

∞ a−1
∞(27)

y = a∞ · y′
bfgf = δ · b′fgf · κf

Observe that the second equation is equivalent to y = y′, since a∞ ∈ AI and supp(y) =
supp(y′) = I.

As an equation in the coset space PI(R)/L̃ the first equation can be restated as follows:
pka = δ · p′kb. Since ηγ(L̃) = L̃ and since we know from (2.18) that pka and p′kb are
ηγ-invariant in the coset space we conclude that the following computation is valid in
PI(R)/L̃:

pka = ηγ(pka) = ηγ(δ) · ηγ(p′kb) = ηγ(δ) · p′kb = ηγ(δ) · δ−1 · pka.

Similarly we deduce from the third equation, thereby bearing in mind that η(gf )−1 · gηγ ·
gf = hf · kf and η(gfκf )−1 · gηγ · gf = hf · k̃f with kf , k̃f ∈ Kf so that ηγ(gf ) =
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gf · k−1
f h−1

f · gηγ and ηγ(gfκf ) = gfκf k̃−1
f h−1

f · gηγ:

bf · ηγ(gf ) = ηγ(bfgf ) = ηγ(δ · b′f · gf · κf )

= ηγ(δ) · b′f · ηγ(gfκf ) and therefore

bfgfk−1
f h−1

f gηγ = ηγ(δ) · b′f · gfκf k̃−1
f h−1

f · gηγ, i.e.

bfgf = ηγ(δ) · b′f · gfκf · k̃−1
f · kf = ηγ(δ) · δ−1 · bfgf · k̃−1

f kf .

Thus the element ηγ(δ) · δ−1 transforms the pair (pka, bfgf ) into itself as an element of(
PI(R)/L̃

)
×G(Af )/Kf . By lemma 1.27 we deduce frow this:

c1(δ) := ηγ(δ) · δ−1 ∈ ζ ⊂ ZG(Q).

The element δ above is only unique up to elements of ζ. Since we have ηγ(ε) = η(ε) for ε ∈
ζ, we conclude: c1(δε) = c1(δ) ·η(ε) ·ε−1. Furthermore N (c1(δ)) = ηn−1(c1(δ)) · · · η(c1(δ)) ·
c1(δ) = ηn−1

γ (c1(δ)) · · · ηγ(c1(δ)) · c1(δ) = ηn
γ (δ) · δ−1. But we have

ηn
γ (δ) = (gηγ)−1 · η(gηγ)−1 · · · ηn−1(gηγ)−1 · ηn(δ) · ηn−1(gηγ) · · · (gηγ)

= N (gηγ)−1 · δ · N (gηγ).

This means

N (c1(δ)) = N (gηγ)−1 · δ · N (gηγ) · δ−1.(28)

2.23. Now, if we assume conversely that ηγ(δ) · δ−1 ∈ ζ, it can easily be seen that
(pkap1, y, bfgf ) ∈ F (H)I,γ,gf

implies (δ · pkap1, y, δ · bfkf ) ∈ F (H)I,γ,gf
.

The condition (28) implies that N (c1(δ)) lies in the derived group G(1) of G. But the
intersection G(1) ∩ ZG is finite. If we assume that Kf and therefore also ζ are sufficiently
small, the following assumption is fulfilled:

ζ ∩G(1)(Q) = {1} .(Assζ,der)

The assumption implies N (c1(δ)) = 1. If we identify 1-cocycles for the finite cyclic group
〈η〉 with their values at η, this means that c1(δ) represents a class in H1(〈η〉, ζ).
We make the further assumption:

H1(〈η〉, ζ) = 1.(29)

This is satisfied for example if η = id or if ζ = {1}. If (29) is valid we can assume without
loss of generality that ηγ(δ) = δ. Thus δ ∈ GI

γ,η(Q). The third equation of (27) now implies

κf = g−1
f · ((b′f )−1 · δ−1 · bf ) · gf ∈ Kf ∩ g−1

f Gγ,η(Af )gf resp.

gfκfg−1
f ∈ Gγ,η(Af ) ∩ gfKfg−1

f .

2.24. Summary. Under the assumption H1(〈η〉, ζ) = 1 the following map α is an isomor-
phism:

α : XI
γ,η(gf )×RI

γ,η × (Σ∆)I,J ′ → F (H)I,γ,gf

((p, bf ), ka, y) 7→ (pkap1, y, bfgf )
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where XI
γ,η(gf ) = GI

γ,η(Q)\
(
GI

γ,η(R)/L̃γ,η ×Gγ,η(Af )/(Gγ,η(Af ) ∩ gfK ′
fg−1

f )
)
.

If the group H1(〈η〉, ζ) is not trivial, it is still finite and the map α is still surjective. By
the considerations above α is a finite covering, and the degree dI

ζ,γ of the covering is

dI
ζ,γ = #

{
x ∈ H1(〈η〉, ζ) | x = ηγ(δ) · δ−1 with δ ∈ PI(Q)

}
.

The set of fixed points F (H) is stratified by the strata F (H)I for those I ⊂ ∆ which satisfy
η(I) = I. Each F (H)I is a union of F (H)I,γ over those η-conjugacy classes of elements γ
in G(Q)/ζ, for which N (gηγ) is conjugate in PI(R) to an element of N2(h∞) ·KI∞Z∞AI .

Each F (H)I,γ itself is the union of F (H)I,γ,gf
, where gf runs over a set of representatives

for those double cosets in Gγ,η(Af )\G(Af )/K ′
f , which satisfy η(gf )−1(gηγ)gf ∈ hfKf .

3. The Lefschetz fixed point formula

A general fixed point formula for manifolds

3.1. Consider a pair of differentiable maps f, g : X → Y between compact oriented
differentiable manifolds X and Y ,such that g is locally a diffeomorphism. Let a local
system M on Y be given and also a morphism

ϕ : f∗M → g!M.

Denote by Γf , Γg ⊂ X × Y the graphs, and consider the decomposition

Γf ∩ Γg ' F (f, g) := {x ∈ X|f(x) = g(x)} =
⋃

j∈J

Fj

of the set of fixed points F (f, g) into connected components. We assume that the inter-
section of Γf and Γg is transversal in the following sense:

– each Fj is a differentiable submanifold of X and

– for each x ∈ Fj we have the following relation between the tangent spaces in the
point (x, y) ∈ X × Y :

T(x,y)Γf ∩ T(x,y)Γg = T(x,y) (Γf ∩ Γg) .

The global trace of the correspondence (f, g, ϕ) is defined to be:

tr(g∗f∗) =
∑

i>0

(−1)itri(g∗f∗) where

tri(g∗f∗) = tr
(
H i(Y,M)

f∗−→ H i(X, f∗M)
ϕ−→ H i(X, g∗M)

g∗−→ H i(X,M)
)

.

For x ∈ Fj we have an identification of the stalks (f∗M)x ' (g!M)x so that ϕx can be
considered as an endomorphism of (f∗M)x ' Mf(x) and thus has a trace. Since M is a
local system, this trace is constant on each connected component Fj and is denoted by
tr(ϕ|Fj). We denote by

χ(Fj) =
∑

i>0

(−1)i · dimQ(H i(Fj ,Q))
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the Euler Poincaré characteristic of Fj . Let N(Fj) denote the normal bundle of Fj inside
X, i.e. Nx(Fj) = TxX/TxFj for x ∈ Fj . By the transversality assumption we have det(id−
f∗g∗|NxFj) 6= 0 for all x ∈ Fj . Since this real number depends continuously on x, we get
a well defined sign

εj = sign (det(id− f∗g∗|N(Fj))) for each j ∈ J.

Remark 3.2. The transversality assumptions imply that each fixed point component Fj

has an open neighborhood Uj which meets no other fixed point component Fk. This implies
that J is a finite set by the compactness of X. Therefore all sums occuring in the following
are finite sums and we have no problems with convergence.

We can state the Lefschetz fixed point formula:

Theorem 3.3. With the above notations and assumptions we have

tr(g∗f∗) =
∑

j∈J

tr(ϕ|Fj) · χ(Fj) · εj

Proof: The fixed point theorem is well known, if the Fj are isolated points. If Fj is a
manifold of positive dimension, one reduces to this case by considering a vector field ξj on
Fj , which has isolated and non degenerate zeros {xi}, and extends ξj to a vectorfield ξj

with support in an open tubular neighborhood Uj of Fj , such that U j meets no other Uk.
If one modifies f =: f0 to the homotopic ft = f0 ◦ exp(tξj) for a small enough t > 0, one
does not change tr(g∗f∗), but F (ft, g) ∩ Uj consists of a set of isolated fixed points {xi}.
Recall that χ(Fj) equals the number of xi counted with an appropriate sign, We leave it as
an exercise to the reader that the right hand side of the theorem does not change too.

The general setting

3.4. The local systems M. Let M be a (G(Q)/ζ) o 〈η〉-module. This gives rise to a
local coefficient system M on X(Kf ) for each open compact Kf . We can obtain M as the
quotient M = G(Q)\M ×X×G(Af )/Kf , where we use the G(Q)-action on M and on X,
together with the canonical projection to X(Kf ) = G(Q)\X × G(Af )/Kf . Furthermore
we consider the following sheaf on X(Kf ):

M(U) =
{

φ : π−1(U) → M

∣∣∣∣
φ locally constant; φ(γx) = γφ(x)
for all γ ∈ G(Q), x ∈ X ×G(Af )/Kf

}
,

for U ⊂ X(Kf ) open, where π : X×G(Af )/Kf → X(Kf ) denotes the canonical projection.
If the action of G(Q) on X × G(Af )/Kf is free of fixed points then the sheaf M can be
considered as the sheaf of local sections of the map from the space M to X(Kf ).

3.5. For J ⊂ ∆ we denote the inverse image of {0, 1}J × {1}∆\J inside XBS(Kf ) by
XJ

BS(Kf ), and we denote the inclusion maps by iJ : Xsp(Kf ) ↪→ XJ
BS(Kf ) and ĩJ :

XJ
BS(Kf ) ↪→ XBS(Kf ), where the space called Xsp(Kf ) in 1.40 is X∅

BS(Kf ) in the new
notation.
For a sheaf M as above we denote its restriction to the subspace Xsp(Kf ) by Msp. We
introduce the sheaf i∗J !M := ĩ∆−J

! i∆−J∗ Msp on XBS(Kf ).
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If π : X(Kf ) ³ X(Kf )/S∆ ' XBS(Kf ) denotes the canonical projection, then the
sheaf π∗M on XBS(Kf ) is a sheaf with an action of S∆. If multiplication by 2 is an
automorphism of M then we may decompose π∗M into eigenspaces (eigensubsheaves) of
the reflection group S∆.

The sign group S∆ = {−1, +1}∆ may be identified with its dual group in such a way that
sJ ∈ S∆ may be identified with the character S∆ 3 (rα)α∈∆ 7→ ∏

α∈J rα.

Lemma 3.6. The eigensubsheaf of π∗M with respect to the character sJ of S∆ is isomor-
phic to the sheaf i∗J !Msp.

It is clear that the restriction of π∗M to Xsp(Kf ) is isomorphic to the tensor product of
Msp with the group ring Z[S∆] such that S∆ acts on the group ring. The eigensubsheaf of
π∗M with respect to the character sJ is the subsheaf on which the reflection sα act by −1
for α ∈ J and by +1 for α /∈ J . Then it becomes clear that the eigensubsheaf continues as
direct image for the embedding i∆−J , while it has to be continued by 0 for the embedding
ĩ∆−J .

From the introduction we recall the notation χ−1 for the character s∆ : (rα)α∈∆ 7→∏
α∈∆ rα.

Proposition 3.7. The Lefschetz number on the cohomology with compact support satifies

tr ((h∞ × hf ) ◦ η,H∗
c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

= 2−#∆ ·
∑

sJ′∈S∆

χ−1(sJ ′) · tr (H(sJ ′),H∗(X(Kf ),M))

Proof: We have an isomorphism which is equivariant with respect to the action of (h∞ ×
hf ) ◦ η:

H∗
c (G(Q)\G(A)/K∞Z∞ ·Kf ,M) = H∗

c (Xsp(Kf ),Msp)
∼= H∗ (

XBS(Kf ), i∆! Msp

)
.

where we used the fact that the cohomology with compact support may be computed as the
cohomology of the sheaf i∆! Msp on the Borel-Serre compactification XBS(Kf ). Observing
X∆

BS(Kf ) = XBS(Kf ) so that i∗∆!Msp = i∆! Msp and the preceding lemma we thus get:

tr ((h∞ × hf ) ◦ η, H∗
c (G(Q)\G(A)/K∞Z∞ ·Kf ,M))

= tr ((h∞ × hf ) ◦ η, H∗ (XBS(Kf ), i∗∆!Msp))
= tr ((h∞ × hf ) ◦ η, H∗ (XBS(Kf ), (π∗M)χ−1))

= 2−#∆ ·
∑

sJ′∈S∆

χ−1(sJ ′) · tr ((h∞ × hf ) ◦ η × sJ ′ ,H
∗ (XBS(Kf ), π∗M))

where sJ ′ only acts on the sheaf π∗M in the last line so that it commutes with the action
of (h∞× hf ) ◦ η. Here we used the fact that the trace of an operator on an S∆ eigenspace
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may be computed as the composition of the operator acting on the whole space with a
projector onto this eigenspace which is 2−#∆ ·∑sJ′∈S∆ χ−1(sJ ′) · sJ ′ in our case. Raising
the action to the space X(Kf ) now gives

= 2−#∆ ·
∑

sJ′∈S∆

χ−1(sJ ′) · tr ((h∞ × hf × sJ ′) ◦ η, H∗ (X(Kf ),M))

where sJ ′ now acts on the space in the last line. The definition of H(sJ ′) in 2.8 now implies
the claim.

Euler characteristics

3.8. We continue with the considerations of chapter 2. The Euler characteristic with
compact support satisfies:

χc (F (H)I,γ) =
∑

gf ∈ GI
γ,η(Af )\G(Af )/K ′

f

η(gf )−1 · gηγ · gf ∈ hfKf

χc

(
F (H)I,γ,gf

)

=
#RI

γ,η · cI,J ′

dI
ζ,γ

·
∑

gf as above
χc

(
XI

γ,η(gf )
)

where XI
γ,η(gf ) = GI

γ,η(Q)\
(
GI

γ,η(R)/L̃I
γ,η ×GI

γ,η(Af )/(GI
γ,η(Af ) ∩ gfK ′

fg−1
f )

)
and

cI,J ′ = #(Σ∆)I,J ′ = #
{

y ∈ {−1, 1}I × {0}∆−I |η(y)sJ ′ = y
}

.

Let dgf be a Haar measure on G(Af ) and denote by db = db∞ · dbf a Tamagawa measure
on the group G̃ = GI

γ,η. Let h̃ denote the characteristic function of hfKf multiplied with
(voldgf

(K ′
f ))−1. From the definition of a quotient measure we get immediately

χc (F (H)I,γ) =
#Rγ,η · cI,J ′

dI
ζ,γ

·(30)

∫

Gγ,η(Af )\G(Af )
χc

(
XI

γ,η(gf )
) · voldbf

(Gγ,η(Af ) ∩ gfK ′
fg−1

f ) · h̃ (
η(gf )−1(gηγ)gf

)
dbf\dgf ,

3.9. The Gauss-Bonnet formula. We furthermore put K̃f = GI
γ,η(Af ) ∩ gfK ′

fg−1
f ,

K̃∞ = L̃I
γ,η. Now we are in the situation, where G̃ = GI

γ,η is a linear algebraic group,
K̃f ⊂ G̃(Af ) is open, compact and sufficiently small and the connected component of
K̃∞ ⊂ G̃(R) is the product of some maximal connected and compact subgroup with a
connected subgroup Z̃∞ of the R-split center ZR−split

G̃
such that Z̃∞ contains the connected

component of the R-split and Q-anisotropic torus
⋂

χ kerχ ∩ ZR−split

G̃
, where χ ∈ X∗(ZG̃)

runs over all Q-rational characters of ZG̃.

We furthermore put K̃ = K̃∞ · K̃f .
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We make the assumption:

G̃ is a connected group if it is reductive.((Assconn))

D(G̃) = 0 if G̃ is not reductive or does not have a Cartan,

which is compact modulo the center of G̃(R),

D(G̃) =
#W (G̃/C, T/C)
#NG̃(R)(T )/T

if G̃ is reductive and T ⊂ K̃∞ · ZG̃(R) is a

maximal torus, which is compact modulo ZG̃(R).

If D(G̃) 6= 0 then the adjoint group G̃ad has a compact Cartan, and we can denote by G
the inner form of G̃/R which is compact modulo the center of G̃. We do not care about
the definition of G if D(G̃) = 0.

The Haar measure db∞ on G̃(R) determines uniquely a Haar measure on G(R), which will
be denoted by db∞ also. The isomorphism between G̃×RC and G×RC determines canonical
isomorphisms over R between the centers ZG̃ of G̃ and ZG of G and also between the torus

quotients G̃/G̃(1) and G/G
(1). Each rational character χ ∈ X∗(G̃) : G̃ → G̃/G̃(1) → Gm

may thus be viewed as a character from G → G/G
(1) → Gm and we may define G

′ to be
the intersection of the kernels of these characters. Using some basis χ1, . . . , χr of X∗(G̃)
the Haar measure db∞ may be written as the product of some Haar measure db′∞ on G

′(R)
and the euclidean measure

∏r
i=1 d∗xi on (R∗)r, the image of G(R) under (χ1, . . . , χr). Also

we may view ζ̃ = ZG̃(Q) ∩ K̃ as a subgroup of G
′(R).

We denote by τ(G̃) the Tamagawa number of G̃/Q, by

q(G̃) = dim
(
G̃(1)(R)/(L̃I

γ,η ∩ G̃(1)(R))
)

the dimension of the symmetric space associated to the derived group of G̃. Furthermore
we consider the dimension

∆(G̃, K̃∞) = dim(G̃(R)/K̃∞)− q(G̃) = dim
(
ZR−split

G̃

)
− dim Z̃∞.

Now we may state the following extension of Harder’s Gauss-Bonnet formula ([Har1]) to
reductive groups:

Proposition 3.10. If G̃ satisfies (Assconn) then

χc

(
G̃(Q)\G̃(A)/K̃

)
· voldbf

(K̃f ) = (−1)∆(G̃,K̃∞)+ 1
2
q(G̃) · D(G̃) · τ(G̃)

voldb′∞(G′(R)/ζ̃)

Proof: This is well known if G̃ is semisimple (compare [Roh, 3.3.]: his statement agrees
with ours in the case that the torus quotient is anisotropic over R. In the case that the
central unit group ζ̃ has positive rank the statement of Rohlfs simply reads 0 = 0, since
his symmetric space is a torus bundle, while our identity may be non trivial due to the
fact that K̃∞ contains the connected component of the center of G(R)).
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If the unipotent radical of G̃ is not trivial, then the Euler characteristic of the symmetric
space vanishes, since it is a (topological) torus bundle, and the formula is clear from the
definition of D(G̃).

If G̃ is a torus, then we have q(G̃) = 0, D(G̃) = 1, G = G̃ and the symmetric space
G̃(Q)\G̃(A)/K̃ is a disjoint union over the index set G̃(Q)\G̃(A)/G̃(R)◦K̃f of affine spaces
of the form (R∗>0)

∆(G̃,K̃∞). The formula is thus equivalent to

#
(
G̃(Q)\G̃(A)/G̃(R)◦K̃f

)
· voldbf

(K̃f ) · voldb′∞(G̃′(R)/ζ̃) = τ(G̃).

But if t1, . . . , tr ∈ G̃(A) denotes a set of representatives for the double coset space(
G̃(Q)\G̃(A)/G̃(R)◦K̃f

)
, then we have an isomorphism

r⋃

i=1

(G̃′(R)/ζ̃) −→
(
G̃(Q)\G̃(A)/K̃f

)′

(g∞)i 7→ g∞ · ti.
The claim for tori is now clear from the definitions of measures.

So it remains to prove the formula for a general connected reductive group G̃. We reduce
the claim to the semisimple and to the torus case using an exact sequence

1 → G̃(1) → G̃
ν−→ C → 1,

where the derived group G̃(1) is semisimple and C is a torus. We have q(G̃) = q(G̃(1)),
D(G̃) = D(G̃(1)) and ∆(G̃, K̃∞) = ∆(C, ν(K̃∞)). The role of K̃ for the torus C will be
played by ν(K̃). We may replace without loss of generality Z̃∞ by the connected component
of Z̃R−split∞ , since this operation multiplies both sides of the formula with (−1)∆(G̃,K̃∞).
Then ν induces a surjection to a finite set

G̃(Q)\G̃(A)/K̃
ν−→ ν(G̃(A))/ν(G̃(Q))ν(K̃).

The fibre over the class of some ν(t) ∈ ν(G̃(A)) is obviously the image of the map

εt : G̃(1)(Q)\G̃(1)(A)/K̃
(1)
t → G̃(Q)\G̃(A)/K̃

εt : g 7→ gt

with K̃
(1)
t = G̃(1)(A) ∩ tK̃t−1. But εt is in general not injective: From g1t = γ · g2t · k

with g1, g2 ∈ G̃(1), γ ∈ G̃(Q) and k ∈ K̃ we conclude that ν(γ−1) = ν(k),i.e. ν(γ) ∈ ζ̃1 =
ν(G̃(Q)) ∩ ν(K̃), but to modify γ to an element in G̃(1)(Q) it would be necessary to have
ν(γ) ∈ ν(ζ̃) (Recall that G̃(Q) ∩ K̃ = ζ̃, since Kf is assumed to be sufficiently small.) In
fact it is easy to see, that εt is a covering with covering group ζ̃1/ν(ζ̃). Therefore

χc

(
G̃(Q)\G̃(A)/K̃

)
=

∑

t∈ν(G̃(A))/ν(G̃(Q))ν(K̃)

χc

(
G̃(1)(Q)\G̃(1)(A)/K̃

(1)
t

)

#(ζ̃1/ν(ζ̃))
.

Now we may assume that the Tamagawa measure dc on the torus C is the quotient of
the Tamagawa measures db on G̃ and of db1 on G̃(1). From the semisimple case and the
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definition of a quotient measure we get:

χc

(
G̃(Q)\G̃(A)/K̃

)
· voldbf

(K̃f )

=
∑

t∈ν(G̃(A))/ν(G̃(Q))ν(K̃)

voldbf
(K̃f )

voldb1f
((K̃(1)

t )f )
· (−1)

1
2
q(G̃(1)) ·D(G̃(1)) · τ(G̃(1))

voldb1∞(G(1)(R)) ·#(ζ̃1/ν(ζ̃))

= #
(
ν(G̃(A))/ν(G̃(Q))ν(K̃)

)
· voldcf

(ν(K̃f )) · (−1)
1
2
q(G̃) ·D(G̃) · τ(G̃(1))

voldb1∞(G(1)(R)) ·#(ζ̃1/ν(ζ̃))
.

In the following commutative diagram the columns are exact and the map µK is surjective:
1 1y

y
ν(K̃)/ν(K̃) ∩ ν(G̃(Q))

µK−−−−→ ν(K̃)/ν(K̃) ∩ C(Q)y
y

ν(G̃(A))/ν(G̃(Q))
µ−−−−→ C(A)/C(Q)y

y
ν(G̃(A))/ν(G̃(Q))ν(K̃)

µsp−−−−→ C(A)/C(Q)ν(K̃)y
y

1 1.
Using the notion of an index ind(µ) := #coker(µ)/#ker(µ) we get

ind(µsp) = ind(µ) ·#ker(µK),

where ker(µK) =
(
ν(K̃) ∩ C(Q)

)
/

(
ν(K̃) ∩ ν(G̃(Q))

)
= ζ2/ζ̃1 with ζ2 = C(Q) ∩ ν(K̃).

From the torus case we conclude:

#
(
ν(G̃(A))/ν(G̃(Q))ν(K̃)

)
· voldcf

(ν(K̃f ))

=
#C(A)/C(Q)ν(K̃)

ind(µsp)
· voldcf

(ν(K̃f )) =
τ(C)

ind(µsp) · voldc′∞(C ′(R)/ζ2)
.

Now using the Tamagawa number relation ([Sans, 10.4.])

τ(G̃(1)) · τ(C) = τ(G̃) · ind(µ)

we may summarize:

χc

(
G̃(Q)\G̃(A)/K̃

)
· voldbf

(K̃f )

= (−1)
1
2
q(G̃) · D(G̃) · τ(G̃)

voldb1∞(G(1)(R)) ·#(ζ2/ν(ζ̃)) · voldc′∞(C ′(R)/ζ2)

and the claim is implied by the relation

voldb′∞(G′(R)/ζ̃) = voldb1∞(G(1)(R)) ·#(ζ2/ν(ζ̃)) · voldc′∞(C ′(R)/ζ2).
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3.11. If we introduce the (η-)twisted orbital integral

Oη(γ, h̃) =
∫

GI
γ,η(Af )\G(Af )

h̃
(
η(gf )−1(gηγ)gf

)
dbf\dgf

we can thus rewrite the equation (30):

χc (F (H)I,γ) =
#RI

γ,η · cI,J ′

dI
ζ,γ

·Oη(γ, h̃) · (−1)∆(G̃,Lγ,η)+ 1
2
q(G̃) · D(G̃) · τ(G̃)

voldb∞(G′(R)/ζ)
(31)

Local analysis

3.12. We recall the map

H : (p, y, gf ) 7→ (η1(p)pη · h∞, η(y) · sJ ′ , g
−1
η η(gf )hf )

Let x0 = (p0, y0, gf ) be a point in F (H)I,γ , i.e. there exist k∞ ∈ KI∞, z∞ ∈ Z∞, a ∈
AI , k ∈ Kf such that:

g−1
η η(p0)gηpηh∞ = γp0k

−1
∞ z−1

∞ a−1(1)

η(y0)sJ ′ = a−1y0(2)

g−1
η η(gf )hf = γgfk−1

f .(3)

We want to analyze the effect of H in a neighborhood of x0:

H(pp0, y0 + y, gf ) =
(
η1(p)η1(p0)pηh∞, η(y0 + y) · sJ ′ , g

−1
η η(gf )hf

)

=
(
η1(p)γp0 · k−1

∞ z−1
∞ a−1, a−1 · y0 + η(y) · sJ ′ , γ · gf · k−1

f

)

∼ (ηγ(p) · p0, y0 + a · η(y) · sJ ′ , gf )

As in 1.20 we denote by 0PI the intersection of the kernels of all χ2, where χ ranges over
all characters χ : PI → PI/ZG → Gm. Then there is a unique decomposition PI(R) =
0PI(R)oAI . We can write each p ∈ PI(R) in the form

p = p0 · p0a(p)p−1
0 where p0 ∈ 0PI(R), a(p) ∈ AI

(Apply the above decomposition to p−1
0 pp0 and observe that 0PI is a normal subgroup of

PI .) Now we can write

H (pp0, y0 + y, gf ) ∼
(
ηγ(p)0 · p0, a (ηγ(p))−1 · (y0 + a · η(y) · sJ ′) , gf

)

We remark(
PI(R)/KI

∞Z∞ × R∆−I × {±1}I
)

/AI ' 0PI(R)/KI
∞Z∞ × R∆−I × {±1}I .

Since supp(x0) = I we can assume that y0 ∈ {0}∆−I × {±1}I . Then our equation reads:

H (pp0, y0 + y, gf ) ∼ (
ηγ(p)0 · p0, y0 + a · a(ηγ(p))−1 · η(y) · sJ ′ , gf

)

We identify the tangent space of X(K ′
f ) at x0 with Ad(p0)Lie(0PI(R)/KI∞Z∞) × R∆−I .

The tangent space of X(Kf ) at κ(x0) = H(x0) can be identified with the same vector
space, such that the differential of the canonical projection κ : X(K ′

f ) → X(Kf ) becomes
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the identity. Here we use the notation Lie(G/H) = Lie(G)/Lie(H), if H ⊂ G is a Lie
subgroup.

Then the differential of the map H in the point x0 = (p0, y0, gf ), which is the differential
of the map (p, y) 7→ H(pp0, y0 + y, gf ) in (p, y) = (1, 0) is

– the differential of the map p 7→ ηγ(p)0 in the neutral element, considered as an
endomorphism of Ad(p0)Lie(0PI(R)/KI∞Z∞)

times

– the linear map l : R∆−I → R∆−I , y 7→ a · η(y) · sJ ′ .

Observe that the differential of the map p 7→ a(ηγ(p))−1 at p = 1 does not come into the
picture, since it has to be multiplied with η(0) = 0 by the product formula.

3.13. The map
∏

α∈∆−I α induces an isomorphism between AI equipped with the automor-
phism η2 and the product (R∗>0)

∆−I equipped with the automorphism η. The logarithm
map log∆−I induces an η-equivariant isomorphism (R∗>0)

∆−I ' R∆−I .

We conclude H1 (〈η2〉, AI) ' H1
(〈η〉, (R∗>0)

∆−I
) ' H1

(〈η〉,R∆−I
)

= 0, since η is of finite
order. This means that every a ∈ AI satisfying N2(a) = 1 is of the form a = b · η2(b)−1.

If we replace p0 by p′0 = p0 · b where b ∈ AI we get

g−1
η · η(p′0) · gηpηh∞ = g−1

η · η(p0) · gηpη · η2(b)h∞ = γp0k
−1
∞ z−1

∞ a−1 · η2(b)

= γp′0k
−1
∞ z−1

∞ (a′)−1, where a′ = a · b · η2(b)−1.

Thus the class of a modulo coboundaries is unique.

3.14. We decompose ∆− I into orbits under η and assume without loss of generality that
{1, . . . , m} ⊂ ∆− I is such an orbit, more precisely we may assume:

η(αi) = αi+1, i = 1, . . . , m− 1, η(αm) = α1.

We write
ai = αi(a) for i = 1, . . . , m . . .

sJ ′ = (ε1, . . . , εm, . . .) where εi = ±1

Then Rm = Rm × {0} ⊂ R∆−I is an η- and S∆-stable factor of R∆−I , on which the map
l is described as follows:

l : (y1, . . . , ym) 7→ (a1ymε1, a2y1ε2, . . . , amym−1εm)

The characteristic polynomial is det ((T · id− l)|Rm) = Tm−a1 · · · am ·ε1 · · · εm. We remark
αi(N2(a)) = a1 · a2 · · · am for i = 1, . . . , m.

3.15. The case a1 · · · am = 1 and ε1 · · · εm = 1. If a1 · · · am = 1 we can modify p0 such
that we get a1 = . . . = am = 1. But then we get from the definitions that F (H)I,γ is a
component of the boundary of F (H)I∪{1,...,m},γ if additionally ε1 · · · εm = 1: The vector

v = (ε1, ε1ε2, . . . , ε1 · · · εm−1, 1) ∈ Rm

is an eigenvector of l with eigenvalue 1, such that the algebraic multiplicity of this
eigenvalue is 1. Via the embeddings Rm ⊂ R∆−I ⊂ Tx0X the vector v can be viewed
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as a tangent vector of the set of fixed points F (H)I∪{1,...,m},γ . More precisely, if we
consider the map α = αI : XI

γ,η(gf ) × Rγ,η × (Σ∆)I,J ′ → F (H)I,γ,gf
from 2.24,

then F (H)I,γ,gf
lies in the boundary of F (H)I∪{1,...,m},γ,gf

and the latter is the image

of X
I∪{1,...,m}
γ,η (gf ) × Rγ,η × (Σ∆)I∪{1,...,m},J ′ under αI∪{1,...,m}. One gets the index set

(Σ∆)I∪{1,...,m},J ′ from (Σ∆)I,J ′ by replacing the part (0, . . . , 0) ∈ Rm by the vectors ±v.

The action of l on Rm/〈v〉 now gives a positive contribution to the expression
det

(
id− dH|Norm(F (H)γ)

)
, where Norm(F (H)γ) is the normal bundle of F (H)γ : One can

easily see that the determinant in the part belonging to Rm/〈v〉 in the normal bundle is
m > 0 using the formula (Tm − 1) = (T − 1) · (Tm−1 + . . . T + 1).

3.16. The case a1 · · · am = 1 and ε1 · · · εm = −1. If a1 · · · am = 1 and ε1 · · · εm = −1
the number 1 is not an eigenvalue of the linear map l and det ((id− l)|Rm) = 2 is also a
positive contribution to the expression sign

(
det

(
id− dH|Norm(F (H)γ)

))
.

We conclude
∑

ε1,...,εm

ε1 · · · εm · sign
(
det

(
id− dH)|Norm(F (H)γ)

))
= 0(32)

if a1 · · · am = 1.

3.17. In the case a1 · · · am 6= 1 the number 1 is not an eigenvalue of the linear
map l for all choices of εi, so that sign (det(id− l)|Rm) is a factor of the expression
sign

(
det

(
id− dH)|Norm(F (H)γ)

))
. We compute

∑
ε1,...,εm

ε1 · · · εmsign (det(id− l)|Rm) =
∑

ε1,...,εm

ε1 · · · εmsign (1− a1 · · · am · ε1 · · · εm)

=

{
0 if a1 · · · am < 1

−2m if a1 · · · am > 1.
(33)

Lemma 3.18. Assume
∏

j∈J aj > 1 for all η-orbits J in ∆− I. Then the eigenvalues of the

differential of the map p 7→ ηγ(p)0 have absolute value 6 1.

Proof: For α ∈ ∆− I there exists a positive integer εI,α such that the restriction of εI,α ·α
to AI has a continuation to a rational character from PI/ZG to Gm. Let χI,α be the square
of this character. Thus we have:

χI,α(a) = α(a)2εI,α for all a ∈ AI .

If we apply χI,α to equation (1N ) in 2.10 we get

χI,α(N (gηγ)) = α(N2(a))2εI,α ,

since N (gηpη), N2(h∞), N2(z∞k∞) ∈ Km∞ ∩ PI(R) are all elements of ker(χI,α).

The differential of the map pp0 7→ ηγ(p)p0, from the space P 0
I (R)/KI∞Z∞ to itself is the

same as that of the analogous endomorphism on PI(R)/LI∞. The n-th (iterated) power of
this map is pp0 7→ ηn

γ (p)p0 = N (gηγ)−1 · p · N (gηγ) · p0. The claim about the eigenvalues
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of the differential of the original map is equivalent to the corresponding claim about the
n-th composed map. But now we have

Tp0

(
PI(R)/LI

∞
) ' Lie(MI(R))/Lie(LI

∞)× Lie(UI(R)).

Now the differential of the conjugation map p 7→ N (gηγ)−1 · p · N (gηγ) has eigenvalues
of absolute value 1 on the first factor, since N (gηγ) ∈ LI∞ = KI∞Z∞AI , where Z∞AI

centralizes the group MI(R) and KI∞ is compact. The effect of the map on Lie(UI(R))
on the other side is described by the inverses of the roots followed by a conjugation with
something compact. Since the values of the roots are > 1 by assumption, the proof is
complete.

Proposition 3.19. We may summarize the contribution of the I-component:

2−#∆ ·
∑

s∈{±1}∆
sign

(
det(id−H(s))|Norm(F (H)I,γ)

)
· cI,J ′ · χ−1(s)

=





0 if χI,α (N (gηγ)) 6 1 for some α ∈ ∆− I

(−1)#((∆−I)/η) else

Proof: From (32) and (33) the vanishing in the first case is clear. If we have χI,α (N (gηγ)) >
1 for all α ∈ ∆ − I then the eigenvalues αj of the map p 7→ ηγ(p)0 have absolute value
6 1 by lemma 3.18. Since the non real of them appear in pairs of complex conjugates we
conclude that

∏
j,αj 6=1(1− αj) is strictly positive. We furthermore may compute:

∑

ε∈{±1}I

cI,J ′ ·
∏

i∈I

εi =
∑

ε∈{±1}I

∏

i∈I

εi ·#
{

y ∈ {±1}I × {0}∆−I |η(y) · sJ ′ = y
}

=
∑

y∈{±1}I

χ−1

(
y · η(y)−1

)
= 2#I ,

since χ−1

(
y · η(y)−1

)
= χ−1(y) ·χ−1 (η(y)) = χ−1(y)2 = 1. Now we get the claim from this

formula together with (33): The powers of 2 cancel against 2−#∆ and from each η-orbit
in ∆− I we get one minus sign.

First version of the trace formula

3.20. The assumptions on Z∞, Zf , ζ. Recall that we fixed an open compact subgroup
Zf ⊂ ZG(Af ) satisfying

η(Zf ) = Zf . This implies η(ζ) = ζ.(AssZf )

We will consider only Kf satisfying

Kf ∩ ZG(Af ) = Zf .

The group Z∞ ⊂ ZG(R) satisfies

η(Z∞) = Z∞,(AssZ)

since it is invariantly defined to be the connected component of the group of R-valued
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points of the R-split part of the center of G. Then the group

ζ = ZG(Q) ∩ (K∞ · Z∞ ·A∆ × Zf )

is η-invariant and has to satisfy

(
gfKfg−1

f · g∞K∞Z∞A∆g−1
∞

)
∩G(Q) = ζ for all gf ∈ G(Af ), g∞ ∈ G(R).

(AssKf
)

Finally Zf and therefore also ζ are sufficiently small, in the sense that the following
assumption is fulfilled:

ζ ∩G(1)(Q) = {1} .(Assζ,der)

Recall from 2.17 the definition O∞
η (γ, h∞) = #Rγ,η of a substitute of an orbital integral

at the infinit place. Finally we recall the assumtion on the twisted centralizers:

GI
γ,η is a connected group if it is reductive.((Assconn))

Theorem 3.21. Let hf be a Schwartz-Bruhat function on G(Af ) which is right invariant
under Kf , let M be a G(Q) o 〈η〉-module and h∞ ∈ Km∞ ∩M0(R). If all assumptions in
3.20 are fulfilled then we have

tr ((h∞ × hf ) ◦ η, H∗
c (G(Q)\G(A)/K∞Z∞ ·Kf ,M)) =

∑

I⊂∆
Iη=I

(−1)#((∆−I)/η) ·
∑

γ∈(PI(Q))η

N (γ)∼LI∞
χI,α(N (γ))>1
for all α∈∆−I

(−1)∆(G̃,Lγ,η)+ 1
2
q(G̃) · O∞

η (I, γ, h∞)
dI

ζ,γ

·Oη(γ, hf ) · tr(γ ◦ η|M) · D(GI
γ,η) · τ(GI

γ,η)

voldb′∞((GI
γ,η)′/ζ)

.

Remarks: The inner sum is formally over all η-conjugacy classes in PI(Q) which satisfy
the two listed conditions, but the factor D(GI

γ,η) encodes the further conditions, that GI
γ,η

is reductive and contains a torus which is compact modulo the center at the archimedean
prime. For the definition of O∞

η (I, γ, h∞) we refer to (2.17).

Proof: First we use 3.7 and then we apply the general fixed point formula for compact
manifolds 3.3 to each correspondence H(sJ ′). Then we use the additivity of the Euler
characteristic with compact supports with respect to stratifications into locally closed
manifolds. We get

tr ((h∞ × hf ) ◦ η,H∗
c (G(Q)\G(A)/K∞Z∞ ·Kf ,M)) =

2−#∆ ·
∑

s∈S∆

χ−1(s) ·
∑

γ

sign
(
det(id−H(s))|Norm(F (H)γ)

)·χc(F (H)I,γ)·tr(γ ◦ η|M)

Now we use 3.19 and (31) to get the claim.
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4. Stabilization and Galois cohomology

Abelianized Galois cohomology

4.1. Let K be a perfect field. Recall the definition of abelianized Galois cohomology of
Borovoi and Kottwitz [Bovo]: If G/K is a reductive group, let G(1) = Gder be its derived
group and Gsc the simply connected cover of Gder. We denote by Z ⊂ G the center, by
T ⊂ G some torus containing Z (in the applications T will be a maximal torus), and by
Zsc = ρ−1(Z) and Tsc = ρ−1(T ) their inverse images in Gsc under the composite map
ρ : Gsc ³ Gder ↪→ G. One defines H1

ab(K, G) to be the Galois hypercohomology of the
complex 1 → Zsc → Z → 1, where Zsc sits in degree −1 and Z in degree 0. Since this
complex is quasiisomorphic to the complex 1 → Tsc → T → 1 we can as well define

H1
ab(K, G) = H1(K, 1 → Tsc → T → 1).

There exists a canonical map ab1 : H1(K,G) → H1
ab(K, G): If (ψσ) ∈ Z1(K, G) denotes a

cocycle, we may write ψσ = ρ(ψ′σ) · ξσ for ψ′σ ∈ Gsc(K̄) and a cochain ξσ ∈ Z(K̄). Then
λσ,τ := ψ′σ · σψ′τ · (ψ′στ )

−1 ∈ Zsc(K̄) and the pair ((λσ,τ ), (ξσ)) ∈ C2(K, Zsc) × C1(K, Z)
defines a cocycle in the double complex which computes the hypercohomology H1(K, 1 →
Zsc → Z → 1). Then ab1 of the class of (ψσ) is the class of this pair.

We denote by X∗ the following complex of abelian groups with action of Gal(K̄/K) living
in degrees −1 and 0:

X∗ : 0 → X∗(Tsc) → X∗(T ) → 0

Then we have H1
ab(K,G) = H1(K,X∗ ⊗ K

∗). We recall the definition of the algebraic
fundamental group from [Bovo]:

π1(G) = H0(X∗) = X∗(T )/ρ∗X∗(Tsc).

4.2. Now let G be defined over Q. Following [Bovo] the vanishing theorem of Kneser
H1(Qp, Gsc) = 1 and the Hasse principle for semisimple simply connected algebraic groups
(Kneser, Harder and Chernousov) generalize to the statement that the following diagram
is cartesian:

H1(Q, G) ab1−−−−→ H1
ab(Q, G)y

y

H1(R, G) ab1−−−−→ H1
ab(R, G)

(In the case G = Gsc the groups H1
ab(K, G) are trivial, and the diagram being cartesian

just means, that the left arrow is a bijection.)
The short exact sequence 1 → Q∗ → A∗Q → A∗̄Q/Q∗ → 1 gives rise to an exact sequence

H1(Q,X∗ ⊗Q∗) −−−−→ H1(Q,X∗ ⊗ A∗Q) −−−−→ H1(Q,X∗ ⊗ A∗Q/Q̄∗)

∼
y ∼

y ∼
y

H1
ab(Q, G) −−−−→ ⊕

v H1(Qv,X∗ ⊗Q∗v) −−−−→ Ĥ−1(Q, π1(G)),
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where we have used the Tate-Nakayama isomorphism in the right column. Observe that
Ĥ−1(Q, π1(G)) =

(
π1(G)Gal(Q̄/Q)

)
tors

. The local Tate-Nakayama map gives us an isomor-
phism:

H1
ab(R, G) ' Ĥ−1(R, π1(G)) ' (

π1(G)Gal(C/R)

)
tors

.

4.3. The group of connected components of a real algebraic group. For
G/R we consider the homomorphism ab0 : G(R) → Ĥ0(R,X∗ ⊗ C∗), which maps g =
ρ(s) · z ∈ G(R) with s ∈ Gsc(C) and z ∈ ZG(C) to the class of the 0-hypercocycle
(s · s̄−1, z) ∈ Z0(R, Zsc(C) → ZG(C)). Here (a, b) ∈ Zsc(C)×ZG(C) is a 0-hypercocycle iff
ρ(a) = b̄ · b−1 and a · ā = 1. The hypercoboundaries are of the form (c̄ · c−1, ρ(c) · dd̄) for
c ∈ Zsc(C), d ∈ ZG(C). We define the torus Z◦G to be the connected component of ZG as
an algebraic group.

Lemma 4.4. (a) The kernel of ab0 is the group ρ(Gsc(R)) · {d0d̄0 | d0 ∈ Z◦G(C)
}
.

(b) The map ab0 induces an injection π0(G(R)) ↪→ Ĥ0(R,X∗ ⊗ C∗).
Proof: (a) If ab0(g) = 1 with g = ρ(s) · z then s · c ∈ Gsc(R) and g = ρ(s · c) · dd̄ with
c ∈ Zsc(C) and d ∈ ZG(C). But since we can write d = ρ(δ) · d0 with δ ∈ Zsc(C) and d0

in the torus Z◦G(C) we get the representation g = ρ(scδδ̄) · d0d̄0 with scδδ̄ ∈ Gsc(R). On
the other side it is easy that each element of the form g = ρ(s) · dd̄ with s ∈ Gsc(R) and
d ∈ Z◦G(C) lies in the kernel of ab0.

(b) Since Gsc(R) and Z◦G(C) are connected as Lie groups, the same holds for their contin-
uous images ρ(Gsc(R)) and

{
d0d̄0 | d0 ∈ Z◦G(C)

}
. Thus the kernel of ab0 is connected. On

the other side the kernel of ab0 is an open subgroup of G(R), since its Lie algebra coincides
with the Lie algebra of G(R). This implies the claim.

Stabilization

Definition 4.5. We say that a pair (G, η), where G/Q is a reductive group and η ∈ Aut(G)
is of finite order, has trivial Galois cohomology, if all maps H1(F, Gγ,η) → H1(F, G) are
trivial for F = Q and for all F = Qv, v an arbitrary valuation of Q.

Remark 4.6. The groups G = GLn, SLn,Sp2g,GSp2g have trivial H1 over every field F .
The pair (PGL2n+1, η), where η is of the form A 7→ J · tA−1 · J−1 also has trivial Galois
cohomology, since every stabilizer Gγ,η has a unique lift to the group SL2n+1 (compare the
proof of [BWW, Prop. 6.5.]), so that H1(F,Gγ,η) → H1(F,G) factorizes over the trivial
set H1(F, SL2n+1).

Remark 4.7. If (G, η) has trivial Galois cohomology (which we will assume in the sequel),
then it is well known that the conjugacy classes inside the η-stable conjugacy class of
some γ ∈ G(F ) are parametrized by the elements in H1(F, Gγ,η). In the following we will
not distinguish between classes in H1(F, Gγ,η) and representatives of conjugacy classes
corresponding to them. This applies in the following definition, where we furthermore use
the Kottwitz sign ev(G) ∈ {±1} for an algebraic group G/Qv, if v is a place of Q, as
defined in [Ko1].
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4.8. We introduce the local stable orbital integrals:

SOη(γ0, hp) =
∑

γp∈H1(Qp,Gγ0,η)
ep

(
Gγp,η

)
·Oη (γp, hp)

and its analog in the finite adelic setting:

SOη(γ0, hf ) =
∏

p finite

SOη(γ0, hp) if

hf =
∏

p finite

hp.

We extend this definition by linearity to all Schwartz-Bruhat functions on G(Af ).

Theorem 4.9. Assume that the pair (G, η) has only trivial Galois cohomology. For I ⊂ ∆
and γ0 ∈ PI(Q) assume that G̃ = GI

γ0,η is a connected reductive group, let G̃qs be the

quasi-split inner form of G̃ and define ∆(γ0, η) = ∆(G̃, Lγ0,η) + 1
2q(G̃qs). Then we have

tr ((h∞ × hf ) ◦ η, H∗
c (G(Q)\G(A)/K∞Z∞ ·Kf ,M)) =∑

I⊂∆
Iη=I

(−1)#((∆−I)/η) ·
∑

γ0∈(PI(Q))η−st

N (γ0)∼LI∞
χI,α(N (γ0))>1
for all α∈∆−I

α∞(γ0, h∞) · SOη(γ0, hf ) · tr(γ0 ◦ η|M),

with

α∞(γ0, h∞) =
O∞

η (I, γ0, h∞)
dI

ζ,γ

· (−1)∆(γ0,η) · #H1(R, T )

voldb∞

(
(GI

γ0,η)′/ζ
) .

Here γ0 runs over the stable η-conjugacy classes inside PI(Q) satisfying the two listed
conditions.

Proof: We start with a twisted conjugacy class γ0 in G(Q). Then all elements stably
conjugate to γ are parametrized by the kernel of the map H1(Q, G̃) → H1(Q, G), where
G̃ = GI

γ0,η. Since (G, η) has trivial Galois cohomology, this kernel equals H1(Q, G̃). Let
us consider the following diagram, where the right column is exact and the left square is
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cartesian:
0y

X(Q, G̃)y

H1(Q, G̃) ab1−−−−→ H1
ab(Q, G̃) H1

ab(Q, G̃)y
y

yloc

H1(R, T ) iT−−−−→ H1(R, G̃)
ab1R−−−−→ H1

ab(R, G̃) −−−−→ ⊕
v H1

ab(Qv, G̃)

∼
y

y
(
π1(G̃)Gal(C/R)

)
tors

iR−−−−→
(
π1(G̃)Gal(Q̄/Q)

)
tors

Remark that iR is surjective if G̃ = GI
γ,η and γ is an I-elliptic element. Furthermore if γ is

I-elliptic, then we have the equality of the Q-rank with the R-rank of the torus G̃/G̃der.
Recall that the Kottwitz signs ev(G̃) satisfy:

ep(G̃) = (−1)rankQp (G̃)−rankQp(G̃qs) for p finite

e∞(G̃) = (−1)
1
2
q(G̃der)− 1

2
q((G̃qs)der)

∏
v

ev(G̃) = 1.

Here q(G̃der) denotes the dimension of the symmetric space associated to the derived group
G̃der. Thus we have

(−1)
1
2
q(G̃der) = (−1)

1
2
q((G̃qs)der) ·

∏

p finite

ep(G̃).(34)

The Tamagawa numbers satisfy [Sans]:

τ(G̃) =
#

(
π1(G̃)Gal(Q̄/Q)

)
tors

#X(Q, G̃)
· τ(G̃sc).(35)

Recall that τ(G̃sc) = 1 by the main result of [Ko2].

Finally note that if D(G̃) does not vanish, it equals the order of the kernel of the map
H1(R, T ) → H1(R, G̃). More precisely: If G̃β denotes the inner form of G̃ obtained by
twisting G̃/R with β ∈ H1(R, G̃), then D(G̃β) equals the cardinality of the inverse image
of β in H1(R, T ). (compare [She])

The process of stabilization now works as follows: The sum over all (η-twisted) conjugacy
classes in the stable class of γ0, which is a sum over γ ∈ H1(Q, G̃) may be replaced
by a sum over those pairs (α, β) ∈ H1

ab(Q, G̃) ×H1(R, G̃), which have the same image in
H1

ab(R, G̃). This may be replaced by a sum over pairs (α, δ) ∈ H1
ab(Q, G̃)×H1(R, T ) having

the same image in H1
ab(R, G̃), if we remove the factor D(G̃) from the trace formula. If we
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introduce an additional factor #X(Q, G) in the formula, we may replace the sum over
(α, δ) by a sum over those (δ, ε) ∈ H1(R, T ) × ⊕vH1

ab(Qv, G̃), for which the image of ε in(
π1(G̃)Gal(Q̄/Q)

)
tors

vanishes and for which the image of δ in H1
ab(R, G̃) is the archimedean

component ε∞. But since the maps iT , ab1
R and iR are surjective, we may simply replace

the sum over (δ, ε) by a sum over ω ∈ ⊕
p finiteH1

ab(Qp, G̃) after introducing an extra

factor #ker
(
H1(R, T ) ³

(
π1(G̃)Gal(Q̄/Q)

)
tors

)
. But now the product of this last factor

with #X(Q, G) equals #H1(R, T ) · τ(G̃)−1 by (35). Now observe that H1
ab(Qp, G̃) '

H1(Qp, G̃) ' ker
(
H1(Qp, G̃) → H1(Qp, G)

)
describes the local twisted conjugacy classes

in the local stable twisted conjugacy class of γ0. Putting everything together, especially
(34), we get the claim.
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5. Comparison of fixed point formulas

Twisted stable endoscopy

5.1. Split Groups with automorphism. Let G/R be a connected reductive split group
scheme. We fix some ”splitting” i.e. a triple (B, T, {Xα}α∈∆) where T denotes a maximal
split torus inside a rational Borel B, ∆ = ∆G = ∆(G,B, T ) ⊂ Φ(G,T ) ⊂ X∗(T ) the set of
simple roots inside the system of roots and the Xα for the simple roots α ∈ ∆ are a system
(nailing) of isomorphisms between the additive group scheme Ga and the unipotent root
subgroups Bα. If R is a field we may think of the Xα as generators of the root spaces gα

in the Lie algebra. Here X∗(T ) = Hom(T,Gm) denotes the character module of T , while
X∗(T ) = Hom(Gm, T ) will denote the cocharacter module of T . Let η ∈ Aut(G) be an
automorphism of G which fixes the splitting, i.e. stabilizes B and T and permutes the Xα.
We assume η to be of finite order l. We denote by

G̃ = Go 〈η〉
the (nonconnected) semidirect product of G with η. η acts on the (co)character module
via X∗(T ) 3 α∨ 7→ η ◦ α∨ resp. X∗(T ) 3 α 7→ α ◦ η−1.

5.2. The dual group. Let Ĝ = Ĝ(C) be the dual group of G. By definition Ĝ has a
triple (B̂, T̂ , {X̂α̂}) such that we have identifications X∗(T̂ ) = X∗(T ), X∗(T̂ ) = X∗(T )
which identifies the (simple) roots α̂ ∈ X∗(T̂ ) with the (simple) coroots α∨ ∈ X∗(T ), and
the (simple) coroots α̂∨ ∈ X∗(T̂ ) with the (simple) roots α ∈ X∗(T ). There exists a unique
automorphism η̂ of Ĝ which stabilizes (B̂, T̂ , {X̂α̂}) and induces on (X∗(T̂ ), X∗(T̂ )) the
same automorphism as η on (X∗(T ), X∗(T )).

5.3. The η-invariant subgroup in Ĝ. Let Ĥ = (Ĝη̂)◦ be the connected compo-
nent of the subgroup of η̂-fixed elements in Ĝ. It is a reductive split group with triple
(B̂H , T̂H , {X̂β̂}β∈∆Ĥ

), where B̂H = B̂η̂, T̂H = T̂ η̂ and the X̂β̂ are of the form X̂β̂ = Sη̂X̂α̂

as elements of the Lie algebra ĝ, where map Sη̂ : ĝ → ĝ will be explained soon.

We have the inclusion of cocharacter modules X∗(T̂H) = X∗(T̂ )η̂ ⊂ X∗(T̂ ) and a projection
for the character module

Pη : X∗(T̂ ) ³ (X∗(T̂ )η̂)free = X∗(T̂H),

where (X∗(T̂ )η̂)free denotes the maximal free quotient of the coinvariant module X∗(T̂ )η̂.
For a Z[η]-module X we define a map

Sη : X → Xη, x 7→
ordx(η)−1∑

i=0

ηi(x)

where ordx(η) = min{i > 0 | ηi(x) = x} is the length of the orbit 〈η〉(x).

For the roots Φ and coroots Φ∨ of a given root datum (X∗, X∗, Φ,Φ∨) we have to introduce
a modified map S′η by

S′η(α) = c(α) · Sη(α) where

c(α) =
2

〈α∨, Sη(α)〉
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resp. by the formula where the roles of α and α∨ are exchanged. For all simple root
systems with automorphisms which are not of type A2n we have 〈α∨, ηi(α)〉 = 0 for
i = 1, . . . , ordα(η)−1 which implies c(α) = 1 i.e. S′η(α) = Sη(α). We furthermore introduce
the subset of short-middle roots and the dual concept of long-middle coroots:

Φ(Ĝ, T̂ )sm =
{

α ∈ Φ(Ĝ, T̂ )
∣∣∣∣
1
2
· Pη(α) /∈ Pη(Φ(Ĝ, T̂ ))

}

Φ(G,T )lm = Φ∨(Ĝ, T̂ )lm =
{

α∨
∣∣∣α ∈ Φ(Ĝ, T̂ )sm

}

Proposition 5.4. With the above notations we have

Φ(Ĥ, T̂H) = Pη(Φ(Ĝ, T̂ )sm) for the roots(36)

Φ∨(Ĥ, T̂H) = S′η(Φ
∨(Ĝ, T̂ )lm) for the coroots(37)

∆∨
Ĥ

= ∆∨(Ĥ, B̂H , T̂H) = S′η(∆
∨
Ĝ
) for the simple coroots

∆Ĥ = ∆(Ĥ, B̂H , T̂H) = Pη(∆Ĝ) for the simple roots

Proof: This may be deduced from [St, 8.1].

Definition 5.5 stable η-endoscopic group. In the above situation a connected reductive
split group scheme H/R will be called a stable η-endoscopic group for (G, η) resp. G̃ if its
dual group is together with the splitting isomorphic to the above (Ĥ, B̂H , T̂H , {Xβ}β∈∆Ĥ

).

Remarks: Since H is unique up to isomorphism (up to unique isomorphism if we consider
H together with a splitting) we can call H the stable η-endoscopic group for (G, η). For a
maximal split torus TH ⊂ H we have:

X∗(TH) = (X∗(T )η)free for the cocharacter module(38)
X∗(TH) = X∗(T )η for the character module

5.6. To get examples we use the following notations:

diag(a1, . . . , an) ∈ GLn denotes the diagonal matrix (δi,j · ai)ij and

antidiag(a1, . . . , an) ∈ GLn the antidiagonal matrix (δi,n+1−j ·ai)ij with a1 in the upper
right corner. We introduce the following matrix

J = Jn = (δi,n+1−j(−1)i−1)16i,j6n = antidiag(1,−1, . . . , (−1)n−1) ∈ GLn(R).

and its modification J ′2n = antidiag(1,−1, 1, . . . , (−1)n−1, (−1)n−1, . . . , 1,−1, 1). Since
tJn = (−1)n−1 · Jn and J ′2n is symmetric we can define the

standard symplectic group Sp2n = Sp(J2n)
standard split odd orthogonal group SO2n+1 = SO(J2n+1).
standard split even orthogonal group SO2n = SO(J ′2n).

We consider the groups GLn, SLn, PGLn,Sp2n, SOn with the splittings consisting of the
diagonal torus, the Borel consisting of upper triangular matrices and the standard nailing.
We remark that the following map defines an involution of GLn, SLn and PGLn:

η = ηn : g 7→ Jn · tg−1 · J−1
n .
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Example 5.7 A2n ↔ Cn.

G = PGL2n+1, η = η2n+1 has dual Ĝ = SL2n+1(C), η̂ = η2n+1⋃
H = Sp2n has dual Ĥ = SO2n+1(C)

Example 5.8 A2n−1 ↔ Bn. The group G = GL2n ×Gm has the automorphism

η : (g, a) 7→ (η2n(g), det(g) · a)

which is an involution since det(η2n(g)) = det g−1. The dual η̂ ∈ Aut(Ĝ) satisfies

η̂(g, b) = (η2n(g) · b, b), so that we get

G = GL2n ×Gm, η has dual Ĝ = GL2n(C)× C×, η̂⋃
H = GSpin2n+1 has dual Ĥ = GSp2n(C).

Recall that GSpin2n+1 can be realized as the quotient
(
Gm × Spin2n+1

)
/µ2, where µ2 '

{±1} is embedded diagonally, so that we get an exact sequence

1 → Spin2n+1 → GSpin2n+1
µ−→ Gm → 1,

where the ”multiplier” map µ is induced by the projection to the Gm factor followed by
squaring. Thus the derived group of GSpin2n+1 is Spin2n+1, i.e. a connected, split and
simply connected group.

Example 5.9 A2n−1 ↔ Bn modified. In the example 5.8 the subtorus Z0 = {(z ·
Id2n, z−n)|z ∈ Gm} ⊂ Z is η-stable, in fact η acts by inverting elements of Gm ' Z0.
Therefore the η-action descends to the quotient group G′ = G/Z0. We may identify

G′ ' GL2n/µn

(A, b)mod R 7→ A · n
√

b

The induced η-action reads A mod µn 7→ η2n(A) · n
√

det(A).

We remark that η acts as identity on the center of G′, which is Gm/µn ' Gm. The group
of η-invariants in the center is therefore a connected group.

The dual group Ĝ′ is the following η-stable subgroup of Ĝ:

Ĝ′ =
{

(A, b) ∈ Ĝ| det(A) = bn
}

.

Since Ĝη̂ ⊂ Ĝ′ we may consider H = GSpin2n+1 as a stable endoscopic group for (G′, η′).

Comparison of characters
5.10. Matching of finite dimensional representations. Let k be a field of char-
acteristic 0. Let M = Mχ be the finite dimensional representation of G of highest weight
χ ∈ X∗(T )η. We also denote by Mχ the extension of this representation to G̃ = Go 〈η〉,
such that η acts as identity on one (every) highest weight vector vχ. Let MH = MH,χ

be the corresponding representation of H where we now consider χ as a weight in
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X∗(TH) = X∗(T )η. In this situation we say that the G̃-module M matches with the
H-module MH .

We can as well consider MH,χ as an element in the Grothendieck-group Gro(H , alg) of
finite dimensional algebraic representations of H and M = Mχ as an element of the quo-
tient group Gro(G , η) = Gro(G̃ , alg)/Ind G̃

G Gro(G , alg). The correspondence MH,χ 7→ Mχ

induces an isomorphism between these groups (recall that the order of η is a prime). This
isomorphism enables us to introduce the notion of matching on the level of Grothendieck
groups.

5.11. Recall Φ(H, TH) = Φ∨(Ĥ, T̂H) = S′η(Φ∨(Ĝ, T̂ )lm) = S′η(Φ(G,T )lm) by (37) of
Proposition 5.4. We may define Φ(G,T )sm by the same formula as above using the
projection Pη : X∗(T ) ³ (X∗(T )η̂)free. In the case of an irreducible root system each
αl ∈ Φ(G,T )−Φ(G, T )sm (which exists only for type A2n and η of order 2) is of the form
αl = α0 + η(α0) for some α0 ∈ Φ(G,T ) − Φ(G,T )lm and vice versa. We have c(αl) = 2
and the η-orbit of α0 is uniquely determined by αl. Compare [Bal, 2.5.] for details.

Lemma 5.12. Suppose the root system Φ(G,T ) is irreducible. If α ∈ Φ(G, T )sm, i.e.
1
2Pη(α) /∈ Pη(Φ(G,T )), then there exists a set of root vectors {Xγ ∈ gγ\{0}|γ ∈ ηZ(α)},
such that η acts by permutation on these root vectors.
If α is such that 1

2Pη(α) ∈ Pη(Φ(G,T )), then η(α) = α, η has order 2 and η acts as −1 on
gα.

Proof: This is essentially [Bal, lemma 2.9.].

Proposition 5.13. Let the finite dimensional irreducible representation M of G̃ match
with the representation MH of the stable endoscopic group H. Let γ ∈ G(k) be η-
semisimple and τ(γ) be a matching element in H(k). Then we have:

tr(η ◦ γ,M) = tr(τ(γ),MH).

Proof: The proof is similar to a proof of the Weyl character formula (comp. [Hum, 24.3.]).
In fact one can get the result by comparing a Weyl character formula for non-connected
groups as in [Wen] with the formula for the endoscopic group.

We may assume that k is an algebraically closed field and therefore that γ ∈ T (k) and
τ(γ) ∈ TH(k). We will work in the Grothendieck group Gro(b−) of finitely generated
b−modules, where b− = n− + t is the Borel subalgebra containing the negative roots in
the decomposition g = Lie(G) = n+ ⊕ t ⊕ n− and t = Lie(T ). For λ ∈ X∗(T ) we denote
by Zλ the Verma module

Zλ = U(g)⊗U(b+) kλ = IndG
Bλ ' U(b−)⊗U(t) kλ.

Then we can write

M = Mλ =
∑

w∈W (G,T )

signG(w) · Zw(λ+δG)−δG
,

where δG = 1
2

∑
α∈Φ(G,T )+ α is half the sum of the positive roots. Since signG(η(w)) =

signG(w) we may collect the Verma modules on the right hand side indexed by Weyl-
group elements w in the same η-orbit to get G̃-modules on the right hand side. Here η acts
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as intertwining operator from Zw(λ+δG)−δG
to Zη(w)(λ+δG)−δG

in such a way that η acts
by permutation on the set of some highest weight vectors mw(λ+δG)−δG

. Then the above
identity becomes an identity in the Grothendieck group of G̃ modules. The computation
of tr(η ◦ γ, M) reduces to the computation of the formal traces tr(η ◦ γ, Zw(λ+δG)−δG

) for
w ∈ W (G,T )η, since the trace of η ◦ γ on a direct sum of Zw(λ+δG)−δG

is obviously zero if
w is not η-invariant.

To compute the formal trace we can view Zλ ' U(n−) as a symmetric algebra over n−. We
may take a basis (Xα)α∈Φ− of n− as in lemma 5.12 and view Zλ as a polynomial algebra in
this basis. Then the action of η◦γ respects the set of one dimensional monomial subspaces
of Zλ and only those monomials contribute to the trace, which contain all Xα in an η-orbit
with the same exponent. If we have no α with 1

2Pη(α) ∈ Pη(Φ(G,T )) then the formal trace
may be written up to the factor λ(γ) in the form

∏

α0∈Φ(G,T )−/η


1−

∏

α∈ηZ(α0)

α(γ)



−1

=
∏

α0∈Φ(G,T )−/η

(1− (Sη(α0))(γ))−1

=
∏

α′∈Φ(H,TH)−

(
1− α′(τ(γ))

)−1
.(39)

This coincides with the formal trace of τ(γ) acting on a Verma module for the endoscopic
group H. If we have some αl with 1

2Pη(αl) ∈ Pη(Φ(G,T )) then we have to replace Φ(G,T )−

in the above formula by (Φ(G,T )sm)− and multiply with additional factors of the form
(since η acts by −1 on Xαl

we get alternating signs in the geometric sum):

(1 + αl(γ))−1 = 1− αl(γ) + αl(γ)2 − . . .

But each such αl is of the form α0+η(α0) = Sη(α0) and thus this factor may be multiplied
with the corresponding factor (1− Sη(α0)(γ))−1 to give the factor

(
1− αl(γ)2

)−1 =
(
1− S′η(αl)(γ)

)−1
,

since S′η(αl) = 2Sη(αl) in this case. Now (37) of Proposition 5.4 tells us that we again
arrive at the right hand side of (39).

From the above considerations we deduce moreover that δG = δH as elements in X∗(TH) =
X∗(T )η so that w(λ + δG)− δG may be identified with the corresponding element w(λ +
δH) − δH in X∗(TH) for w ∈ W (G,T )η = W (H,TH). Reversing the computation for the
group H we immediately get the claim.

Lemma 5.14. In the notations of prop. 5.13 let n be the unipotent radical of a standard
parabolic subalgebra p ⊂ g = Lie(G), let nH be the unipotent radical of the corresponding
subalgebra pH ⊂ h = Lie(H). Let L resp. LH denote the corresponding Levi groups. Then
for every w ∈ W (H) = W (G)η we have that

(−1)lH(w) ·H lH(w) (nH , MH,χ)w(χ+δ)−δ ∈ Gro(LH ) matches with

(−1)lG(w) ·H lG(w) (n,Mχ)w(χ+δ)−δ ∈ Gro(L, η).

Proof: Recall that Hν (n,Mχ)χ denotes the subspace of Hν (n,Mχ) which transforms un-
der the action of L as the irreducible representation of highest weight χ. Recall from [Kos,
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theorem 5.14.] that the space H lG(w) (n,Mχ)w(χ+δ)−δ is an irreducible L-module if w is a
Kostant representative for the coset space W (G)/W (L). The theorem of Kostant further-
more tells us that the highest weight vector in H lG(w) (n,Mχ)w(χ+δ)−δ is the cohomology
class having e′−Φw

⊗mwχ as a representing cocycle, where mwχ ∈ Mχ is some weight vector
for the extremal weight wχ and {e′−Φ} for Φ ⊂ Φ(n) denotes the basis of Λ·n′ dual to the
basis {eΦ} of Λ·n, where

eΦ = eφ1 ∧ . . . ∧ eφν if Φ = {φ1, . . . , φν}
and the eφ ∈ n are generators of the root spaces. From this description it is clear that the
lemma is correct up to sign. At first recall from the existence of Steinberg representatives
[Bal, lemma 2.7.] that there exists an η-invariant representative ω ∈ G(k) of w. We can
take mwχ = ω(mχ) for some highest weight vector mχ. Since η acts trivially on mχ by the
definition of Mχ as an G̃-module, we deduce that η acts as identity on mwχ.

Therefore it remains to prove that η acts as (−1)lG(w)−lH(w) on e′−Φw
: Recall Φw =

w(Φ(G,T )−)∩Φ(G,T )+ and lG(w) = #Φw. We compare the contributions of the η-orbits
of roots α to lG(w)− lH(w). Let λ be the length of the η-orbit of α.

For α ∈ Φ(G, T )sm ∩ Φ(G,T )lm the contribution is λ to lG(w) = #Φw and 1 to lH(w) =
#Φ(H,TH)w. By lemma 5.12 we can take basis elements eφ for φ in the η-orbit of α, which
are permuted by η. Now η acts by (−1)λ−1 on the exterior product of these vectors, which
gives the correct contribution.

If α is such that 2Pη(α) ∈ Pη(Φ(G,T )), then there exists another root α′ such that
2Pη(α) = Pη(α′). In fact α′ = α + η(α) and η(α′) = α′, so that α′ ∈ Φw if α ∈ Φw. But
the converse implication also holds: If α /∈ Φw then α lies in at least one of the halfsys-
tems w(Φ(G,T )+) and Φ(G,T )−. But since η stabilizes the decomposition in positive and
negative roots and furthermore fixes w, we get that η(α) also lies in this halfsystem. Since
the halfsystems are closed under addition of roots, we deduce that α′ lies in one of them,
i.e. α′ /∈ Φw. Thus we may compute the contribution of the η-orbit of α together with the
contribution of α′. We conclude that we have a contribution λ + 1 to lG(w) = #Φw. Only
S′η(α′) contributes a 1 to lH(w), since α /∈ Φ(G, T )lm. By the same argument as above
η acts by (−1)λ−1 on the exterior product of the eφ for φ in the η-orbit of α, but as −1
on eα′ (again by lemma 5.12), which gives the correct contribution (−1)λ to e′−Φw

. This
finishes the proof.

Lifts

5.15. Let G1 = H/F be the stable endoscopic group of the pair (G, η), where G/OF is a
reductive connected split group over the ring of integers OF of a number field F and η is
an automorphism of finite order fixing some splitting of G. In the following definitions we
denote by F either some local non-archimedean field Fp or the ring of finite adeles Af .

While it does not matter in the following which Haar measures we take on the initial
groups G and G1 (we just have to multiply hf resp. hf,1 by a scalar), we have to be careful
in using Haar measures on the (η-)centralizers of matching semisimple elements γ0 and γ1

when we define the matching of Schwartz-Bruhat functions in the sequel. If F is a local
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non archimedean field we normalize the Haar measures such that they give the measure 1
to the integral points of the connected component of the centralizer.

If F = Af we take the Haar measures as finite parts of some Tamagawa measures db =
db∞× dbf resp. db1 = db1,∞× db1,f which are normalized in such a way that the following
identity holds:

|α∞(γ0, 1)| = |α∞(γ1, 1)|.(40)

Recall from 4.9 that the definition of α∞(γ, 1) involves the infinity component of the Haar
measure of the (η-)centralizer of γ.

Warning: We do not assume, that the product of the normalized local Haar measures
at the finite places gives the Haar measure on the finite adeles. Therefore the results
in the next subsection will need some careful analysis of the local factors |α∞(γ0, 1)|
(compare [W2]), before they can be used to get exact multiplicity statements in the lifting
of representations (compare [Wes]).

Definition 5.16. The Schwartz-Bruhat functions hf ∈ C∞c (G(F )) and hf,1 ∈ C∞c (G1(F ))
are matching if they have matching stable orbital integrals i.e. if

SOη(γ, hf ) = SO(γ1, hf,1)

for all matching semisimple elements γ ∈ G(F ) and γ1 ∈ G1(F ).

Recall that a distribution on G(F ) is called η-stable if it lies in the closure of the space of
stable orbital integral distributions hf 7→ SOη(γ, hf ).

Definition 5.17. The admissible representation π ∈ Rep(G(F ) o η) is a lift of π1 ∈
Rep(G1(R)), if tr(hf · η|π) = tr(hf,1|π1) for all matching hf ∈ C∞c (G(F )) and hf,1 ∈
C∞c (G1(F )) and if furthermore the characters χπ : hf 7→ tr(hf · η|π) and χπ1 : hf,1 7→
tr(hf,1|π1) are (η-)stable distributions.

Some virtual admissible representation Π ∈ Gro(G(F )o η) is the lift of Π1 ∈ Gro(G1 (F ))
if we can write them in the form Π = π − π′ and Π1 = π1 − π′1 such that the admissible
representations π, π′ ∈ Rep(G(F )o η) are the respective lifts of π1, π

′
1 ∈ Rep(G1(F )).

5.18. Now we assume that we are in one of the following situations:

(G, η, G1) = (PGL2n+1, η, Sp2n)
(G, η, G1) = (GL2n ×GL1, η, GSpin2n+1)

In an earlier paper [BWW] we have shown that the twisted fundamental lemma for these
situations can be reduced to a statement (”BC-conjecture”) comparing stable orbital
integrals on the groups Sp2n and SO2n+1, a phenomen which has been worked out by
Waldspurger in more generality ([Wa3]). This statement has been proven by Ngô [Ngo,
Théorème 2] in the case of positive characteristic, but the work of Waldspurger [Wa2] [Wa3]
allows to reduce the case of p-adic fields to this fundamental result of Ngô. We remark
that the cases n = 1 and n = 2 have been obtained earlier using explicit calculations of
p-adic orbital integrals ([Fl1],[Fl2] and [BWW, 7.10]). We thus have:
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Theorem 5.19. In the case that F is a local field with sufficiently large residue char-
acteristic and (G, η, G1) is as in 5.18 the characteristic functions of G(OF ) and G1(OF )
match.

Remark 5.20. In the case that F is a local field it is well known that for each hf there
exists some matching hf,1 and vice versa. This is elementary for functions having support
in the set of (η-)regular elements and may be deduced in the above situations from [Wa1]
(for the case n = 2 compare [Hal2]) and [Wa3] for all Schwartz-Bruhat functions. We
conclude from this local matching property and the fundamental lemma that in the above
situations the corresponding statement holds in the case F = Af for sufficiently many
functions to get weak lifting statements. Details will be explained elsewhere.

Theorem 5.21. In the case that F is a local field with residue characteristic not 2 and
(G, η, G1) is as in 5.18 then two elements of the Hecke algebra f ∈ S(G(F )//G(OF )) and
f1 ∈ S(G1(F )//G1(OF )) match, if f maps to f1 under the Satake isomorphism.

Proof: If the group Zη
G is connected, this statement is reduced to the special case (5.19)

in [W3], which is an extension of the results of [Hal1] to the twisted case. In the case
G = GL2n×Gn we may reduce to the situation (G′, η,G1) = (GL2n/µn, η′, GSpin2n+1)
of example (5.9), where the η-invariants of the center form a connected group:

If t ∈ T (F ) maps to t1 ∈ T1(F ) under the norm map, we have to show that the characte-
ristic functions f of G(OF )tG(OF ) and f1 of G1(OF )t1G1(OF ) match. This is equivalent
to the same statement for G′ and the characteristic function f ′ of G′(OF ) · t′ · G′(OF ),
since we have the following identity between the stable orbital integrals: Ost

γ (f, G) =
Ost

γmodR(f ′, G′), compare [BWW, lemma 5.8.].

Lifting of cohomology

5.22. In the next theorem G will be defined over a totally real number field F .
As maximal connected and compact subgroups of G(R) we choose the following: K∞ =∏

v|∞K∞,v ⊂ G(R) =
∏

v|∞G(R) where K∞,v = SOn(R) for G = GLn, GLn × GL1 and
in the case that n is odd also for G = PGLn, K∞,v = Un(R) for G = GSp2n and for
G = Sp2n.

Theorem 5.23. Let F be a totally real number field. Assume that (G/F, η, G1/F ) is as
in 5.18. For the groups G = ResF/QG and G1 = ResF/QG1 we have, if the G-module M

matches with the G1-module M1:

H∗
c

(
G(Q)\G(A)/K∞Z∞,M) ∈ Gro(G(Af )o η) = Gro(G(Af ,F )o η)

is the lift of

H∗
c

(
G1(Q)\G1(A)/K∞,1Z∞,M1

) ∈ Gro(G1 (Af )) = Gro(G1 (Af ,F )).
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Proof: Let hf and hf,1 be matching Schwartz-Bruhat functions. We choose open compact
subgroups Kf resp. Kf,1 of G(Af,F ) resp. G1(Af,F ) such that hf is right invariant under Kf

and hf,1 right invariant under Kf,1. Since we may make Kf smaller we can furthermore
assume that AssKf

and Assζ,der are satisfied. Replacing Kf by Kf ∩ η(Kf ) we may
furthermore assume that Kf is η-invariant, so that Zf = Kf ∩G(Af ) satisfies AssZf .

We remark furthermore that Assconn is fulfilled in the cases under consideration: this
is clear for the endoscopic groups since Sp2n and the derived group of GSpin2n+1 are
simply connected, which implies that the centralizer of a semisimple element is connected.
Furthermore it is well known that the connected component of the centralizer of a non
semisimple element is not reductive.
On the other hand it follows from the computations in [BWW] (compare Lemma 2.9. and
Step 3 in the proof of Theorem 5.11) that the η-centralizer of an element in GL2n ×GL1

is a product of a symplectic group, a special orthogonal group, some centralizer inside a
symplectic group and of Gm. This implies that the centralizers GI

γ,η are connected. The
case of PGL2n+1 reduces to the η-centralizers in SL2n+1 (Proof of Prop. 4.5. loc. cit.) and
can be handled by the same argument.

Then we have to prove

tr
(
η ◦ hf |H∗

c

(
G(Q)\G(A)/K∞Z∞ ·Kf ,M))

= tr
(
hf,1|H∗

c

(
G1(Q)\G1(A)/K∞,1Z∞ ·Kf,1,M1

))

Since the assumptions of the trace formula in 3.20 and the assumptions for the stabilization
in §4 are satisfied , we may replace the traces by the right hand sides of 4.9.

First of all we note that the (stabilized) trace formula implies that the two virtual char-
acters which are defined by the two sides of this equation are stable resp. η-stable distri-
butions, so that the lifting claim makes sense.

We remark that the set ∆1 of simple roots of G1 can be identified with the set of η-orbits in
the set of simple roots of ∆, i.e. we have a projection π : ∆ ³ ∆/η ' ∆1, so that we have a
bijection between the set of η-invariant subsets I ⊂ ∆ with the set of subsets I1 ⊂ ∆1 given
by I 7→ π(I) and I1 7→ π−1(I1). Since this bijection satisfies (−1)#((∆−I)/η) = (−1)#(∆1−I1

we are reduced to prove
∑

γ0∈(PI(Q))η−st

N (γ0)∼LI∞
χI,α(N (γ0))>1
for all α∈∆−I

α∞(γ0, 1) · SOη(γ0, hf ) · tr(γ0 ◦ η|M)

=
∑

γ1∈(PI1
(Q))

st

γ1∼L
I1
∞,1

χI1,α1
(γ1))>1

for all α1∈∆1−I1

α∞(γ1, 1) · SO(γ1, hf,1) · tr(γ1|M1)

We observe that MI1 is the stable endoscopic group of (MI , η). We remark that an element
γ0 ∈ PI(Q), such that N (γ0) has a conjugate in LI∞, is η-semisimple, since LI∞ contains
no unipotent elements. Thus its η-conjugacy class meets the Levi group MI(Q), so that
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we are reduced to consider elements γ0 ∈ MI(Q). The definition of stable endoscopy
implies that we have a bijection between η-semisimple η-conjugacy classes in MI(Q̄) and
semisimple conjugacy classes in the corresponding MI1(Q̄) such that this induces the
projection T (Q) 7→ T (Q)η ' T1(Q) on the diagonal tori. From Cor. 6.4. , Prop. 7.5(b) and
Cor. 7.6. in [BWW] we deduce that ”matching” defines a bijection between those (η-)stable
(η-)conjugacy classes which have rational representatives γ0 ∈ MI(Q) resp. γ1 ∈ MI1(Q).
With these notations it remains to prove:

(a) χI,α (N (γ0)) > 1 for all α ∈ ∆− I if and only if χI1,α1 (γ1)) > 1 for all α1 ∈ ∆1 − I1,
(b) N (γ0) ∼ LI∞ ⇔ γ1 ∼ LI1

∞,1,
(c) α∞(γ0, 1) = α∞(γ1, 1),

since we already know SOη(γ0, hf ) = SO(γ1, hf,1) by assumption and tr(γ0 ◦ η|M) =
tr(γ1|M1) by proposition 5.13.

5.24. To prove (a) we may replace γ0 by an η-conjugate γ′0 ∈ T (Q̄) and γ1 by a conjugate
γ′1, such that γ′0 maps to γ′1 under the canonical projection T (Q̄) ³ T1(Q̄). The element
N (γ0) is then a conjugate of N (γ′0). But under the identification X∗(T1) = X∗(T )η we
can take χI1,α1 to be a positive rational multiple of χI,α ◦ (id + η). The claim is now an
immediate consequence of this.

5.25. To prove (b) we use γ′0 and γ′1 as in the proof of (a). Then γ1 may be conjugated
into LI1

∞,1 if and only if τ(α(γ′1)) has absolute value 1 for all embeddings τ : Q ↪→ C and all
roots α1 ∈ I1 and if γ1 satisfies a certain condition, which characterizes LI1

∞,1 inside LI1,m
∞,1 .

This condition is ρ(µ(γ1)) > 0 for all ρ : F ↪→ R in the case G1 = GSpin2n+1 and is the
empty condition for G1 = Sp2n. Similarly N (γ0) may be conjugated into LI∞ if and only if
τ(α(N (γ′0))) has absolute value 1 for all τ : Q ↪→ C and if in the case G = GL2n×GL1 we
have ρ(a2 · det A) > 0 for all ρ : F ↪→ R, where γ0 = (A, a). But since α ◦N = α ◦ (id + η)
is either a root or twice a root in I1 and since the sign conditions correspond to each other
under the identification X∗(T1) = X∗(T )η, (compare [BWW, 1.15]), the claim (b) is now
clear.

5.26. The statement of (c)is up to sign just the assumption in normalizing the Haar
measures on the centralizers made in (40) above. It remains to check that ∆(γ0, η) =
∆(γ1, id) (at least modulo 2).

To prove that q(G̃I
γ0,η) = q(G̃I1

γ1,id) for the quasisplit forms we remark that we may deduce
from [BWW] that the centralizers of γ0 and γ1 have factorizations in factors which are
either isogenous for the two groups or are of the shape that some SO2g+1 for one group
corresponds to some Sp2g for the other group. Since these two groups have no outer
automorphism we have to take their split forms and then get

q(Sp2g) =
g2 + g

2
and q(SO2g+1) =

dim(SO2g+1)− dim(SOg+1 × SOg)
2

=
g2 + g

2
.

The remaining summand ∆(G̃, K̃∞) is just the difference between the dimension of the
maximal real split torus ZR−split

G̃
in the center of G̃ and the dimension of its intersection

with the center of the original group. By the result already cited from [BWW] the centers
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of the two centralizers are isogenous, so the dimensions of their real split tori coincide.
The dimensions of the intersections with the original centers also agree (they are 0 in
the situation G = PGL2n+1 and G1 = Sp2n and are 1, resp. the degree of the totally
real ground field, for G = GL2n × Gm and G = GSpin2n+1). The equality of the signs is
proven.

Corollary 5.27. Under the assumptions of theorem 5.23 we have:

H∗ (
G(Q)\G(A)/K∞Z∞,M) ∈ Gro(G(Af )o η) = Gro(G(Af ,F )o η)

is the lift of

H∗ (
G1(Q)\G1(A)/K∞,1Z∞,M1

) ∈ Gro(G1 (Af )) = Gro(G1 (Af ,F ))

Proof: This may be deduced from the previous theorem by Poincaré duality: We have

H i
(
G(Q)\G(A)/K∞Z∞,M)

' Hom
(
Hq(Ḡ)−i

c

(
G(Q)\G(A)/K∞Z∞,M̌)

,Hq(Ḡ)
c

(
G(Q)\G(A)/K∞Z∞,C

))
,

and a similar relation holds for the group G1. It is clear that the cohomology with compact
support in the highest dimension lifts from the group G1 to (G, η).

Example 5.28. Let us consider the special case where G = GL4/Q × GL1/Q and G1 =
GSp4/Q and M and M1 are the constant sheaves. Furthermore let hf resp. hf,1 be the
characteristic functions of the maximal compact subgroups Kf = GL4(Ẑ)× Ẑ∗ and Kf,1 =
GSp4(Ẑ). In this case the statement reduces to an identity which can be shown to be true
by other methods: We have isomorphisms

X := G(Q)\G(A)/K∞Z∞ ·Kf ' SL4(Z)\SL4(R)/SO4(R) and
X1 := G1(Q)\G1(A)/K∞,1Z∞,1 ·Kf,1 ' Sp4(Z)\Sp4(R)/U2(R)

and the formula states:

tr (η ◦ hf |H∗ (X,C)) = tr (hf,1|H∗ (X1,C)) .

But the right hand side is just the Euler characteristic of X1, which is known to be
homeomorphic to P3(C) − P1(C), i.e. the Betti numbers are bi(X1) = 1 for i = 0, 2 and
bi(X1) = 0 else. Thus the right hand side equals 2. The left hand side is the Lefschetz
number of the involution η acting on X. It is known [LeeS, Theorem 2] that H i(X,C) is
one dimensional for i = 0, 3 and is zero for all other values of i. The fact that the left hand
side also equals 2 is thus equivalent to the assertion that η acts by −1 on H3(X,C). Since
the antidiagonal matrix J4 lies in K∞ ×Kf the involution η on X may be written in the
form: η0 : A 7→ tA−1.

By Poincaré duality (which holds for coefficient domains in characteristic 0, since X is a
quotient of a manifold by a finite group) we get isomorphisms H i(X,C) ' H9−i(X̄, ∂X̄,C),
where X̄ denotes the Voronoi compactification of X and ∂X̄ = X̄ − X the complement
(compare [LeeS]). Now H9(X̄, ∂X̄,C) is generated by the relative fundamental class c of
X, and η0 acts on it by −1, since the action on the tangent space sl4(R)/so4(R), which
may be identified with the space of real symmetric matrices, is minus the identity and
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since dim(X) = 9 is odd. A generator of H6(X̄, ∂X,C) which is called σ6
4 in the notation

of [LeeS, 3.2.] is easily seen to be the image of the relative fundamental class of the
locally symmetric space S = SL3(Z)\GL3(R)+/SO3(R) under the embedding of spaces,
which is induced from the embedding of groups ι : A 7→ diag(A, det(A)−1). One checks
immediately that η0 acts by −1 on the 6-dimensional tangent space, so that H6(X̄, ∂X,C)
is η0-invariant. Since Poincaré duality is induced by cap product with c we deduce that η0

acts by −1 on H3(X,C).
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31 (1998), 181–279.
God R. Godement, Domaines fondamentaux des groupes arithmétiques Séminaire Bourbaki
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un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80.

She D. Shelstad, Characters and inner forms of a quasi-split group over R, Comp. Math.
39 (1979), 11–45.

60



A twisted topological trace formula for Hecke operators...

St R. Steinberg, Endomorphisms of algebraic groups, Mem. Amer. Math. Soc. 80 (1968).
Wa1 J.-L. Waldspurger, Le lemme fondamental implique le transfert Compos. Math. 105

(1997) 153–236.
Wa2 J.-L. Waldspurger, Endoscopie et changement de caractéristique J. Inst. Math. Jussieu
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