
This is the handout to the seminar talk on

Lie algebras

Main point of the talk is to introduce the Lie algebra associated to a Lie group. This
will be done over left-invariant vector fields. The talk is divided into 3 parts with some
examples tacked onto the end. In case it is important to the reader, the talk will be/is
being/was held on the 17th of May 2016.

We start with some

Linear algebra

Def. A Lie algebra over a field F is a F vectorspace g together with a bilinear map
[ , ] : g× g→ g so that:

(1) [ , ] is anti-symmetric

(2) [ , ] satisfies the Jacobi identity, that is ∀a, b, c ∈ g

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

Def. A linear map Φ : g → h between two Lie algebras g, h is called a Lie algebra
homomorphism if

Φ([a, b]g) = [Φ(a),Φ(b)]h

holds for all a, b ∈ g.

Remark Bijective Lie algebra homomorphisms are invertible.

Some simple examples of Lie algebras are:

(i) If V is a F vector space, then End(V ) together with

[ , ] : End(V )× End(V )→ End(V )

(A,B) 7→ [A,B] := AB −BA

is a Lie algebra. Indeed bilinearity and anti-symmetry are clear. It may be instructive
to verify the Jacobi identity.

(ii) Any subspace of End(V ) that is closed under the application of [ , ] is also a Lie
algebra.

(iii) An example of a sub-Lie algebra of End(V ) in the case of finite dimensional V would
be the subspace of traceless linear maps =: sl(V ). Since the trace is cyclic and linear

Tr(AB −BA) = Tr(AB)− Tr(BA) = Tr(AB)− Tr(AB) = 0

always holds and sl(V ) is closed under [ , ].
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Indeed, every Lie algebra can be realised as the sub-algebra of an endomorphism space:

Prop. Any Lie algebra g is isomorphic to a sub-algebra of End(V ) for some vector space
V .

Construction: Consider g as a vector space. Since [ , ] is bilinear, we have that for x ∈ g

adx : g→ g

y 7→ [x, y]

Is an element of End(g). From bilinearity we see again that ad : g→ End(g) is also linear.
One sees also that for all z ∈ g:

[adx, ady]End(V )(z) = adx ady(z)− adz adx(z) = [x, [y, z]g]g − [y, [x, z]g]g

= [x, [y, z]g]g + [y, [z, x]g]g
∗
= −[z, [x, y]g]g = ad[x,y]g(z)

In the equality denoted by (∗) the Jacobi identity was used. This means [adx, ady]End(V ) =
ad[x,y]g for all x, y ∈ g. So ad is a Lie algebra homomorphism. It is called the adjoint
representation of g.

But the adjoint representation does not need to be injective (and thus an isomorphism onto
its image). The kernel {x ∈ g | adx = 0} is given by the center Z(g), that is the elements x
of g so that [x, y] = 0 ∀y ∈ g. (The name center comes from [x, y] = [y, x] ⇐⇒ [x, y] = 0
in characteristic 6= 2.)

It is possible, beginning with the centre of a Lie algebra, to construct a faithful representa-
tion onto a endomorphism algebra that would preserve finite dimensionality. However the
construction is involved, the theorem is known as Ado’s theorem. In order to comply
with the promise of representing any Lie algebra faithfully on an endomorphism space we
instead construct the enveloping algebra.

Consider T (g) := ⊕∞i=0g
⊗i, which with a · b := a⊗ b has the structure of an associative

F-algebra. Consider elements of the form x⊗ y − y ⊗ x− [x, y]g for x, y ∈ g and denote
with I the smallest two-sided ideal in T (g) containing these elements. Denote now
U(g) := T (g)/I, this is the enveloping algebra.

The map h : g→ End(U(g)), x 7→ hx with hx([a]) = [x⊗ a] is a well defined linear map.
Forgetting for notational convenience the equivalence brackets, one finds

[hx, hy]U(h)(a) = x⊗ y ⊗ a− y ⊗ x⊗ a = (x⊗ y − y ⊗ x)⊗ a = [x, y]g ⊗ a = h[x,y]g(a)

making it a Lie algebra homomorphism. If hx([a]) = 0 ∀[a] ∈ U(g), we have that x⊗ a
must lie in the ideal I. But then x⊗1 = x would have to be in the ideal. This is impossible,
as the only elements of the ideal that have parts in g are sums of elements in the form
a⊗ b− b⊗ a− [a, b], but here we can never get rid of the g⊗ g terms without also getting
rid of the g term. So the kernel of the representation is zero.

We may be interested in some examples with more geometric content
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(iv) R3 with the cross product is a Lie algebra. The adjoint representation is injective
and identifies the algebra with so(3), the space of anti-symmetric 3× 3 matrices.

(v) The space of smooth vector fields on a manifold with the Lie bracket form an infinite
dimensional Lie algebra.

To investigate the last example we will now think about

Vector fields

Let M,N be smooth manifolds.

Reminder (vector fields) The tangent space at a point p ∈M is the vector space of
derivations at p:

TpM := {x ∈ L(C∞(M),R) | x(f · g) = x(f) · g(p) + f(p) · x(g)}

At one point we will also use that this space can be identified with the space of germs of
paths through p.

A vector field can be viewed as a map: X : M →
⋃
p∈M TpM so that Xp ∈ TpM , ie

assigning each point of M a tangent vector from that point. The vector field is called
smooth if Xp(f) : M → R is smooth ("in p") for all f ∈ C∞(M). Alternatively describe a
smooth vector field as a smooth section of the tangent bundle TM . The space of smooth
vector fields on M has a vector space structure and is denoted Γ(TM).

Prop. The Lie bracket [X,Y ] defined via [X,Y ]p(f) := Xp(Y (f))− Yp(X(f)) is a well
defined map Γ(TM)×Γ(TM)→ Γ(TM) and gives Γ(TM) the structure of a Lie algebra.

Proof [X,Y ]p is clearly a linear map from C∞(M) to R. Since X,Y are smooth vector
fields, Y (f), X(f) are smooth functions for all f and thus X(Y (f)) and Y (X(f)) are
smooth functions, so [X,Y ](f) is a smooth function. For well definendness it remains to
check the derivation property:

[X,Y ](fg) =X(Y (fg))− Y (X(fg)) = X(fY (g) + Y (f)g)− Y (fX(g) +X(f)g)

=X(f)Y (g) +X(Y (g))f +X(Y (f))g +X(g)Y (f)

− Y (f)X(g)− Y (X(g))f − Y (X(f))g − Y (g)X(f)

=X(Y (g))f +X(Y (f))g − Y (X(g))f − Y (X(f))g

=[X,Y ](f)g + [X,Y ](g)f

The bracket is clearly anti-symmetric and bilinear, the Jacobi identity can be verified
exactly as for End(V ).

Reminder (pushforward/differential) If F : M → N is a smooth map, then F∗,p :
TpM → TF (p)N , x 7→ F∗,p(x) with [F∗,p(x)](f) := x(f ◦ F ) is a linear map between TpM
and TF (p)N . F∗,p is called the differential or pushforward of F at p.

Maybe one would like to extend this to get a linear map F∗ : Γ(TM) → Γ(TN),
[F∗(X)]F (p)(f) := Xp(f ◦F ). But if F is not surjective we wouldn’t know how to evaluate
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F∗(X) at points that do not lie in the image of F . If F is not injective we would not know
what preimage of F (p) to choose. So this can’t work, instead we define the notion of two
vector fields being F -related.

Def. If F : M → N is a smooth map, X ∈ Γ(TM), Y ∈ Γ(TN) we say X,Y are F -related
if ∀p ∈M

F∗,p(Xp) = YF (p)

Note that this is equivalent to

X(f ◦ F ) = Y (f) ◦ F

for all f ∈ C∞(N). On the right ◦F is composed with the function Y (f).

Prop. If F : M → N is a diffeomorphism, then for each X ∈ Γ(TM) there is one and
only one Y ∈ Γ(TN) that is F -related to X.

Cor. For Diffeomorphisms F∗ : Γ(TM) → Γ(TN) is well defined and a vector space
isomorphism.

Proofs Note that since diffeomorphisms are bijective, the equations F∗,p(X)F (p) = YF (p)

uniquely determine a vector field on N . It is smooth since Y (f) = X(f ◦ F ) ◦ F−1 is
smooth for all smooth f as a composition of smooth functions.

For the corollary note that linearity is clear and that (F−1)∗ = (F∗)
−1.

Lemma The Lie bracket preserves F -relation. Meaning if X1, X2 are F -related to Y1, Y2,
then [X1, X2] is F -related to [Y1, Y2].

Proof Note

X1(X2(f ◦ F ))
X2 F -rel Y2= X1(Y2(f) ◦ F )

X1 F -rel Y1= Y1(Y2(f)) ◦ F

Similarly X2(X1(f ◦F )) = Y2(Y1(f)) ◦F and then [X1, X2](f ◦F ) = [Y1, Y2](f) ◦F .

Cor. If F is a diffeomorphism:

[F∗X,F∗Y ]Γ(TN) = F∗
(
[X,Y ]Γ(TM)

)
This last consideration is what we need to construct the

Lie algebra associated to a Lie group

Reminder (left translates) Let G be a Lie group. ∀g ∈ G Lg : x 7→ g · x is a
diffeomorphism and Lg ◦ Lh = Lg·h.

Denote with g the set of vector fields of G that are Lg related to themselves for all
g ∈ G. This means

(Lg∗,pXp)(f) = (Lg∗X)g·p(f)
!

= (X(f) ◦ Lg) (p) = Xg·p(f)
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Which means Lg∗X = X as vector fields. This is why these vector fields are called left
invariant.

The lemma shows that g is a Lie algebra

If X,Y ∈ g then
Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ]

And [X,Y ] is also left invariant. Thus the left invariant vector fields are a sub-Lie algebra
of the infinite dimensional Lie algebra of vector fields. However:

Theorem If G is a finite dimensional Lie group, then the Lie algebra g is a finite
dimensional Lie algebra and its dimension is equal to the dimension of G.

Proof We construct a canonical vector space isomorphism between g and TeG, where e
is the unit of G. This isomorphism is of course more important than the theorem, as it
allows us to view TeG as a Lie algebra by pushing the bracket forward from g via the
isomorphism.

Let Xe ∈ TeG. If we assume Xe comes from a left invariant vector field X, it is clear from
Xg = Lg∗,eXe that X is uniquely determined by Xe. Similarly the equation just given is
actually a prescription to get a left invariant vector field from Xe. It must now be shown
that the vector field constructed is smooth. This means Xp(f) := Lp∗,eXe(f) must be
smooth "in p"for all smooth functions f ∈ C∞(M).

To do this identify Xe with a smooth path γ : (−1, 1)→M with γ(0) = e and Xe(f) =
d
dtf(γ(t))|t=0. Then Xp(f) = Lp∗,eXe(f) = Xe(f ◦ Lp) = d

dtf(p · γ(t))|t=0. This is the
same as d

dtϕf (p, t)|t= 0 with ϕf : G × (−1, 1) → G, (p, t) 7→ f(p · γ(t)). Since ϕf is
smooth as a composition of smooth functions so is its derivative and Xp(f) is smooth "in
p".

Remark Since [X,Y ]p depends only on how X,Y look in a neighbourhood of p, the
structure of a Lie algebra is determined by the behaviour of the group near e. From
such a consideration one can see that the Lie algebra of a group is always the one of the
subgroup given by the connected component of e.

Lemma Let G,H be Lie groups, g, h the associated Lie algebras and Φ : G→ H a Lie
group homomorphism. Then Φ∗,e : TeG→ TeH defines a Lie algebra homomorphism from
g→ h.

Proof The only thing to prove is that the Lie bracket is conserved. Let X,Y be left
invariant vector fields on G,H with Φ∗,eXe = Ye. Since Φ is a Lie group homomorphism
we have Φ ◦ Lg = LΦ(g) ◦ Φ for all g ∈ G. Thus LΦ(g)∗,e ◦ Φ∗,e = Φ∗,g ◦ Lg∗,e and for all
g ∈ G:

Φ∗,gXg = Φ∗,g(Lg∗,eXe) = LΦ(g)∗,e(Φ∗,eXe) = LΦ(g)∗,e(Ye) = YΦ(g)

Thus X and Y are Φ-related. It follows now from the naturality of the Lie bracket that
if for X1, X2 ∈ g, Y 1, Y 2 ∈ h with Φ∗,eX

i
e = Y i

e that then [X1, X2] and [Y 1, Y 2] are
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Φ-related. But Φ-relation at e is nothing other than

Φ∗,e[X
1, X2]e = [Y 1, Y 2]e

and thus we have a homomorphism.

Comments Since (Φ ◦Ψ)∗,p = Φ∗,Ψ(p) ◦Ψ∗,p and a Lie algebra homomorphism is literally
defined by the action of F∗,e on Te, it is clear that Lie algebra homomorphism associated
to Φ ◦Ψ is Φ∗,e ◦Ψ∗,e. Since diffeomorphisms F induce vector space isomorphisms F∗,e it
is also clear that two isomorphic Lie groups have isomorphic Lie algebras.

Now consider and actually compute some

Further Examples

We will look at the Lie algebras associated to the Lie groups S1,Tn =×n S1,GLn(R)
and O(n).

S1 is super trivial, its a one dimensional Lie group and thus has a one dimensional Lie
algebra. But all one dimensional Lie algebras have a trivial Lie bracket, which follows
from anti-symmetry.

Tn could be more interesting, but look at a coordinate chart around e where each S1

is parametrised by some angle θi. This induces a standard basis on the tangent spaces
via ei,p = ∂

∂θi
, because the group action on (a smaller neighbourhood of) this chart is

just addition Lϕ(θ) = θ + ϕ you have Lϕ∗ is given by the identity matrix. So in this
coordinate chart the components of left invariant vector fields are constant. But then
[X,Y ] = 0 in the chart, and since the Lie algebra is determined by the local behaviour of
the fields the Lie algebra is again trivial (isomorphic to Rn with bracket being the zero
map).

GLn(R) does not have a trivial Lie algebra. Since GLn(R) is an open subset of Matn×n,
we can take the global coordinate chart given by the identity. Matn×n is a (smooth) vector
space and as such can be identified with all its tangent spaces. Since Lg acts on Matn×n

as a linear map, its differential in these coordinates is the same linear map meaning
Lg∗(X) = gX.

If we write X = Xij∂ij , Y = Yij∂ij , we can calculate:

[Lx∗X,Lx∗Y ] = [xikXkj∂ij , x
mlYln∂mn] = xmkXklYln∂mn−xilYlkXkj∂ij ≡ (x·X·Y−x·Y ·X)

The dots denote matrix multiplication of components. Since this is supposed to be
Lx∗[X,Y ], we find that [X,Y ] is the same as the matrix commutator of X and Y in these
coordinates, or that the Lie algebra is Matn×n. Since this part was done rather sloppily
and the result is important it is recommended that one check the literature for a more
detailed proof if one has not seen it before.

O(n) note that O(n) ⊂ GLn(R). Let ι be the inclusion map. Then ι∗,e is injective and
we get that its Lie algebra o(n) can be identified with a sub-algebra of Matn×n. Note that
with φ : GLn(R)→ GLn(R),A 7→ ATA we have O(n) = φ−1({1}).
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So ι∗,1(T1O(n)) is the same as ker(φ∗,1). To see this, note φ◦ ι is constant, thus the image
of ι∗,1 lies in the kernel of φ∗,1. On the other hand every path γ through 1 that is made
constant by φ (ie whose corresponding tangent vector [γ] lies in the kernel of φ∗,1) must
lie in φ−1({1}), but that is just the domain of ι, so γ = ι(γ) and [γ] = ι∗,e([γ]).

But φ∗,1(a) = aT + a as can be calculated by taking the standard coordinate chart. So
o(n) is the space of anti-symmetric n× n matrices.

7


