
0 Review of Differential Geometry

Definition 1 Let M be a smooth manifold and p ∈ M be an arbitrary point
in M. A linear map X : C∞(M) → R is called a derivation at p ∈ M if and
only if:

∀f, g ∈ C∞(M) : X(fg) = f(p)Xg + g(p)Xf

The set of all derivations at p ∈ M is called the tangent space to M at p and
is denoted by TpM.

Definition 2 Let M and N be two smooth manifolds and F : M → N be a
smooth map. Then define for each p ∈ M the differential of F in the following
way:

dFp : TpM→ TF (p)N , X 7→ dFp(X)

whereby we have ∀f ∈ C∞(N ), dFp(X)(f) := X(f ◦ F ). Note that X(f ◦ F ) is

well defined because M F→ N f→ R =⇒ f ◦ F ∈ C∞(M)

Proposition 3 Let M, N and P be smooth manifolds and let F : M → N
and G : N → P be smooth maps. We have the flowing properties for all p ∈M

(a) dFp : TpM→ TF (p)N is linear.

(b) d(G ◦ F )p = dGF (p) ◦ dFp : TpM→ TG◦F (p)P

(c) If F is a diffeomorphism, then dFp is an isomorphism and we have for the
inverse (dFp)

−1 = d(F−1)F (p)

Definition 4 Let F :M→ N be a smooth map. We define the rank of F at
point p ∈ M to be the rank of the linear map dFp : TpM → TF (p)N . We say
that F has a constant rank if the rank of F is the same for all p ∈M.

Definition 5 A smooth map F :M→N is called

(a) a submersion if and only if ∀p ∈ M : rankF = dimN if and only if dFp is
surjective ∀p ∈M

(b) an immersion if and only if ∀p ∈M : rankF = dimM if and only if dFp is
injective ∀p ∈M

(c) an embedding if and only if F is a smooth immersion and a topolgical
embedding. ie. F : M → F (M) is a homeomorphism if F (M) ⊆ N is
endowed with the subspace topology.

Theorem 6 (Global Rank Theorem) Let F : M → N be a smooth map of
constant rank.

(a) If F is surjective, then F is a submersion.

(b) If F is injective, then F is an immersion.

(c) If F is bijective, then F is a diffeomorphism.

Definition 7 Let M be a smooth manifold. We define the subset N ⊆ M to
be an embedded submanifold of M if and only if N has the subspace topology
with a smooth structure such that the inclusion map N ↪→ M is a smooth
embedding.
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Definition 8 Let M be a smooth manifold. We define the immersed subman-
ifold N ⊆M if and only if

(i) N has a topological structure such that N is a topological manifold

(ii) N has a smooth structure such that the inclusion map N ↪→ M is a
smooth immersion.

Lemma 9 LetM be a smooth manifold and S ⊆M an embedded submanifold
ofM. Then every smooth map F : N →M with the property that F (N ) ⊆ S.
Then F : N → S is also smooth.

Theorem 10 Let M and N be smooth manifolds and let F : M → N be a
smooth map of constant rank. Then ∀p ∈ N the preimage of p, F−1(p) is an
embedded submanifold of M.

1 Lie Groups

Definition 11 A Lie Group G is a smooth manifold without boundary, which
is also a group. That is there exists two smooth maps

m : G × G → G , (g, h) 7→ m(g, h) = gh

i : G → G , g 7→ i(g) = g−1

The identity element e ∈ G is defined as in the usual algebraic sense: ∀g ∈ G :
ge = eg = g

Proposition 12 If G is a smooth manifold with a group structure such that
the map G × G → G , (g, h) 7→ gh−1 is smooth, then G is a Lie Group. q.e.d.

Definition 13 Let G be a Lie group. Then each element g ∈ G defines left and
right translation maps, Lg, Rg : G → G by,

∀h ∈ G : Lg(h) = gh Rg(h) = hg

Proposition 14 The left and right translation maps are diffeomorphisms for
all g ∈ G .

Proof. Define a map ιg : G → G × G , h 7→ (g, h), which is trivially a smooth
map. Then we can write Lg as the composition of two smooth functions, namely
we have,Lg = m◦ιg. Since the composition of smooth functions is again smooth,
we have thus shown that Lg ∈ C∞(G ,G). Note also that Lg−1 is also a smooth
function and the inverse function of Lg. Thus it is also bijective, which shows
that Lg is a diffeomorphism. The proof for the right translation map is analo-
gous. q.e.d.

Example 15 Each of the following is a Lie group.

(a) The set of real invertible matrices GL(n,R) is a group with group action as
the matrix multiplication. GL(n,R) is open in M(n,R) because it is defined
as the preimage of R \ {0} under det, which is a continuous function. Thus
GL(n,R) is a submanifold of M(n,R). Since the matrix multiplication is a
polynomial function of the matrix entries, it is smooth. The inverse map is
also due to Cramer’s rule smooth. q.e.d.
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(b) The set of matrices with positive determinant GL+(n,R) is an open subset
of GL(n,R) because of the same argument with determinant. Thus it is
a submanifold of GL(n,R). Since det(AB) = detAdetB and det(A−1) =
1/det(A), it is also a subgroup of GL(n,R), which makes it with the re-
striction of the group operator in GL(n,R) to a Lie group. q.e.d.

(c) In general each open subgroup H ⊆ G of a Lie group G is a Lie group with
the group operator in H as the restriction of the group operator in G .

(d) Similarly GL(n,C) is a Lie group under matrix multiplication.

(e) (Rn,+) and (C,+) are trivially Lie groups since the group operation is
linear.

(f) The circle S1 ⊆ C∗ is a smooth manifold and a group under complex mul-
tiplication. In the polar representation the group operation is given as
(θ, φ) 7→ θ + φ and the inversion map i is given as θ 7→ −θ, which are both
smooth. The Lie group S1 is also called the circle group.

(g) If G1, . . . ,Gk are Lie groups, then their direct product G1 × · · · ×Gk is also
a Lie group with componentwise multiplication

(g1, . . . , gk)(h1, . . . , hk) = (g1h1, . . . , gkhk)

In particular the n-Torus Tn := S1 × · · · × S1 is an abelian Lie group.

2 Lie Group Homomorphisms

Definition 16 Let G and H be Lie groups and F : G → H a smooth map,
which is also a group morphism. Then F is called a Lie group morphism. If F
is a diffeomorphism from G to H then F is called a Lie group isomorphism. In
this case we say G and H are isomorphic Lie groups.

Example 17 (a) The inclusion map S1 ↪→ C∗ is trivially a Lie group homo-
morphism.

(b) exp : (R,+) → (R∗, ·) is a Lie group homomorphism. Similarly exp :
(R,+)→ (R+, ·) is a Lie group isomorphism with inverse log : R+ → R

(c) Define the map ε : R → S1, θ 7→ e2πiθ is a Lie group homomorphism.
Similarly Rn → Tn is also a Lie group homomorphism.

(d) The determinant function det : GL(n,F)→ F∗ is a smooth function and is
a Lie group homomorphism because det(AB) = detA · detB

Theorem 18 Every Lie group homomorphism F : G → H has constant rank.

Proof. Let e ∈ G and ẽ ∈ H denote the identity elements. Let g0 ∈ G be an
arbitrary element. It is sufficient to show that dFg0 has the same rank as dFe.
We have for all g ∈ G :

F ◦ Lg0(g) = F (Lg0(g)) = F (g0g) = F (g0)F (g) = LF (g0)F (g) = LF (g0) ◦ F (g)
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Thus we have F ◦Lg0 = LF (g0) ◦F . Taking the differentials of both sides at the
identity e ∈ G and using Proposition 3 we get:

dFg0 ◦ d(Lg0)e = d(LF (g0))ẽ ◦ dFe

Since L• is a diffeomorphism, d(L•)g is an isomorphism for all g ∈ G . From
linear algebra lectures, we know that composing a linear function with an
isomorphism does not change the rank of the function. Thus we find that
rank dFg0 = rank dFe q.e.d.

Corollary 19 A Lie group homomorphism is a Lie group isomorphism if and
only if it is bijective.

Proof. This follows directly from Global Rank Theorem. q.e.d.

3 Lie Subgroups

Definition 20 Let G be a Lie group. We call a subset H ⊆ G a Lie subgroup
if and only if

(i) (algebraic property) H is a subgroup of G .

(ii) (topological property) H has a topological and smooth structure such that
H is a Lie group and an immersed submanifold of G .

Proposition 21 Let G be a Lie group and H ⊆ G a subgroup of G , such that
H is also an embedded submanifold of G . Then H is a Lie subgroup.

Proof. Note that we only need to check that H is a Lie group, as the other
properties are fulfilled. The multiplication map m : G × G → G is a smooth
map since G is a Lie group. Thus the restriction m|H×H : H ×H → G is also a
smooth map. Since H is a subgroup it is closed with respect to multiplication
thus mH : H × H → H is well-defined. The fact that this map is smooth is
provided by Lemma 9. The proof for the inverse map is similar. q.e.d.

Example 22 The circle S1 ⊆ C∗ is embedded in C∗ and also a subgroup of C∗.
Thus S1 is an embedded Lie subgroup of C∗.

Lemma 23 Let G be a Lie group and H ⊆ G an open subgroup. Then H is
an embedded Lie group and H is closed in the topological sense. Thus it is a
union of connected components of G .

Proof. If H is open in G , then it is also an embedded submanifold of G . Thus
by Proposition 21 it is a Lie subgroup. We define the left coset of H to be
gH := {gh |h ∈ H }. Note that gH = Lg(H ) and that Lg is a diffeomorphism.
Thus gH is open ∀g ∈ G . We thus have:

H C = G \H =
⋃

g∈G\H

gH

which is a union of open sets and is thus open. Thus H is closed. Since H is a
clopen set it is a union of connected components. q.e.d.

4



Example 24 GL+(n,R) ⊆ GL(n,R) is an open subgroup. Thus an embedded
Lie subgroup of GL(n,R).

Proposition 25 Let F : G → H be a Lie group homomorphism. Then kerF
is an embedded Lie subgroup of G .

Proof. It is clear from linear algebra lectures that kerF 6= ∅ and that kerF
is a subgroup of G . From Theorem 10 we know that kerF = F−1(ẽ) is an
embedded submanifold of G . Thus it follows from Proposition 21 that kerF is
a Lie group. q.e.d.

Example 26 SL(n,F) is the set of real F = R (or complex F = C) (n × n)
matrices with determinant equal to 1. Since it is the kernel of the smooth
determinant function det : GL(n,F) → F∗ it flows from the above proposition
that SL(n,F) is a Lie subgroup of GL(n,F).

4 Group Actions

Definition 27 The left action of a Lie group G on a smooth manifold M is
defined as the map θ : G×M→M, (g, p) 7→ g ·p such that the following holds:

(i) ∀g, g′ ∈ G ,∀p ∈M : g · (g′ · p) = (gg′) · p

(ii) ∀p ∈M : e · p = p

We’ll sometimes use θg(p) instead of g ·p. With this notation the above require-
ments become for the left action

(i) ∀g, g′ ∈ G : θg ◦ θg′ = θgg′

(ii) θe = idM

Definition 28 We define right action in a similar way. Let again G be a Lie
group andM be a smooth manifold. Then the right action of G onM is defined
by the map θ :M× G →M, (p, g) 7→ (p · g) such that the following holds:

(i) ∀g, g′ ∈ G : θg ◦ θg′ = θg′g

(ii) θe = idM

Note that the composition rule for right and left action is different. In particular
every left action can be converted into a right action if we define g · p := g−1 · p.
Thus everything we prove using left actions also apply for right actions. Note
that the notational convenience of writing g · p may lead to misunderstandings
since only the composition rule defines wheteher an action is a left or a right
action an not how we write it.

Definition 29 If M is a topological space and G is a topological group, then
the left/right action of G on M is said to be continuous if the defining map is
continuous. In this case we say that M is a left/right G-space Similarly if M
is a smooth manifold and G is a Lie group, then the left/right action is said to
be smooth if the defining map is a smooth map.

Note that θg :M→M is a diffeomorphism because it is by definition a smooth
function and has the inverse θg−1 which is also by definition smooth.
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Definition 30 Let M be a set, G a group and θ : G ×M →M a left action
on M.

(a) The orpit of an arbitrary p ∈M is defined as the set

G · p := {g · p | g ∈ G}

(b) The istropy group of an arbitrary p ∈ M is defined as the set of group
elements, which map p to p or in mathematical language:

Gp := {g ∈ G | g · p = p}

Note that Gp ⊆ G is a subgroup of G .

(c) The action is called transitive if and only if

∀p, q ∈M, ∃g ∈ G : g · p = q ⇐⇒ ∀p ∈M : G · p =M

(d) The action is called free if and only if

∀p ∈M :
[(
g · p = p =⇒ g = e

)
⇐⇒

(
#Gp = 1

)]
Example 31 (0) Let G be any Lie group and let M be a smooth manifold.

Define the left action as g · p = p for all p ∈M and g ∈ G .

(a) We call the action of GL(n,R) on Rn by left matrix multiplication the
natural action if we interpret Rn as column vectors. This is a lie group
action because 1nx = x for all x ∈ Rn and the matrix multiplication is
associative. Furthermore the action is smooth because it is a polynomial
function of the coordinates. q.e.d.

(b) Let H be a Lie subgroup of G . Then the action H × G → G is a smooth
action

5 Equivarent Maps

Definition 32 Let G be a Lie group which acts both of the smooth manifolds
M and N . We say that a map F :M→N is equivarent if and only if:

∀g ∈ G, ∀p ∈M : F (g · p) = g · F (p)

if and only if the flowing diagram commutes:

M F //

θg
��

N
ϕg

��
M

F
// N

Example 33 Let v = (v1 . . . vn) ∈ Rn be a fixed vector. Define the smooth
action of R on Rn and Tn by

t · (x1 . . . xn) = (x1 + v1t, . . . , xn + vnt)

t · (z1 . . . zn) = (e2πitv1z1 . . . e
2πitvnzn)

Then the smooth map εn : Rn → Tn is equivarent with respect to these action.
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