0 Review of Differential Geometry

Definition 1 Let M be a smooth manifold and p € M be an arbitrary point
in M. A linear map X : C>°(M) — R is called a deriwation at p € M if and
only if:

VfgeC*M): X(fg)=f(p)Xg+gp)XS
The set of all derivations at p € M is called the tangent space to M at p and
is denoted by T, M.

Definition 2 Let M and N be two smooth manifolds and F : M — N be a
smooth map. Then define for each p € M the differential of F' in the following
way:

dF, : TyM = TpyN, X o dFy(X)
whereby we have Vf € C*°(N), dF,(X)(f) := X(f o F). Note that X(f o F) is
well defined because M 5 N LR — foF eC>®M)

Proposition 3 Let M, N and P be smooth manifolds and let ' : M — N
and G : N — P be smooth maps. We have the flowing properties for all p € M

(a) dFy, : TypM — TppN is linear.
(b) d(G o F), = dG () 0 dFy : TyM — Tgopy)P

(c) If F is a diffeomorphism, then dF), is an isomorphism and we have for the
inverse (dF,)~! = d(Ffl)F(p)

Definition 4 Let F': M — N be a smooth map. We define the rank of F at
point p € M to be the rank of the linear map dFy, : T,M — Tr)N. We say
that F' has a constant rank if the rank of F' is the same for all p € M.

Definition 5 A smooth map F : M — N is called

(a) a submersion if and only if Vp € M : rank F = dim N if and only if dF), is
surjective Vp € M

(b) an immersion if and only if Vp € M : rank F' = dim M if and only if dF}, is
injective Vp € M

(¢) an embedding if and only if F' is a smooth immersion and a topolgical
embedding. ie. F: M — F(M) is a homeomorphism if F(M) C N is
endowed with the subspace topology.

Theorem 6 (Global Rank Theorem) Let F' : M — N be a smooth map of
constant rank.

(a) If F is surjective, then F is a submersion.
(b) If F is injective, then F is an immersion.
(c) If F is bijective, then F is a diffeomorphism.

Definition 7 Let M be a smooth manifold. We define the subset N' C M to
be an embedded submanifold of M if and only if A/ has the subspace topology
with a smooth structure such that the inclusion map N < M is a smooth
embedding.



Definition 8 Let M be a smooth manifold. We define the immersed subman-
ifold N/ C M if and only if

(i) A has a topological structure such that A is a topological manifold

(ii) N has a smooth structure such that the inclusion map N' < M is a
smooth immersion.

Lemma 9 Let M be a smooth manifold and S € M an embedded submanifold
of M. Then every smooth map F : N'— M with the property that F(N) C S.
Then F : N = S is also smooth.

Theorem 10 Let M and N be smooth manifolds and let F : M — N be a
smooth map of constant rank. Then Vp € N the preimage of p, F~(p) is an
embedded submanifold of M.

1 Lie Groups

Definition 11 A Lie Group §G is a smooth manifold without boundary, which
is also a group. That is there exists two smooth maps

m:Gx§G—g, (g’h)Hm(g’h):gh

i1G—= G, grilg)=g"

The identity element e € G is defined as in the usual algebraic sense: Vg € G :
ge=¢eg=4g

Proposition 12 If G is a smooth manifold with a group structure such that
the map G X G — G, (g,h) = gh~! is smooth, then G is a Lie Group. q.e.d.

Definition 13 Let G be a Lie group. Then each element g € G defines left and
right translation maps, Ly, Ry : G — G by,

Vhe G: Ly(h)=gh Ry(h)=hg

Proposition 14 The left and right translation maps are diffeomorphisms for
all g € G.

Proof. Define a map ¢ty : G — G X G, h — (g, h), which is trivially a smooth
map. Then we can write L, as the composition of two smooth functions, namely
we have,L, = mot,. Since the composition of smooth functions is again smooth,
we have thus shown that L, € C*°(§G, G). Note also that L,-1 is also a smooth
function and the inverse function of Ly. Thus it is also bijective, which shows
that L, is a diffecomorphism. The proof for the right translation map is analo-
gous. q.e.d.

Example 15 Each of the following is a Lie group.

(a) The set of real invertible matrices GL(n,R) is a group with group action as
the matrix multiplication. GL(n,R) is open in M(n,R) because it is defined
as the preimage of R\ {0} under det, which is a continuous function. Thus
GL(n,R) is a submanifold of M(n,R). Since the matrix multiplication is a
polynomial function of the matrix entries, it is smooth. The inverse map is
also due to Cramer’s rule smooth. q.e.d.



(b) The set of matrices with positive determinant GL™ (n,R) is an open subset
of GL(n,R) because of the same argument with determinant. Thus it is
a submanifold of GL(n,R). Since det(AB) = det Adet B and det(A~!) =
1/det(A), it is also a subgroup of GL(n,R), which makes it with the re-
striction of the group operator in GL(n,R) to a Lie group. q.e.d.

(c¢) In general each open subgroup H C G of a Lie group G is a Lie group with
the group operator in A as the restriction of the group operator in G.

(d) Similarly GL(n,C) is a Lie group under matrix multiplication.

(e) (R™,+) and (C,+) are trivially Lie groups since the group operation is
linear.

(f) The circle S' C C* is a smooth manifold and a group under complex mul-
tiplication. In the polar representation the group operation is given as
(0,6) — 0 4+ ¢ and the inversion map i is given as 6 — —6, which are both
smooth. The Lie group S' is also called the circle group.

(g) If Gi,..., Gy are Lie groups, then their direct product Gy X - -- X Gy, is also
a Lie group with componentwise multiplication

(91, 96)(hay oo i) = (g1ha, - grha)

In particular the n-Torus T™ := S! x --- x S! is an abelian Lie group.

2 Lie Group Homomorphisms

Definition 16 Let G and # be Lie groups and F' : G — H a smooth map,
which is also a group morphism. Then F is called a Lie group morphism. If F
is a diffeomorphism from G to # then F is called a Lie group isomorphism. In
this case we say G and # are isomorphic Lie groups.

Example 17 (a) The inclusion map S' < C* is trivially a Lie group homo-
morphism.

(b) exp : (R,+) — (R*,-) is a Lie group homomorphism. Similarly exp :
(R,+) — (RT,.) is a Lie group isomorphism with inverse log : R* — R

(c) Define the map ¢ : R — S!,  — 2™ is a Lie group homomorphism.
Similarly R™ — T™ is also a Lie group homomorphism.

(d) The determinant function det : GL(n,F) — F* is a smooth function and is
a Lie group homomorphism because det(AB) = det A - det B

Theorem 18 FEvery Lie group homomorphism F : G — H has constant rank.

Proof. Let e € G and € € #H denote the identity elements. Let gy € G be an
arbitrary element. It is sufficient to show that dF,, has the same rank as dF..
We have for all g € G:

FoLg(9) = F(Lg(9)) = F(g09) = F(90)F(9) = Lr(g0)F(9) = Lr(gy) © F(9)



Thus we have F'o Ly, = Lpg4,) o F. Taking the differentials of both sides at the
identity e € G and using Proposition 3 we get:

dFy, 0d(Lg,), = d(Lp(g,)); 0 dFe

Since L, is a diffeomorphism, d(L,), is an isomorphism for all g € G. From
linear algebra lectures, we know that composing a linear function with an
isomorphism does not change the rank of the function. Thus we find that
rank dFy, = rank dF, q.e.d.

Corollary 19 A Lie group homomorphism is a Lie group isomorphism if and
only if it is bijective.

Proof. This follows directly from Global Rank Theorem. q.e.d.

3 Lie Subgroups

Definition 20 Let G be a Lie group. We call a subset H C G a Lie subgroup
if and only if

(i) (algebraic property) H is a subgroup of G.

(ii) (topological property) H has a topological and smooth structure such that
#H is a Lie group and an immersed submanifold of G.

Proposition 21 Let G be a Lie group and H C G a subgroup of G, such that
H is also an embedded submanifold of G. Then # is a Lie subgroup.

Proof. Note that we only need to check that # is a Lie group, as the other
properties are fulfilled. The multiplication map m : G x G — G is a smooth
map since G is a Lie group. Thus the restriction m|gy g : H x H — G is also a
smooth map. Since H is a subgroup it is closed with respect to multiplication
thus my : H x H — H is well-defined. The fact that this map is smooth is
provided by Lemma 9. The proof for the inverse map is similar. q.e.d.

Example 22 The circle S' C C* is embedded in C* and also a subgroup of C*.
Thus S! is an embedded Lie subgroup of C*.

Lemma 23 Let G be a Lie group and # C G an open subgroup. Then # is
an embedded Lie group and # is closed in the topological sense. Thus it is a
union of connected components of G.

Proof. If H is open in G, then it is also an embedded submanifold of G. Thus
by Proposition 21 it is a Lie subgroup. We define the left coset of H to be
gH = {gh|h € H}. Note that g#H = L,(#) and that L, is a diffeomorphism.
Thus gH is open Vg € G. We thus have:

HO=G\H= ] g#
gEG\H

which is a union of open sets and is thus open. Thus # is closed. Since H is a
clopen set it is a union of connected components. q.e.d.



Example 24 GLT(n,R) C GL(n,R) is an open subgroup. Thus an embedded
Lie subgroup of GL(n,R).

Proposition 25 Let F' : G — H be a Lie group homomorphism. Then ker F'
is an embedded Lie subgroup of G.

Proof. Tt is clear from linear algebra lectures that ker F # () and that ker F
is a subgroup of G. From Theorem 10 we know that ker F = F~!(¢) is an
embedded submanifold of G. Thus it follows from Proposition 21 that ker F' is
a Lie group. q.e.d.

Example 26 SL(n,F) is the set of real F = R (or complex F = C) (n x n)
matrices with determinant equal to 1. Since it is the kernel of the smooth
determinant function det : GL(n,F) — F* it flows from the above proposition
that SL(n,F) is a Lie subgroup of GL(n, F).

4 Group Actions

Definition 27 The left action of a Lie group G on a smooth manifold M is
defined as the map 0 : G x M — M, (g,p) — g¢-p such that the following holds:

(i) Vg,g' € G,VpeM: g-(¢'"-p)=(99) P
(iil) VpeM: e-p=p

We’ll sometimes use 04(p) instead of g-p. With this notation the above require-
ments become for the left action

(i) Vg,g' € G: 0500y = b4y
(ii) 0. = idpg

Definition 28 We define right action in a similar way. Let again G be a Lie
group and M be a smooth manifold. Then the right action of G on M is defined
by the map 8 : M x G = M, (p,g) — (p - g) such that the following holds:

(i) Vg.9' € G: 05006y =04,
(i) 0. =id M

Note that the composition rule for right and left action is different. In particular
every left action can be converted into a right action if we define g-p := ¢~ ! p.
Thus everything we prove using left actions also apply for right actions. Note
that the notational convenience of writing ¢ - p may lead to misunderstandings
since only the composition rule defines wheteher an action is a left or a right

action an not how we write it.

Definition 29 If M is a topological space and G is a topological group, then
the left /right action of G on M is said to be continuous if the defining map is
continuous. In this case we say that M is a left/right G-space Similarly if M
is a smooth manifold and G is a Lie group, then the left/right action is said to
be smooth if the defining map is a smooth map.

Note that 8, : M — M is a diffeomorphism because it is by definition a smooth
function and has the inverse 6,-1 which is also by definition smooth.



Definition 30 Let M be a set, G a group and 6 : G x M — M a left action
on M.

(a) The orpit of an arbitrary p € M is defined as the set
G-p={g9 plge g}

(b) The istropy group of an arbitrary p € M is defined as the set of group
elements, which map p to p or in mathematical language:

Gp={9€Glg-p=n}

Note that G, C G is a subgroup of G.

(¢) The action is called transitive if and only if
Vp,ge M, dgeG: g-p=q < VYpeM: G-p=M
(d) The action is called free if and only if
Vp e M: [(g~p=p = g=¢) = (#%Zl)]

Example 31 (0) Let G be any Lie group and let M be a smooth manifold.

Define the left action as g-p=pforallpe M and g € G.

(a) We call the action of GL(n,R) on R™ by left matrix multiplication the
natural action if we interpret R™ as column vectors. This is a lie group
action because 1,z = z for all x € R™ and the matrix multiplication is
associative. Furthermore the action is smooth because it is a polynomial
function of the coordinates. q.e.d.

(b) Let H be a Lie subgroup of G. Then the action H x G — G is a smooth
action

5 Equivarent Maps

Definition 32 Let G be a Lie group which acts both of the smooth manifolds
M and N. We say that a map F' : M — N is equivarent if and only if:

VgeG, Vpe M: F(g-p)=g-F(p)

if and only if the flowing diagram commutes:
ML N
I
M—=N
Example 33 Let v = (vy...v,) € R” be a fixed vector. Define the smooth
action of R on R™ and T™ by
t-(x1...2y) = (x1 +v1t, ..., Zpn + Upt)
t-(z1...2,) = (62”“”121 ... e2mitvn Zn)

Then the smooth map " : R” — T” is equivarent with respect to these action.
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