Seminar Lie algebras and representations Problem sheet 3: Representations of $\mathfrak{sl}_2(\mathbb{C})$

Exercise 1 Prove that, as representations of $\mathfrak{sl}_2(\mathbb{C})$, $\bigwedge^3(\operatorname{Sym}^4(V)) \cong \operatorname{Sym}^3(\operatorname{Sym}^2(V))$. Prove also that $\operatorname{Sym}^3(\operatorname{Sym}^2(V)) \cong \operatorname{Sym}^2(\operatorname{Sym}^3(V))$.

Exercise 2 A representation of a Lie group G is a homomorphism of Lie groups $\rho : G \to GL(V)$, for some vector space V. Any such induces a representation of the respective Lie algebras

$$d\rho: \mathfrak{g} \to \mathfrak{gl}(V).$$

On the other hand, given a finite dimensional representation of a Lie algebra $d\rho : \mathfrak{g} \to \mathfrak{gl}(V)$, it lifts uniquely to a representation $\rho : \widetilde{G} \to \operatorname{GL}(V)$, where \widetilde{G} is the only simply connected connected Lie group with Lie algebra \mathfrak{g} .

Using the theory of representations of $\mathfrak{sl}_2(\mathbb{C})$, simple connectedness of $\mathrm{SL}_2(\mathbb{C})$ and the above, prove that the universal cover of $\mathrm{SL}_2(\mathbb{R})$ has no finite dimensional representation which does not factor through $\mathrm{SL}_2(\mathbb{R})$. In other words, it has no faithful finite dimensional representation.