Universität Heidelberg Mathematisches Institut

Prof. Dr. Otmar Venjakob Andreas Riedel

Algebraische Geometrie II Sommersemester 2009

Aufgabenblatt 8 20. Mai 2009

Aufgabe 1. (8 Punkte)

Sei f: $X \to Y$ ein Morphismus (X, Y lokal noethersch) von endlichem Typ und $x \in X$ sowie y = f(x). Zeige die Äquivalenz folgender Aussagen:

- a) f ist unverzweigt in x.
- b) $X_y = X \times_Y \operatorname{Spec}(\kappa(y)) \to \kappa(y)$ ist unverzweigt in x.
- c) x hat in X_y eine Umgebung Spec(A), wobei A ein endliches Produkt von endlichen seperablen Körpererweiterungen von $\kappa(y)$ ist.
- d) x ist isoliert in X_y und der Ring $\mathcal{O}_{X_y,x}$ ist ein Körper sowie eine seperable Erweiterung von $\kappa(y)$.

Hinweis: Man erinnere sich an die Beschreibung endlicher diskreter Schemata. Es darf ohne Beweis benutzt werden: Ist A/k eine artinsche endlich erzeugte k-Algebra (k Körper), so hat A als k-Modul endlichen Rang.

(8 Punkte) Aufgabe 2.

Sei k
 ein Körper, X ein k-Schema von endlichem Typ sowie $x \in X$. Zeige mit Hilfe von Aufgabe 4 des letzten Blatts: X ist glatt in $x \iff \Omega^1_{X,x}$ frei von Rang $\dim_x X$ (bei " \Leftarrow " soll man den Nachweis der Einfachheit halber nur für den Fall, dass x ein abgeschlossen Punkt ist, führen). Folgere für X irreduzibel: X ist glatt $\iff \Omega^1_{X/k}$ ist eine lokal-freie Garbe von Rang dim X.